
Interface Timing Veri�cation with Application to Synthesis

Elizabeth A. Walkup�, Gaetano Borrielloy

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract { A fundamental timing analysis problem

in the veri�cation and synthesis of interface logic cir-

cuitry is the determination of allowable time separa-

tions, or skews between interface events, given tim-

ing constraints and circuit propagation delays. These

skews are used to verify timing properties and deter-

mine allowable propagation delays for logic synthe-

sis. This paper presents an algorithm that provides

tighter skew bounds with better asymptotic running

time than previous methods, and shows how to apply

the method to synthesis tasks.

I Introduction

Temporal behavior of interface circuitry is frequently de-
scribed using event-based representations that relate the
occurrence times of events with timing constraints and
propagation delays [1, 2, 3, 4, 5, 6]. In this paper, we
present an e�cient solution to a key problem in the veri-
�cation and synthesis of interface glue logic, namely, the
determination of tight bounds on the temporal separa-
tions between events. To verify a synthesized circuit, we
must be able to check that the circuit's outputs will occur

within the time interval required and expected by the cir-
cuit's environment. In synthesizing the circuit, we must
be able to determine the amount of delay within which
the logic may generate an interface event. This permits
optimizing the logic to take advantage of the temporal
characteristics of the interface. The basic subproblems

�Supported in part by an NSF Graduate Fellowship.
ySupported by PYI Award (MIP-8858782) and by the

DARPA/CSTO Microsystems Program under an ONR monitored

contract (N00014-91-J-4041).

of both these tasks can be phrased in terms of bounds on
the skew between pairs of events.
Previous work on this problem has su�ered froma com-

bination of two de�ciencies. First, existing veri�cation
algorithms are ine�cient. The method in [1] relies on
exponential search, while the method of [3] does not pro-
duce the tightest possible skew bounds and has a running
time which depends intimately upon the time bounds of
the constraints. Second, they have not been useful for the
synthesis process because they yield very loose bounds in
the presence of unknown delays, a common situation be-
fore a circuit is synthesized.
In this paper, we �rst present an interface timing spec-

i�cation model that uni�es the concepts of timing con-
straint and propagation delay into a single constraint
type. We then provide an e�cient algorithm for solv-
ing systems of these constraints. The algorithm yields
tight bounds even in the presence of unknown constraint
bounds, and its worst case running time can be expressed
independently of the initial constraint values. We con-
clude with a discussion of how the algorithm can be used
in both veri�cation and synthesis applications.

II Interface Timing Specification

Interface speci�cations consist of a sequence of events,
which are transitions on signal wires. Such a speci�cation
can be viewed as a partial ordering of the events and the
ways in which they can be spaced in time. Temporal
relationships between these interface events are expressed
with propagation delays and timing constraints. In this
section, we explain the semantic di�erence between these
two types of temporal constraints and present a model
that expresses both of them in a uni�ed form.

A An Interface Speci�cation Example

Suppose we wish to synthesize a circuit to interface
with an SRAM. We say that the SRAM is then the envi-
ronment for our interface circuit. Figures 1 and 2 provide
the interface speci�cation for a simpli�ed SRAM read op-
eration { any circuit we synthesize to interface with the

tRCtRC

tCLZ tAA
tACS tOH

ADDRESS

CS

DATA_OUT

Fig. 1: Timing diagram for an SRAM read operation.

Propagation Delay Values for SRAM

name from to min max

tAA Address Valid Data Valid 0 20

tACS CS low Data Valid 0 20

tCLZ CS Low Data Driven 5

tOH Adress Invalid Data Invalid 5

Performance Requirement for SRAM

tRC Address Valid next Address 100

Fig. 2: Constraint values for the SRAM example.

SRAM must adhere to the performance requirements in
Figure 2, and may take advantage of the propagation de-
lay information to meet any further timing constraints
on its own performance. In this example, the appear-
ance of valid data on the DATA OUT line is the result
of a propagation delays from both the lowering of the
signal CS and the assertion of a valid address on the
Address lines. Throughout the remainder of this paper,
these three events will be referred to as DV,CS, and AV,
respectively.
Propagation delays, or delay constraints such as these

express structural dependencies between the inputs and
outputs of both the interface circuitry and the environ-
ment. These constraints, here expressed as ranges of 0 to
20 time units from the lowering of CS and the appearance
of a valid address, determine when valid data will �rst
appear. The data appears at the maximumof CS+tACS
and AV + tAA where tACS and tAA are within the 0 to
20 time unit delays listed for DV relative to AV and CS.
Note that this event may actually occur outside the range
speci�ed by either input event's propagation delay taken
alone. Therefore, we consider these constraints linked or
dependent on one another. We can express these as:

Max

8><
>:

xj1 + �j1;i;
...

xjm + �jm;i

9>=
>;
� xi � Max

8><
>:

xj1 +�j1;i;
...

xjm +�jm;i

9>=
>;
;

where � and � represent the lower and upper bounds of
the propagation delays and the xi's are individual events.
With propagation delays, the Max term causes an event
to happen only after all predecessor events plus their cor-

responding delay have occurred.

The other constraint type, which we term timing con-

straints, come in two
avors: requirements, which the
environment imposes upon the circuit for proper inter-
action, and guarantees, which describe the operating en-
vironment independently of the underlying implementa-
tion. An example of the �rst type would be the mini-
mum time constraint tRC on how long the address must
remain valid. An example of the second would be an en-
vironment asserting that it will never change two signal
values within a short interval of each other. Constraints
of this type are independent of one another and specify
the exact time range within which one event must occur
relative to another. Performance requirements of the cir-
cuit can also be viewed as timing constraints { specifying
that an output response must be seen within a particular
interval. We can express these as:

xj + �j;i � xi � xj +�j;i;

where � and � represent the lower and upper bounds of
the constraint.

Previous work has used di�erent models for temporal
constraints that make more explicit distinctions between
the two types of constraints. McMillan and Dill ([3])
use the terms Linear and Max constraints for timing
and delay constraints, respectively. Vanbekbergen ([4])
has a more complete yet, not largely useful, taxonomy
that labels timing and delay constraints as type 1 and
type 2, respectively. We �nd it more useful to translate
both types into inequalities involving theMax operation.
We can express both types of constraints as a system of
inequalities of the following form:

xi � Maxfxj1 +�j1;i; : : : ; xjm +�jm;ig: (1)

Since timing constraints are independent, there is only
one term in the Max expression { reducing Equation 1
to a simple arithmetic inequality.

Suppose that we are given an interface circuit for the
SRAM of Figures 1 and 2 which meets the performance
guarantees of Figure 3. The set of equations describing
the relative times of events AV, DV, and CS are:

Performance Guarantees for SRAM Interface

from to min max

Address Valid CS low 300

CS low Data Valid 30

Fig. 3: Performance bounds for an SRAM interface.

Address Valid

CS Low

Data Valid

0

-30

300

20

20

Fig. 4: Graphical representations of constraints in the
SRAM interface. Outline arcs represent interdependent
propagation delays; thin arcs represent independent con-
straints.

DV � Max (AV + 20; CS + 20)
AV � Max (DV + 0)
CS � Max (DV � 30)
CS � Max (AV + 300) .

Systems of these of events can be abstracted as a con-
straint graph over interface events. We say a given set
of constraints induces a graph whose nodes represent the
events, and whose arcs, from xj to xi with label � repre-
sent each of the terms xj + � in a constraint with xi on
the left hand side of the inequality. The graph induced
by the set of constraints given above is shown in Figure 4.

III The Verification Problem

We can verify that a system's required performance
constraints are met by determining that the maximum

skew between all interface and environment events in the
system meet all performance requirements of the system.

A Formal Problem De�nition

We now state the veri�cation problem more formally.
Given

� X = fx0; x1; : : : ; xn�1g a set of occurrence times of
events in the system

� C, a set of constraints cj of the form:

cj : xi �Maxfxj1 + �j1;i; : : : ; xjm + �jm;ig;

determine either a tight upper bound on the occurrence
times of all variables x1; : : : ; xn�1 relative to x0 = 0, or
that the set of inequalities is inconsistent.

In practical applications, one would apply the veri�-
cation algorithm to a fully synthesized combined circuit-
environment speci�cation with all performance require-

ments removed and then check that the bounds given
by the veri�cation algorithm are no looser than any per-
formance requirement. We do not remove propagation
delays and performance guarantees since they determine
how the circuit and its environment will react.

B Previous Work

Algorithms for determining the maximum inter-event
timing separations have been proposed by Borriello [1]
and McMillan and Dill [3]. The algorithm of [1] is expo-
nential in the number of nodes with propagation delays

and can quickly become too costly for large composed
graphs. The implementation is straightforward and uses
backtracking to determine which causal relationships de-
termine the occurrence time of an event.
The algorithm given in [3] has two drawbacks: in many

practically interesting cases, it provides in�nite separa-
tion bounds between events with �nite bounds; and its
worst case running time depends not only upon n, the
number of events in the system, but also upon the �i;j 's,
the bounds of the constraints. In this algorithm, initial
in�nite upper bounds on node separations are re�ned by
successive applications of appropriate constraints from
the input set. The problem with this approach, as noted
in [3], is that the running time of the algorithm can de-
pend on the values of the constraints, giving a worst case
complexity of O(n3 �

P
j�i;jj). This behavior occurs pre-

cisely when there is a \negative cycle" in the graph with
at least one arc of the cycle belonging to a propagation

delay. When applied to the SRAM example of Figure 4,
the number of times the algorithm of [3] (hereafter re-
ferred to as the MD algorithm) applies the constraints
DV � Max (AV +20; CS+20) and CS � DV �30 is de-
pendent upon on the value of the 300 ns constraint from
AV to CS. Increase the 300ns constraint to 600ns and the
algorithm takes twice as long.
In addition, the limit of CS's maximum skew relative

to AV as the 300 ns constraint is raised towards in�n-
ity is �10, indicating that the constraint is redundant.
However, if the constraint is completely removed, the al-
gorithm will give a �nal bound of 1 for CS relative to
AV. If we assume that all events must occur eventually
then an in�nite bound simply indicates that we do not
know the relationship between event occurrence times. In
this case, an in�nite maximum skew between the events
is wrong: we know that they will occur and that CS must
occur at least 10 ns before AV.

C An Improved Veri�cation Algorithm

We now introduce our new \short circuiting" veri�ca-

Optimized Constraint Relaxation Algorithm

Input: Event set X and constraint set C

Result: xj contains tight upper bound on (xj � x0)

Set all bounds xjj 6= 0 to symbolic quantity V.

Set x0 to 0.
Repeat:

Repeat n times:

\Update" subroutine:
If a constraint ci exists that can reduce the bound on an xj,

update xj to re
ect ci and record ci as the most recent to update xj.

Choose topologically �rst components of size � 2 in the graph induced by such recorded constraints.
Within each such component do (Short-circuit step):

For all xj whose recorded constraints contain arcs from exterior the component �nd

(xj's current value) - (the Max value contributed from outside constraint arcs only).
Let � be the smallest such di�erence in the component. (It will be positive.)

Subtract � from all bounds xj in the component.

Until x0 < 0 or no xj changes.

Fig. 5: SC constraint relaxation algorithm.

tion algorithm, hereafter referred to as the SC algorithm.
It's improvements over the MD algorithm rely on two
observations:

� If a \negative cycle" can be discovered, we can then
predict how many times the constraints along that
cycle can be re-applied. This information can be
used to speed up the performance of the McMillan
and Dill algorithm.

� Since we assume that all events will eventually hap-
pen, it is correct to de�ne the problem using the
limit of the maximum skews as an initial bound on
all maximum skews goes to in�nity. This allows us
to accurately handle cases such as that of Figure 4
with the redundant 300 ns constraint removed.

If we de�ne the dependency graph of the system to be the
subgraph induced by those constraints which were used
to provide the current bound on each node, then patterns
of repeated constraint application appear as strongly con-
nected components in this dependency graph. To calcu-
late the limit of the maximum skews as an initial bound
goes to in�nity, we begin the algorithm by setting the
maximum skews of all nodes in the graph to the sym-
bolic constant V, with the exception of one node whose
time is set to 0 to serve as the origin of the time measure-
ment. We assume that V is a very large number, and so
perform all calculations involving it symbolically. An in-
tuitive description of the algorithm follows; pseudocode
is given in Figure 5.
The short circuit algorithm cycles through the follow-

ing four steps:

� Pass through n rounds of the Update subroutine,
where n is the number of events in the system. The

Address Valid

CS Low

Data Valid

-30

20

20

Fig. 6: Constraint set on which topological information
is performed.

Update subroutine applies to each event the con-
straint that most greatly reduces its bound. Dur-
ing this process, the dependency graph summarizing
which constraint was used most recently to update
each event's maximum skew is maintained. After n
rounds, any current cyclic behavior will appear since
every cycle has at most n nodes on it.

� Perform a strongly connected components analysis
of the dependency graph. \Negative cycles" will ap-
pear as strongly connected components in this di-
rected graph and may be any strongly connected
component, not just simple cycles.

� Among such components of size � 2, �nd the topo-
logically �rst ones. These indicate the constraint
dependencies which may be pro�tably \short cir-
cuited".

� For each of these components, �nd all constraints
whose arcs have their tails outside the component
(called exterior arcs) In Figure 6, the only such ex-
terior arc is from AV to DV. When the constraint
relaxation procedure is exhibiting cyclic behavior, it

Convergence with Short-Circuit Algorithm

Number of Pass Through Outer Repeat Loop

Node start 1st Updates 1st SC 2nd Updates

AV 0 0 0 0

CS V V � 50 V � 50 �10

DV V V � 30 20 20

Fig. 7: Applying the short circuit algorithm to the graph
in Figure 4 with the redundant 300ns constraint removed.

will continue to do so until one of the exterior arcs
provides the actual bound on the node it points to.
We discover which node will limit the cycle by com-
paring the current skew bounds of all nodes that
such exterior arcs enter with the value they would
have if the interior arcs (those arcs with tails inside
the component) were to be removed. Whichever of
these has the least di�erence between the current
and exterior-provided skew bounds is chosen as the
\winner", and we update that node's skew to match
the incoming arc.

Note that the last step is where the symbolic value V
becomes useful { a component may have all nodes with
values containing a V term when all exterior arcs provide
potential bounds not containing V. In such a case, the
MD algorithmwill erroneously calculate an in�nite max-
imum skew for all nodes in the connected component. We
assume that any value containing an V is larger than any
value not containing V, and this allows us to shortcircuit
these components as well. Note that the use of V also
allows us to apply ShortCircuit to systems that contain
variables with true upper bounds of in�nity. These vari-
ables will be precisely those whose �nal bound as given

by the algorithm still includes a V term.

In Figure 7 we show the results of applying the short-
circuit algorithm to the graph in Figure 4, without the
redundant constraint CS � AV � 300 since we can now
handle an initial upper bound of in�nity on CS � AV .

D Practical Results

Each of the n update rounds takes time at most jCj
where jCj is the number of terms xj + �j;i in the con-
straint set. The topological information takes time at
mostO(jCj) to calculate. We have unfortunately been un-
able to determine a tight bound on the number of short
circuiting passes that must be made in the worst case.
It is our intuition, however that the number of required
passes is polynomial and we have been unable to gener-
ate any example that takes more than P = O(jCj) such
passes. The algorithmmust be run once for each possible

assignment of x0, thus giving a bound of

n � P � (n � jCj+ jCj)

to determine all n2 maximum event separations in the
worst case, which we feel is probably n6. For practical
problems, C is O(n), giving a likely bound of n4. In
contrast, the bound for the MD algorithm is n3 �

P
j�j

in the worst case and n2 �
P
j�j for the practical case. We

would expect that n2 is much less than the sum of the
�'s for practical problems. An absolute worst case on the
number of passes required by our algorithm is T , where T
is the number of distinct rooted trees over the constraint
set C. This bounds the number of di�erent dependency
graphs we will see during the short circuiting portion
of the algorithm { it can be shown that with each pass,
the portions of the dependency graph which topologically
precede all strongly connected components of size greater
than one must be distinct.
We have implemented the algorithm and run both

practical examples [7, 3] and randomly generated larger
examples built to look like practical examples (i.e. sim-
ilar constraint sizes and constraint type ratio). In these
cases no more than three short circuiting phases were re-
quired to �nd maximum skews relative to a single event.
Running times were on the order of 20 seconds on a DEC
station 5000 to �nd all n2 maximum skews for a dense
constraint graph with 80 nodes, which is much larger
than we expect to see in practice.

IV Applications to Synthesis

In this section, we de�ne a synthesis problem over sys-
tems of propagation delays and performance constraints,
and show why previous veri�cations algorithms are inad-
equate to perform synthesis tasks. We use an example

problem to give an intuition for the di�erences between
the veri�cation and synthesis problems, and provide a
new constraint taxonomy to distinguish the two prob-
lems.

A A Taxonomy of Constraint Types

Given a collection of devices whose temporal behavior
is fully speci�ed and a fully synthesized interface circuit,
the veri�cation problem determines that the interface cir-
cuit meets the timing requirements of the components
it interconnects. In contrast, as we synthesize interface
logic, we would like all the timing constraints provided
to guide our synthesis process. In particular, we wish to
utilize the circuit's required timing constraints to deter-
mine allowable propagation delays for that circuit. To
accomplish this, we partition the types of delays encoun-
tered during the synthesis procedure into the following
two orthogonal categories:

Specification Semantics Constrainable Unconstrainable

Propagation Delays: incompletely synthesized logic fully synthesized logic

Guarantees: modifyable environment behavior of environment

Requirements: all performance constraints do not exist

Fig. 8: Taxonomy of interface constraint types.

Propagation Delays vs. Timing Constraints:

Both circuit and environment may include structural
timing information in the form of propagation delays.
The environment may include timing requirements which
indicate the allowable time separations of inputs to the
environment and timing guarantees which summarize its
temporal behavior.

Constrainable vs. Unconstrainable ranges: Con-
strainable delays and performance measures indicate
time ranges which may be further constricted, as needed,
to create a consistent circuit-environment combination;
unconstrainable ranges represent elements for which the
circuit must function correctly for arbitrary delay behav-
ior anywhere within the given range.

Figure 8 gives a summary of these categories, which
are here more completely described from top to bottom.

� Constrainable Propagation Delays:

Timing behavior for which logic is either not com-
pletely synthesized, in the case of interface circuitry,
or for which timing behavior can be modi�ed, in the
case of the environment.

� Unconstrainable Propagation Delays:

Timing behavior for which logic is already synthe-
sized.

� Constrainable Timing Guarantees:

Environment timing behavior that is modifyable,
but for which no explicit structural information is
provided.

� Unconstrainable Timing Guarantees:

Unmodifyable environment behavior for which no
explicit structural information is provided.

� Constrainable Timing Requirements:

Performance requirements may always be over-met.

� Unconstrainable Timing Requirements:

These cannot exist.

Under this taxonomy, the veri�cation problem consists
of checking that a fully speci�ed system (no portions
still represented with constrainable propagation delays
or constrainable guarantees) meets all of its performance

.................
.........

@
@
@@.................

.........

.................
.........@

@
@@

..
..
..
.
..
.
..
.
..
.
....
..
.
.
.......

...
.
..

.
..

.
..

.
..

.

.................
.........

�
�
��..........................
.................
.........�
�
��

..
..
..

.
..

.
..

.
..

.
....

..

.

.

..
...
.
..
.
..
.
..
.
..
.

v

v

v

v

?
D

A

CB h80; 100i

h30; 50ih20; 30i

Fig. 9: A simple synthesis problem. Dotted arcs need to
be synthesized; outline arcs represent propagation delay;
thin lines represent timing requirements. For visual clar-
ity, constraints are in double-bounded form with h�;�i
indicating the lower and upper bounds on the constraint.

requirements, and the synthesis problem consists of con-
straining all constrainable propagation delays and con-
strainable guarantees until they, in conjunction with their
unconstrainable counterparts meet all of the timing re-
quirements.

The algorithms of [1] and [3] are both veri�cation al-

gorithms, meaning that given a set of constraints, they
determine maximum bounds on the separation of sig-
nal events given that all constraints hold. In contrast, a

synthesis algorithm must determine bounds on the time
available for a circuit to generate an event to ensure that
the desired constraints hold.

B Solutions are Inherently Disjoint

Consider the simple system in Figure 9. The environ-
ment provides output A, and some time later expects two
inputs, at B and C, from which it generates the output
at D. If we must synthesize the logic that produces B
and C, we have two problems:

� They must be synthesized quickly enough after A
occurs that the environment can produce D within
the 100 ns maximum time from A.

� At least one of them must produce output late
enough to keep D from happening before it's mini-
mum 80 ns time bound from A.

Note that we need not cause both B and C to occur later
in order to meet the minimum time constraint. If we
synthesize logic to produce B from A within the delay
range h30; 60i then we must synthesize C from A with
delay exactly 50. Alternatively, if we generate C from A

with delay range h20; 40i , we can synthesize B from A

anywhere in the range h60; 70i. Note that these are two
disjoint solutions.

C Towards a Synthesis Algorithm

The di�erences between the veri�cation and synthesis
problems are fundamental { for a given system there is
one correct answer to the veri�cation problem, but per-
haps none or many correct synthesis solutions. However,
we note that the following steps can greatly improve the
bounds returned by the veri�cation algorithm.

� Perform the veri�cation algorithm only on the Un-
constrainable constraints to get unconstrainable
skews.

� Perform the veri�cation algorithm only on the Con-
strainable constraints to get constrainable skews.

� Replace each unconstrainable skew of the form xi �
xj � � with a constraint xi � xj � �.

� Create new synthesis constraints as possible from
combinations of one constrainable skew and one of
the \
ipped" unconstrainable skews

� Run the algorithm on this last set of synthesis con-
straints.

The resulting bounds on skews between nodes connected
by Constrainable Delay constraints provide tighter
bounds on how those arcs may be synthesized than are
obtainable from the veri�cation algorithm alone. Bounds
on Constrainable relationships are narrowed subject
to Unconstrainable constraints taking on their worst
case delays. This procedure essentially requires that all
Timing Requirements hold no matter where an Un-
constrainable Delay occurs within its allowed range.
The bounds can then be used to guide an iterative heuris-
tic synthesis procedure to determine �nal bounds on all
Constrainable Delays and Constrainable Guar-
antees.

V Conclusions and Future Work

We have discussed the di�erences in verifying and syn-
thesizing interface circuit systems speci�ed with propa-
gation delays, performance guarantees, and performance
requirements, and provided a taxonomy of constraint
types to express the range of desired behaviors. A new

algorithm was presented for satisfying systems of con-
straints as arise in interface timing veri�cation. This
algorithm improves upon the previous work of McMil-
lan and Dill [3] in two ways: it robustly handles in�nite
delay bounds, and its worst case running time is not de-
pendent on the individual delay values of the constraints.
We have proven the algorithm correct (the complete al-
gorithm and proof of correctness can be found in [8]) ,
and shown that it is practically applicable. In addition,
we have shown how to modify the veri�cation algorithm
to more readily handle synthesis tasks.
Currently we are working on determining the veri�ca-

tion algorithm's theoretical time performance bounds, as
well as developing a full synthesis procedure.

Acknowledgments

The authors wish to thank David Dill, Peter Vanbekbergen,

Martin Tompa, and Paul Beame for many useful discussions
of material contained herein.

References

[1] Gaetano Borriello. A New Interface Speci�cation Method-

ology and its Application to Transducer Synthesis. PhD

thesis, University of California, May 1988. Report No.
UCB/CSD 88/430.

[2] Thomas Gahlinger. Coherence and Satisfyability of Wave-

form Timing Speci�cations. PhD thesis, University of Wa-

terloo, 1990. Research Report CS-90-11.

[3] Kenneth Mc Millan and David Dill. Algorithms for in-

terface timing veri�cation. In Proceedings of the IEEE

International Conference on Computer Design: VLSI in

Computers and Processors, 1992.

[4] Peter Vanbekbergen, Gert Goossens, and Hugo De Man.
Speci�cation and analysis of timing constraints in signal

transition graphs. In Proceedings of the European Design

Automation Conference, March 1992.

[5] Peter Vanbekbergen. Synthesis of Asynchronous Con-

trollers from Graph-Theoretic Speci�cations. PhD thesis,

Katholieke Universiteit Leuven, September 1993.

[6] Bruce Gladstone. Speci�cation of timing in a digital sys-

tem. ASIC and EDA, pages 46{52, August 1993.

[7] Chris Myers. Synthesis of timed asynchronous circuits.

IEEE Transactions on VLSI Systems, June 1993.

[8] Elizabeth A. Walkup and Gaetano Borriello. Interface

timing veri�cation with combined max and linear con-

straints. Technical Report 94-03-04, University of Wash-
ington Department of Computer Science, March 1994.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

