
A Communicating Petri Net Model for the Design of
Concurrent Asynchronous Modules

Gjalt G. de Jong *, Bill Lin
IMEC Kapeldreef 75, B 3001 Leuven, Belgium

Abstract Current asynchronous tools are focussed mainly on the
design of a single interface module. In many applications, one must
design interacting interface modules that potentially communicate
in complex and intricate ways. When designing communicating
asynchronous modules, several difficult problems arise. First, even
if each individual module can be synthesized correctly, according to
the environmental assumptions specified for that module, the com-
position of the communicating modules may not work properly.
Thus, one needs to have a way to model how the modules interact
with each other, and to verify that their cooperation is consistent. In
addition, means should be provided for communication and syn-
chronization at a level higher than signal transitions, and for ex-
ploiting the communicating nature of these modules in optimiza-
tion. This paper proposes a communicating Petri net model for de-
scribing communicating asynchronous modules. Each module is
modeled by means of a labeled Petri net that extends the widely
used Signal Transition Graph model by providing an abstract syn-
chronization mechanism based on rendez-vous semantics. This en-
ables the designer to specify high-level communication as well as
low-level details such as signal transitions. Abstract synchroniza-
tion events are expanded automatically to low-level handshake sig-
nals. We have developed a new algebra for communicating Petri
nets that is applicable to general Petri nets, involves no unfolding,
and defines hiding as generalized net contraction. We have devel-
oped methods based on this formal algebra that can be used to ma-
nipulate communicating interface modules, to verify their consis-
tency, and to use them as a basis for optimizations.

1. Introduction
Advances in the field of VLSI offer today’s system designers a

wide range of implementation technologies to choose from. Exam-
ples include custom ASICs, FPGAs, DSPs, micro-processors,
memories, system bus modules, and other off-the-shelf compo-
nents. These different hardware and software modules can be com-
bined to create complex heterogeneous software/hardware systems,
packaged possibly using various PC boards and MCM technolo-
gies. These modules often interact in very complex ways. Examples
of such system-level designs can be found in virtually every digital
microelectronics application domain: e.g. telecommunications,
computers, multi-media, and automotive. With CAD tools matur-
ing for component design, the design bottlenecks are rapidly shift-
ing from the component level to the system level. A key problem to
solve in system-level design is I/O interfacing, which must be
addressed in order to integrate system components that often use
incompatible I/O protocols to communicate with their environ-
ments.

For the interfacing problem, the existing literature describes a
number of approaches to it [1, 2, 3, 5, 6, 9, 10, 11]. Among them,
methods based on the Signal Transition Graph (STG) model [3],
have captured wide attention. However, most work based on this
model is focussed mainly on the specification and design of asin-
gle interface circuit;concurrent communicating interfacesare not
dealt with. A model in which concurrent processes can be specified

* sponsored by the EC under HCM contract ERBCHBGCT920056

in a concise way is needed as system interfaces are naturally
expressed as separate modules, and in which the individual systems
themselves are also described separately. Also, the implementation
may force a separate physical implementation. Real-life designs
show that asynchronous system designs are inherently distributive
and involve highly interactive controllers. While work based on
Hoare’s CSP model have addressed some problems with communi-
cating modules [2, 6], these methods are mainly based on syntax-
directed translation techniques, which have not shown the same
degree of automation and optimization as their STG based counter-
parts.

When designing communicating asynchronous interface mod-
ules, a number of difficult problems arise. A major issue is correct-
ness. Although current methods guarantee that each separate block
is synthesized correctly, theydo notguarantee the global correct-
ness of the composed system. To reconcile such problems, one
needs to have ways to model how the interface modules interact
with each other and to verify that their cooperation is consistent.
For this, we propose a high-level communicating Petri net model,
called Communicating Interface Processes(CIP) for describing
communicating system interfaces. Each individual interface com-
ponent is modeled by means of a labeled Petri net that extends the
widely used STG model by providing an abstract synchronization
mechanism based onrendez-voussemantics. This enables the
designer to model how the concurrent interface processes cooperate
and to specify high-level communication as well as low-level
details such as signal transitions. Abstract synchronization events
are expanded automatically to low-level handshake signals at a later
stage, which can help to avoid potential communicationmis-
matchesthat often occur with signal-level interactions. Since these
ev ents are expanded to a synchronization mechanism, correctness is
ensured.

Accordingly, we hav e developed anew algebraon this model of
abstract communication graphs to describe andformally reason
about manipulations from synthesis and analysis points of view.
This algebra is used as a formal framework to develop methods to
manipulate communicating interface modules, to verify their con-
sistency, and to use them as a basis for optimizations offered by the
communicating nature of the specification. These methods all oper-
ate at the Petri net level, which avoids potential state space explo-
sion problems encountered by state based techniques.

The remainder of the paper is organized as follows. Section 2
reviews the basics of Petri nets and STGs. Section 3 describes the
CIP model and indicates how abstraction synchronization events
are expanded to low-level handshake signals. Section 4 presents a
rigorous exposition of our new algebra for general Petri nets. This
includes the definition of all the operations that can be performed
on nets. Section 5 describes how this general algebra can be applied
to synthesis of communicating interface modules. Section 6
describes the application of our approach on a protocol translation
module design example.

2. Preliminaries
We first summarize the basic concepts of Petri nets and Signal

Transition Graphs (STGs) for describing asingle interface process.
These concepts are necessary in order to build up our framework
for specification and synthesis ofcommunicating interfaces.

2.1 Labeled Petri nets
A labeled Petri net is a Petri net [8] in which transitions are labeled
by actions.

Definition 2.1 A labeled Petri netN is a tuple(A, P, → , M0) with
A a set of action labels, P a set of places,→ ⊆2P × A × 2P a tran-
sition relation, and M0: P → IN an initial marking. (whereIN is
the set of natural numbers).

Besides the structure of Petri nets, there is also an associated
dynamics. Astate, or marking, is a mapping of the places to the
natural numbersP → IN, indicating the number of tokens in a
place.

Definition 2.2 Each transition(p, a, q) can ‘fire’ in a state M iff
∀p′∈p: M(p′) > 0. Thefiring of a transition leads to the next state
M ′ defined as:

M ′(p′) =

M(p′) − 1

M(p′) + 1

M(p′)

if p′∈p\ q

if p′∈q\ p

otherwise

Such a state transition is denoted as (M , a, M ′). Given a Petri net
N, the reachability graphof N, denoted asRG(N), is the (reflex-
iv e) transitive closure of the above next-state relation. The nodes of
the reachability graph represent the reachable state space of the net,
whereas the edges (M , M ′) are labeled with the actiona of the tran-
sition (p, a, q) which must be executed inM to reachM ′.

In this paper, only finite and bounded nets are considered.
Bounded nets are nets in which for every state, all places have a
bounded number of tokens. Bounded nets are characterized by hav-
ing a finite state space. Safe nets are nets in which each place has
at most 1 token.

2.2 Signal transition graphs
Signal transition graphs (STGs) have been proposed by Chu [3] for
synthesis of asynchronous circuits, e.g. the design of interfaces or
protocol converters. It is aninterpretedlabeled Petri net.

Definition 2.3 Let S= I ∪O be a set of signal names with disjoint
sets I and O, which are the input respectively the output signals. A
classical STGis a strongly-connected live and safe labeled Petri
net (A, P, → , M0) with labels A= S× { +, −} ∪{ ε } . A transition s+

denotes a rising transition for signal s, whereas s− denotes a falling
transition. ε denotes a dummy transition.

With this definition, an STG may be a general Petri net. The fol-
lowing types of extensions to this classical STG model have been
proposed [9]:

• Boolean guards, i.e. predicates on signal levels, attached to out-
going arcs of places. Such a predicate must be true to execute the
transition that the arc leads to.

• Other signal transitions, liketoggle, stable, unstable, anddon’t
care. These additional signal transitions are used as short-hand
notations.

• Elimination of the live and safe requirements.

The state graphof an STG is defined similar to the reachability
graph of the corresponding Petri net. Only the states are also
labeled with an encoding, which is a bit-vector with a value 0 or 1
for each signal name. The encoding of a next state is identical to
the encoding of the current state, except for the signal with which
the transition is labeled. For aconsistent state assignmentfor a
transition (m, s* , m′), m(s) must be 0 andm′(s) = 1 for a rising
transitions+, andm(s) = 1 andm′(s) = 0 for a falling transitions−.
Similar requirements for consistent state assignment can be defined
for the additional signal transitions defined in [9].

3. Communicating interface processes
To enable the designer to model how concurrent interface pro-

cesses cooperate by specifying high-level communication as well as
low-level details such as signal transitions, we extend the model of
labeled Petri nets by introducing abstract synchronization events.
This leads to the model of Communicating Interface Processes
(CIP). Such an abstract event is for instance asendoperation in a
higher level specification, e.g.a! in a CSP like language. However,
it is not specified how such a high level event is implemented by a
low-level signaling scheme, e.g. a four-phase handshaking protocol.

In a set of such communicating labeled Petri nets, we model the
synchronization of abstract communication events by means of ren-
dez-vous. This rendez-vous synchronization is ensured by the lower
level signaling scheme to which this abstract communication event
can be expanded, e.g. a 4-phase handshaking protocol. This expan-
sion can be done automatically.

Definition 3.1 A CIP is a graph (V, E) where each v∈V is a
labeled Petri net(A, P, → , M0) connected with each other by
edges e∈E. The edges are labeled by signal names s∈S or by
abstract communication channelsσ ∈Σ. The actions A of the
labeled Petri nets are given by AS∪AΣ with AS = S× { +, −} ∪{ ε }
and AΣ = Σ × {!, ?} .

The actionsAS are the normal signal transitions, whereas the
actionsAΣ model the abstract communication events.a!v models
the sending of a valuev along channel, or edge,a∈E of the CIP
(V, E); a?x represents the reception of a value along channela.

An example of an expansion of an abstract communication event
c is for example the handshaking sequencer c

+ → ac
+ → r c

− → ac
−

for an output actionc! ∈AΣ. For data values to be transmitted, dif-
ferent delay-insensitive encoding schemes can be devised. One
example is the dual rail encoding. But instead of using 2n wires to
modeln-bit wide data-items, an encoding withm wires can also be
used. An encodingc can be defined as the set of wires that must go
high for this value. Such an encoding is correct when no encoding
covers another. In that case, the abstract eventa!v, i.e. sending a
valuev along a channela in which the valuev is represented by the
codec, can be expanded to the sequence of low-level signal transi-
tions given by (where ‘,’ means concurrent execution) (. . . , r j

+, . . .)
→ a+ → (. . . , r j

−, . . .) → a− for all r j ∈c.

4. Petri net algebra
For the labeled Petri nets as defined in Section 2.1, different

semantics can be defined, but they are all related to the reachability
graph. A commonly used semantics is the trace semantics, which is
defined by all the possible firing-sequences of the net. Thus all
paths in the reachability graph are viewed as elements of the trace
set.

Definition 4.1 For a net N, theset of tracesis defined as:
L(N) = { a1, a2, . . . |∃M ′: (M0, < a1, a2, . . . > , M ′)∈RG(N)}

The operators that are defined next are well-known process algebra
operators, as for instance used in CCS and CSP. They are also
defined for Petri nets, e.g. in [4]. Of these operators, the parallel
composition and the hiding operator are the most interesting ones.
For a circuit algebra with ‘complex leaf ’ models (i.e. other than just
single actions), these two operators and the rename operator are
sufficient. But to be complete, also the ‘do nothing’ action is
defined, just as the action prefix and the (possibly non-
deterministic) choice operator.

The parallel composition operator models a rendez-vous as in
CSP, and is described also in [7]. New in here is the way in which
the hiding operator is defined. In all the currently known
approaches, hiding means that all the transitions with the label to be
hidden are renamed to a specially treated silent action, cf. the
epsilon moves in automata theory. Here we propose a method in

which the transitions with labels to be hidden are removed from the
net, cf. the epsilon-closure operator for automata. This is a net con-
traction.

For all the operators as they are defined in this paper, it isnot
necessary to unfold the net(s), which is commonly done when these
operations are defined in literature for nets. Also our approach is
not restricted to safe nets, which also is a common restriction.

4.1 Action operators
Definition 4.2 Thedeadlock actionnil is represented by the sin-
gle place net(∅, { p}, ∅, {(p, 1)}.

Proposition 4.1 L(nil) = ∅.

Definition 4.3 Given a net N with a safe initial marking and an
action a,action prefixfor nets is defined as:
a. N = (A∪{ a}, P∪{ m0}, → ∪ {(m0, a, M)}, {(m0, 1)})
with m0∉P and M= { p∈P: M0(p) ≠ 0} .

Proposition 4.2 L(a. N) = { ε , a} ∪{ a}. L(N).

The definition given here applies only for nets with a safe initial
marking. However, it can also be defined for general Petri nets, by
keeping the original initial places as initial places, and using new
output places for the action transitiona. These new places must
then be connected via a self-loop with the original initial transi-
tions.

Definition 4.4 Given a net N and action labels b and c, the
renamingoperator for nets is defined as:
rename(N, { b → c}) = ((A\{ b}) ∪{ c}, P, → ′, M0) with
→ ′ = {(p, a, q)|(p, a, q)∈ → ∧ a ≠ b} ∪ {(p, c, q)|(p, b, q)∈ → }

This definition of renaming can be extended in the natural way to
renaming of sets of action names.

Proposition 4.3
L(rename(N, { b → c})) = rename(L(N), {b → c}) .

4.2 Choice
For the choice operator to be defined correctly for general Petri
nets, a one-step unfolding is necessary by duplicating the initial
transitions.

Definition 4.5 Let N be a net with a safe initial marking. Let P0
be new places (P0∩P = ∅) and η a bijection between P0 and the
initial places of N which are defined by{ p∈P|M0(p) ≠ 0} . The
root-unwindingof a net is defined as:

(A, P∪P0, → ∪{(p, a, q)|p⊆P0 ∧ (Η(p), a, q)∈ → }, M ′0),
whereΗ: 2P0 → 2P is the component-wise extension ofη to sets, i.e.
Η({ p1, . . . , pn}) = {η(p1), . . . ,η(pn)} , and

M ′0(p) =

0

M0(η(p))

if p∈P

if p∈P0

Definition 4.6 Let for i∈{1, 2} Ni = (Ai , Pi , → , M0i
) be two nets

with P1∩P2 = ∅. Let N′i be the root unwinding of Ni with
P01

∩P02
= ∅. The non-deterministicchoice operator for nets is

defined as: N1 + N2 = (A1∪A2, P1∪P2∪P01
× P02

, → ′,
M ′01

× M ′02
)

where → ′ =→1 ∪ →2 ∪{(p × P02
, a, q)|(p, a, q)∈ → ′1 ∧ p⊆P01

}
∪ {(P01

× p, a, q)|(p, a, q)∈ → ′2 ∧ p⊆P02
}

Fundamentally, root unwinding is needed in case of cycles to the
initial places and only for the initial places that are in cycles. In a
choice, once the decision of what branch to take is made by the first
execution of a transition, a loop iteration may then not cause the
other branch to be taken. This is illustrated in Figure 1.

Although, the definition of the root unwinding of a net is given
for nets with safe initial markings, it can also be stated slightly dif-
ferent, such that the following proposition also holds for general

+t11t12

•
t21 t22

•

||

t11 t12

t′11

•

t22 t21

t′21

•

Figure 1. Example for choice with root-unwinding

nets. This can be accomplished by keeping the initial places with
their initial marking. The initial transitions must then be duplicated,
as in the root-unwinding step, and added with an uninitialized sen-
tinel place in a self-loop which is also an output place of the origi-
nal initial transition.

Proposition 4.4 L(N1 + N2) = L(N1)∪L(N2)

4.3 Parallel composition
All the proofs of the trace equivalence for all the operators defined
so far are straightforward, since the reachability graph is changed
accordingly. E.g. for the choice operator, this is implied by the
combined reachability graph being the union of the two individual
reachability graphs. For the parallel composition and the hiding
operator, which will now be defined, this proof is less trivial.

In Petri nets, a transition is a kind of synchronization mecha-
nism, since it can only fire if all input places have a token. In order
to model parallel composition with a rendez-vous synchronization,
it is sufficient to join the common transitions. Since more than one
transition may be labeled with the same action, all combinations
have to be considered.

Definition 4.7 Let for i∈{1, 2} , Ni = (Ai , Pi , → , M0i
) be two nets

with P1∩P2 = ∅. The parallel compositionof nets is defined as:
N1||N2 = (A1∪A2, P1∪P2, → ′, M01

∪M02
)

where → ′ = {(I , a,O)∈ →1 ∪ →2 |a∉A1∩A2}
∪ {(I1∪I2, a,O1∪O2)|a∈A1∩A2 ∧ (I i , a,Oi)∈ →i }

To prove that this construction is equivalence preserving under
trace semantics, we first need to define parallel composition of
traces. Since we use a rendez-vous synchronization on common
actions, also the composition of traces is defined in this way.

Definition 4.8 Let t1 and t2 be traces defined on alphabets A1 and
A2 resp. t1||t2 = { t ∈(A1∪A2)

* | ∀i ∈{1, 2}: project(t, Ai) = ti } .

Note that this set can be empty, e.g. fora. b. c||c. a. b. If this set is
non-empty, the traces are said to be synchronizable and this set
consists of all possible shuffles.

Definition 4.9 For two trace languages L1 and L2, their parallel
compositionis defined as: L1||L2 = { t1||t2|t1∈L1 ∧ t2∈L2} .

Note that for prefix-closed (trace) languages, this set is also prefix-
closed. Now we can state:

Theorem 4.5 L(N1||N2) = L(N1)||L(N2).

The proof of this theorem is straightforward from the definition of ||
on traces [7]. The reachability graph ofN1||N2 is the ‘interleaved
intersection’ of the individual reachability graphs.

Figure 2 shows the parallel composition of ((a + b). c) * ||
(a. d. a. e) *.

d

e

a a

b

c

d

e

a ab

a

c

Figure 2. Parallel composition.

4.4 Hiding
Hiding is opposite to projection, in that all other signals than the
specified ones are projected, i.e. for a languageL on an alphabetΣ,
hide(L, a) = project(L, Σ\{ a}). We now define a hide operator
which satisfiesL(hide(N, a)) = project(L(N), A\{ a}). We assume
that the transition to hide has no self-loops. Otherwise, this would
lead to a divergence, i.e. an unobservable self-loop known as
livelock.

Definition 4.10 Given a net N and a transition(p, a, q), thecon-
traction of a transition is defined as:
hide(N, (p, a, q)) = (A, (P\ p)∪(p × q), → ′, M ′0) where

M ′0(p′) =

M0(p′)
M0(p)

if p′∉p

if p′∈p × q

and → ′ = {(p′, a, q′)|(p′, a, q′)∈ → ∧ (p′∪q′)∩(p∪q) = ∅}
∪ {(Η(p′), a, q′)|(p′, a, q′)∈ → ∧ p′∩p ≠ ∅}
∪ {(p′, a, Η(q′))|(p′, a, q′)∈ → ∧ q′∩p ≠ ∅}
∪ {(p′, a, q′)|(p′, a, q′)∈ → ∧ p′∩q ≠ ∅}
∪ {(p × q, a, q′∪(q\ p′))|(p′, a, q′)∈ → ∧ p′∩q ≠ ∅}

whereΗ is the renaming function of the input places p of the tran-
sition to hide to the corresponding product places. I.e.
Η: 2P → 2(P\(p∪q))∪(p×q) is defined as:
Η({ p1, . . . , pn}) = { pi |pi ∉p∪q} ∪

{ pi |pi ∈p}
∪ { pi } × q ∪

{ pi |pi ∈q}
∪ p × { pi }

Informally, this procedure can be described as (wheret = (p, a, q)
the transition to hide):

1. add new placesp × q
2. duplicate each successor transition oft
3. connect the new places to all successor transitions
4. replace all occurrences of ap′∈p in the transition relation

→ with the places (p′, q′) for all q′∈q
5. add the placesq′∈q to the postset of the successor transi-

tions which did not have this place originally in their preset.
6. delete this transitiont from the net.

The result of hiding the transition in Figure 3(a) is shown in
Figure 3(b). Figure 3(c) shows the result of hiding the same transi-
tion but in a marked graph in which transitiona, d, e, f , h, j , k and
l are not present. In this figure, the new placesp × q are combined
into places {p′} ∪q for all p′∈p. This is in general allowed, but
complicates the proof somewhat. The first set of→ ′ are the transi-
tions which are not adjacent to the transition to hide; the second set
are the transitions likee and f in Figure 3, whereas the third set are
the transitions likea, b, c and d (these are given by rule 4); the
fourth set are the ‘duplicates’ of the successors of the transition to
hide (rule 2; e.g. the transitionsg′, h′, i ′ and j ′ in Figure 3); the last
set are the successors of the transition to hide but which have now
all the new places as inputs and having also some output places of

e f
k l

a b c d

g h i j
(a)

g’ g i i’

(c)

g’ h’g h i j i’ j’

k l
e f

(b)

Figure 3. Hiding

this transition as outputs (rules 4 and 5; e.g. the transitionsg, h, i
and j).

The collapsing of the input and output places of the transition to
hide is clear, since this in fact models the hiding operator: whenever
there is a token in an input place, it might under certain conditions
be considered as a token in an output place. The successor transi-
tions are duplicated to preserve all the possible choices and con-
flicts in the original net. E.g. whenever a token is considered to be
in one of the output places of the transition to be hidden, the other
output places should also be considered in this way. In that case, a
token must be removed fromall the input places, such that no new
conflicts or choices may occur later in the net after hiding, for
instance by a new (partial) enabling of this transition. This is mod-
eled by the curved incoming arcs of the conflictive places of the
transitiong′, h′,i ′ and j ′ in Figure 3.

The hiding of an action labela is defined as the successive appli-
cation of the above definition of hiding for all transitions
(p, a, q)∈ →, and then by deletinga from the action labels ofN.

Proposition 4.6 The final net hide(N, a) is independent on the
order in which the transitions(p, a, q) are hidden.

Theorem 4.7 L(hide(N, a)) = hide(L(N), a)

The proof is a tedious case analysis by taking care of all possible
choices and conflict situations and their corresponding partially
enablings. It follows the lines of the motivation given above.

This operation can be simplified for special cases. For example,
for transitions with a single and conflict-free input place and a sin-
gle and choice-free output place, the operation is just a collapsing
of these two places.

5. Synthesis of Communicating Interfaces
In this section, we will explain how the algebra of Section 4 can be
used in the synthesis and verification of communicating interfaces.

5.1 Circuit algebra
A circuit algebra is an algebra on behavioral structures, like the
Petri net algebra defined in the previous section, extended with the
notion of inputs and outputs. It is meant as a specification formal-
ism for the behavior of a composite, e.g. hierarchical, system. For
a circuit algebra, usually only composition hiding and renaming are
defined. When two systems are composed, they synchronize in their
common signals. If two systems have input signal names in

common, these signals are assumed to be inputs of both, but it is
not allowed that there are common output signals. Internal signals
are considered as outputs, which may be hidden. If there are no
signals in common, the composition yields the concurrent behavior
of both.

Communicating interface processes can be mapped to a commu-
nicating STG network by expanding all abstract communicating
ev ents to labeled transition structures. Signal transition graphs
(STGs) are used in asynchronous system design [3], e.g. the design
of interfaces or protocol converters. Usually an STG is a restricted
subclass of Petri nets, e.g. the marked graphs or the free-choice
nets. Therefore, the operations for general Petri nets can directly be
applied to STGs, especially since by Definition 2.3 of classical sig-
nal transition graphs, an STG may be a general Petri net. However,
important systems like arbiters cannot be modeled in these sub-
classes of marked graphs and free-choice nets. For this, general
Petri nets should be allowed for an STG. Many properties can be
checked structurally for marked graphs and free-choice nets in
polynomial time, but which require exponential time for general
Petri nets [8].

In Section 2.2 already some extensions to STGs are presented, as
the introduction of boolean guards and the use of more signal tran-
sitions like toggle(˜), stable(s), unstable(#) anddon’t care(x). As
these additional signal transitions are a short-hand notation, they do
not matter for the Petri net algebra defined here. To hide a signals
means to hide all signal transitions for this signal. The parallel
composition synchronizes the common signals with respect to their
signal transition type. To incorporate boolean guards, only the hid-
ing operation requires a minor change. A boolean guard on an
incoming arc of a transition to be hidden, must be propagated to the
corresponding arcs in the resulting net; similarly for the outgoing
arcs. For the parallel composition operator, boolean guards remain
attached to the same arcs.

This leads to the following circuit algebraC = (I ,O, N) for com-
municating interface processes withI (O) the set of input (output)
signals, andN a labeled Petri net describing the behavior of the
interface process. We then have (withA⊆O):
C1||C2 = (I1∪I2\(O1∪O2),O1∪O2, N1||N2)
hide(C, A) = (I ,O\ A, hide(N, A))

5.2 Compositional synthesis
An application of this algebra is in synthesizing asynchronous sys-
tems, which can be modeled by STGs. When the environment of a
(sub)system is known, its behavior may be reduced by using this
knowledge. Suppose that it is known that a systemM1 is com-
posed with a systemM2, of which both specifications are given.
The individual STGs may contain behavior which will never be
executed in the composition. Instead of synthesizingM1 andM2, it
may be advantageous to synthesizehide(M1||M2, A2\A1) and
hide(M1||M2, A1\A2) instead. The resulting STGs have a smaller
behavior in terms of their traces, as the following theorem shows.

Theorem 5.1 For i ∈{1, 2} , project(L(M1||M2), Ai)⊆L(Mi).

This can be proved immediately from the definitions of the projec-
tion and inverse projection operators on traces. The following
propositions for our Petri net algebra are valid.

Proposition 5.2 The class of safe Petri nets is closed under all
operations.

Proposition 5.3 The class of live Petri nets is closed under all
operations except parallel composition.

Thus even when the individual nets are live, the composed net need
not to be live. This is due to the fact that one net restricts the behav-
ior of the other net as Definition 4.8 shows.

Thus for compositional synthesis, only the common transitions
can be non-live. The removal of these dead transitions, can be done

in polynomial time and space for marked and free-choice nets [8].
By the following proposition, this means that this check is also
polynomial on the composed netN1||N2.

Proposition 5.4 Marked graphs are closed under action prefix,
renaming and parallel composition.

For free-choice nets, there is an analogous proposition, when the
synchronization transitions are choice-free.

In the composition, the transitions that are not common to both,
remain as concurrent as they are when the nets are viewed sepa-
rately. Thus the net can be viewed as a net that is partitioned at the
synchronizing transitions, and in which each partition consists fully
of transitions of an individual net. Hiding of the non-common tran-
sition can then maximally lead to a duplication of the synchroniza-
tion transitions. Thus although, by Theorem 5.1, the behavior of
hide(M1||M2, A2\A1) is smaller (thus yielding reduced implementa-
tions), the STG itself is not necessarily smaller. Howev er, due to the
cross-product and the duplication of the synchronizing transitions,
many of them will be dead and can be eliminated as mentioned
before.

5.3 Verification
An important issue in asynchronous system design is receptiveness.
There exists a semantic distinction between the input and the output
signal names. The inputs of a system are controlled by its environ-
ment, while the system determines its outputs autonomously. A sys-
tem must therefore be receptive in its inputs, i.e. whenever the envi-
ronment generates an input to the system, the system must be ready
to accept it , i.e. synchronize with it. Note that synthesizing the
composed net results in a correctly behaving net, since the synchro-
nization is guaranteed. However, if the STGs are synthesized indi-
vidually, just ‘abutting’ them may yield erroneous behavior, as one
system is not receptive in its inputs.

Note that if N1 never makes an output action whenN2 is not
ready to accept it (and vice versa), then the above defined composi-
tion operator is receptive. In order to verify this conformance, we
have to do an additional check after the composition.

Proposition 5.5 Let N1 and N2 be strongly-connected live nets
with the transitions(pi , a, qi)∈ →i (i ∈{1, 2}) as the single com-
mon transition and where a is an output signal in N1 and an input
for N2. A failure can occur iff there exists a marking in the com-
posed net N1||N2 such that all the places in p1 are marked, but not
all the places in p2 are marked.

This means thata is enabled inN1 but not inN2. Since the individ-
ual nets are strongly-connected and live, there will exist a marking
in which all input places of both transitions have tokens. But we are
looking for the transition to be completely enabled in one net, while
it is only partially enabled in the other net. From this, the following
can be derived and which states the only condition whenN1 can
make an output action whenN2 is not ready to accept.

Proposition 5.6 If in the composed net N1||N2, the condition of
Proposition 5.5 is not satisfied, then the compose operator is cor-
rect; otherwise, a failure is guaranteed to be possible.

Note that this proposition does not state anything about finding all
failures due to non-receptiveness, but only that at least one such a
failure exists. This is due to the fact that a failure of one transition
may mask the correctness in terms of receptiveness of other transi-
tions. But there will always be a ‘first’ one (in terms of unfolding
the net).

Thus besides the check of liveness of the composed graph, we
have an additionally check for the live synchronization transitions.
Let (p1∪p2, a, q1∪q2) be such a transition, with (pi , a, qi)∈Ni
(i ∈{1, 2}) and which is an output transition inN1 and an input in
N2. To check for receptiveness, we have to verify for such a

transition the live-safeness of a markingM\ p′ for some subset
p′

≠
⊂p2 which is defined as:

M(p) =

1

0

if p∈p1∪q2

otherwise
Recall that STGs are usually strongly-connected live-safe marked
graphs, which are closed under parallel composition.

Theorem 5.7 For strongly-connected live-safe marked graphs, the
check for receptiveness for the parallel composition operator can
be done structurally on the net in polynomial time and space.

Note that for this receptiveness check, we may not do it on
hide(N1, A1\A2)||hide(N2, A2\A1) since then information is lost
whether the synchronization transitions are reached via internal
transitions or not. However, since the composed netN1||N2 can be
viewed as being partitioned in partitions consisting fully of transi-
tions of an individual net, the hiding operator can be refined in such
a way to hide′, that not all transitions are contracted, butone
dummy transitionε remains. In that case, the receptiveness check
for general Petri nets may be restricted to the check on
hide′(N1, A1\A2)||hide′(N2, A2\A1) which, under the assumption
that the reachability analysis is tractable for the individual nets, is
tractable.

6. Implementation and an example
We hav e a prototype LISP implementation of the proposed con-

cepts. In this section, we illustrate our approach and concepts on a
protocol translation design example. It is a simplified variation of
an I 2C protocol conversion module. The block diagram is shown
in Figure 4 and consists of asender, a protocol translator, and a
receiverblock. The behavior of thesenderis shown in Figure 5. It
is shown as ahierarchical model for conciseness. The sender is
responsible for converting a transition signaling protocol from the
sender side to a 4-phase protocol seen by the protocol translator.
The sender side can issue four commands:sec, reset, send0, and
send1. These four commands are indicated by atoggle(˜) on the
corresponding wire with the same name. The environment will only
issue one command at a time. Each toggle command gets trans-
lated into a 4-phase command by causing two wires to go high.

Protocol

Translator ReceiverSender

rec
reset

send0
send1

a0
a1
b0
b1

start
mute
zero
one

DATA

STROBE

n

p0
p1
q0
q1

r

Figure 4. Block diagram of protocol translator design.

The conversion of the signals is shown in Table 1(a). The signals
a0 andb0 will both make a 0→ 1 transition to indicate arec com-
mand to the protocol translator. To make sure the protocol transla-
tor has read the command, a signaln is used. Aftera0 andb0 are
set high, the protocol translator will maken a 0→ 1 transition to
acknowledge the command. Thena0 and b0 can return-to-zero
(1 → 0), followed by areturn-to-zeroof n. This behavior is shown
in Figure 5(b). The other three commands are similarly specified,
as shown in Figure 5(c). The top-level behavior of thereceiver
block is shown in Figure 6. The receiver block is responsible for
converting 4-phase commands into transition signaling commands
in a reverse analogous manner as the sender block. There are four
commands for the receiver of which the signal conversion is shown
in Table 1(b):start, mute, zero, andone. The signalr is used for
the 4-phase protocol.

The protocol translator itself is specified in Figure 7. Initially, it

Table 1. Translation table. (a) Sender. (b) Receiver.
(a) (b)

rec˜ a0+ b0+ p0+ q0+ start˜
reset˜ a0+ b1+ p0+ q1+ mute˜
send0˜ a1+ b0+ p1+ q0+ zero˜
send1˜ a1+ b1+ p1+ q1+ one˜

rec~ reset~ send0~ send1~

Rec Reset Send0 Send1

a0+ b0+

n+

a0− b0−

n−

ε
a0

b0

n

(a)

Rec
(b)

n+

n−

a1+

a1−

b1+

b1−

ε

a0+

n+

a0−

n−

b1+

b1−

ε

b0+

n+

b0−

n−

a1+

a1−

ε

Reset Send0

Send1

(c)

Figure 5. Sender protocol. (a) Top-level description. (b) Rec
description. (c) Reset, Send0, and Send1 descriptions.

Start Mute Zero One

start~ mute~ zero~ one~

Figure 6. Receiver protocol. Top-level description.

Start

Mute

Zero One

Rec Reset Send0 Send1

Start

Start Zero One

Ds Ss

D# S#

D=0
S=0

D=1
S=1

D=0
S=1

D=1
S=0

Figure 7. Protocol translator protocol.

sends astart command to the receiver. Then it waits for a command

from the sender. If the command isreset, send0or send1, then it
simply sends the commandstart, zero, or one, respectively, to the
receiver. Then it waits for the next command. If the input command
is rec, then theDATA and theSTROBElines are expected to stabi-
lize at either a 1 or a 0 value. Then depending on the values of these
lines, either astart, mute, zero, or onecommand is sent. Then, the
data and strobe lines can again become unstable, meaning that they
can arbitrarily change values. So the behavior of the protocol trans-
lator depends on the values on the data and strobe lines.

If each of these STGs is synthesized correctly, then the global
composition of them also works correctly in this case. This is
because the behavioral assumptions on what the other modules can
do are properly modeled in each individual STG. So in this case,
the specification is consistent. However, one can provide anincon-
sistentspecification that will not work correctly when composed
together. In Figure 8, aninconsistentspecification of the sender
block is shown. The STGs for the casesreset, send0and send1are
analogous to therec STG. In this specification, the signalsa0, a1,
b0, andb1 can go high and lowwithout waitingfor the protocol
translator block toacknowledge. Thus, it does not properly imple-
ment the 4-phase protocol. For example in therec command, the
sender is able to make botha0 − andb0 − transitions without wait-
ing for the acknowledgen + of the transitionsa0 + andb0 +. This
can cause the protocol translator to malfunction because the circuit
synthesized for the protocol translator had not accounted for this
behavior.

This problem can be tackled in two ways using our approach.
One is simply to avoid such problems by using abstract communi-
cation instead of signal-level communication, as described in Sec-
tion 3. Alternatively, the verification and synthesis methods
described in Section 5 can be used as follows to check that an
inconsistency has occurred. LetNsend and Ntr be the STG for the
sender and protocol translator block, respectively. Then compose
them together to produceN = Nsend|| Ntr . Check on N for the

a0+ b0+

a0− b0−

ε

a0

b0

n

Rec

ε

Figure 8. Inconsistent sender protocol.

source of inconsistency expressed in Propositions 5.5 and 5.6.
Now let’s suppose that the sender block can only issue the com-

mandsreset, send0, andsend1, but notrec, as shown in Figure 9(a).
This means that the protocol block need not respond to the com-
mandrec; hence it can be greatly simplified. To build asimplified
protocol translator block, we can use the Petri net algebra tocom-
posethe sender and the protocol translator STGs together, and then
hide the signals not originally in the protocol translator block, i.e.
Ntr = project(Nsend||Ntr , Atr). According to Theorem 5.1, this oper-
ation sequence will produce a new STG with more degrees of free-
dom. The simplified protocol translator block is shown in
Figure 9(b). Using a similar approach, the simplified receiver block
of Figure 9(c) is derived.

7. Concluding remarks
In this paper, we hav e discussed the problems that arise when

designing communication interface modules. We hav e discussed
correctness issues as well as optimization concerns. We hav e pro-
posed a model of Communicating Interface Processes for modeling
communicating system interfaces. It is a model based on

Start Zero One

Reset Send0 Send1

Start

reset~ send0~ send1~

Reset Send0 Send1

Start Zero One

start~ zero~ one~

(a)

(b)

(c)

Figure 9. (a) Restricted sender block. (b) Simplified protocol
translation block. (c) Simplified receiver block.

communicating Petri nets, where each individual interface compo-
nent is modeled by means of a labeled Petri net that extends the
widely used Signal Transition Graph model with an abstract syn-
chronization mechanism. This enables the designer to specify high-
level communication as well as low-level details such as signal
transitions. We hav e presented an algebra for communicating Petri
nets that is applicable to general Petri nets, which involves no
unfolding, and has hiding defined as generalized net contraction.
We hav e also presented methods based on this formal algebra that
can be used to manipulate communicating interface modules, to
verify their consistency, and to exploit optimizations offered by the
communicating nature of the modules.

Acknowledgment — We are grateful to Charles Molnar for an
interesting discussion on the topic.

References
[1] P.A. BEEREL AND T.H. MENG, ‘‘Automatic Gate-level Synthesis of Speed-

Independent Circuits’’,Proc. ICCAD, 1992.
[2] K. VAN BERKEL, J. KESSELS, M. RONCKEN, R.W.J.J. SAEIJS, AND F. SCHALIJ, ‘‘The

VLSI-programming Language TANGRAM and its Translation into Handshake
Circuits’’, Proc. EDAC, 1991.

[3] T.A. CHU, Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifica-
tions,Ph. D. thesis, MIT, 1987.

[4] R. VAN GLABBEEK AND F. VAANDRAGER, ‘‘Petri Net Models for Algebraic Theories
of Concurrency’’,Proc. of PARLE, LNCS 259, 1987.

[5] L. LAVA GNO, C.W. MOON, R.K. BRAYTON, AND A. SANGIOVANNI -VINCENTELLI,
‘‘Solving the State Assignment Problem for Signal Transition Graphs’’,Proc.
DA C, 1992, pp. 568-572.

[6] A.J. MARTIN, ‘‘Programming in VLSI: From Communicating Processes to Self-
Timed VLSI Circuit Synthesis’’,Concurrent Programming, ed. C.A.R. Hoare,
Addison-Wesley, 1989, pp. 1-64.

[7] A. MAZURKIEWICZ, ‘‘Concurrency, Modularity, and Synchronization’’,Proc.
Math. Found. of Comp. Sci., LNCS 379, Springer Verlag, 1989, pp. 577-598.

[8] J.L. PETERSON, Petri Net Theory and the Modelling of Systems,Prentice-Hall,
1981.

[9] P. VANBEKBERGEN, C. YKMAN-COUVREUR, AND B. LIN, ‘‘A Generalized Signal
Transition Graph Model for Modeling Mixed Asynchronous/Synchronous and
Arbitration Behavior’’,Proc. Int. Workshop on Logic Synthesis, 1993.

[10] V. VARSHAVSKY, M. KISHINEVSKY, V. MARAKHOVSKY, V. PESCHANSKY, L. ROSEN-

BLUM, A. TAUBIN, AND B.TZIRLIN, Self-Timed Control of Concurrent Processes,
Kluwer Academic Publishers, 1990.

[11] K.Y. YUN AND D. L. DILL , ‘‘Automatic Synthesis of 3D Asynchronous State
Machines’’,Proc. ICCAD, 1992.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

