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Abstract

A stochastic global optimization approach is presented

for transistor sizing in CMOS VLSI circuits. This is a

direct search strategy for the best design among feasible

ones, with the designer determining when the search is

stopped. Through examples, we show the power of this

technique in quickly obtaining very good designs, for skew

minimization problems.

1 Introduction

In designing high performance CMOS circuits, it is

necessary to properly size the various transistors in

the circuit, in order to meet performance requirements.

There are two basic approaches for transistor sizing that

have been explored by various researchers. The �rst ap-

proach, applied primarily to delay optimization of combi-

national circuits, involves developing a simpli�ed model

of signal delay through a CMOS gate, either analyti-

cally [2], or by macromodels based on simulations [4].

Then, the delay of the entire circuit is computed using

this model. The transistor sizing problem is formulated

as an optimization problem with the objective of miniz-

ing the delay, as predicted by the model. Some opti-

mization problems have a special form to guarantee e�-

ciency and accuracy of the optimization process, e.g. the

posynomial objective function, used in [2]. Otherwise, a

nonlinear optimization method is required [4]. The sec-

ond approach involves coupling a circuit simulator to a

nonlinear optimization tool (or tool set). For example,

Ochotta et. al. [7] employ an augmented asymptotic

waveform evaluation technique to evaluate the behavior

of each circuit visited by a simulated annealing program.

In Delight.Spice [6], a set of nonlinear optimization pro-

grams are integrated with the SPICE circuit simulator.

The �rst, `equation-based', approach, though e�ective

for delay optimization, is di�cult to generalize to other
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problems, such as skew optimization. Accounting for in-

put data vector and process variation with an analytical

model is very di�cult. The only solution is to evaluate

each sizing scheme through circuit simulation, for each

data vector and process corner. This makes objective

computation a very expensive task, even for very small

sized circuits. The second, `simulation-based' approach

has the combined computational burden of running a

nonlinear optimization program and multiple circuit sim-

ulations each time the objective function is evaluated.

There are some additional hindrances in employing a con-

ventional nonlinear optimization program for this task:

1. Gradient information is very di�cult to obtain.

Though there are numerical optimization techniques

which do not require explicit gradient information,

these techniques tend to be slow.

2. Transistor sizes can only be varied in certain quanta.

Most numerical optimization techniques operate on

a continuous parameter range. Hence the �nal solu-

tion might not be designable.

3. The optimization task is not interactive, and it is

di�cult for the engineer to use his or her judgement

in guiding the optimizer.

4. The optimization routines look for strict local min-

ima. Usually, the designer is interested only in ob-

taining an approximation to a globally optimal so-

lution. For this, the optimizer has to be run from

multiple, random, initial solutions.

In view of these di�culties, we present a new approach

to transistor sizing in small, high performance circuits.

This approach is based on stochastic modeling of the cir-

cuit responses of interest. It is a direct search for the

best design among feasible ones. The designer has direct

control over the number of simulations conducted, and

the search process can be stopped any time the designer

is satis�ed with the best solution produced thus far. The

stochastic model helps in identifying the most promis-

ing design based on the existing information about the

problem. Only the most promising designs are simulated.



Hence simulations are organized naturally and e�ciently.

2 Optimization by stochastic modeling

Consider the following unconstrained optimization

problem:

minx �(x) x 2 A � Rd (1)

where x is a d dimensional vector, A is a �nite subset

of Rd. �(x) is the objective function whose value at

any x 2 A can be determined only through an expen-

sive simulation. Besides this, there is very little informa-

tion about the objective function. Suppose the objective

function is perceived to be continuous and `smooth', but

not unimodal. In such a situation, it is reasonable to

approximate �(x) by a simpler function and to perform

an optimization on this simpli�ed function. However, a

global polynomial approximation is inappropriate; infor-

mation is lost in �tting the model to data, unless the

degree of the polynomial is as large as the data set. A

better approach to function approximation is needed.

Recently, stochastic models have been proposed to

capture complex objective functions [9]. With this ap-

proach, the value of the unknown function at each point

in A is assumed to be a random variable. Then, the

unknown function itself is a sample path of a stochas-

tic function. In the general case, a stochastic function

�(x) is de�ned by a family of multidimensional prob-

ability distributions Fx1;:::;xm(y1; : : : ; ym) = P (�(xi) <

yi; i = 1; : : : ;m). For example, if this distribution is joint

Gaussian, then the stochastic function is described by the

a priori average function �(x) and covariance �(xi; xj).

If k values of the stochastic function are known, e.g.

�(xi) = �(xi); i = 1; : : : ; k then the conditional distri-

bution of �(x) at any x is normal with the mean value

mk(x j �(xi) = �(xi)) = �(x) + (2)

(�(x; x1); : : : ; �(x; xk))R
�1

k

(�(x1)� �(x1); : : : ; �(xk)� �(xk))
T ;

and variance,

s2k(x j �(xi) = �(xi)) = �(x; x)� (3)

(�(x; x1); : : : ; �(x; xk))

R�1

k (�(x; x1); : : : ; �(x; xk))
T ;

where R�1

k is the inverse of the k�k covariance matrix of

the random process at the locations where the function

values are known.

The stochastic model has some very interesting prop-

erties. Firstly, the conditional mean mk(x) interpolates

exactly at the observed points, and hence retains all infor-

mation gained from exact measurements. Secondly, the

variance s2k(x) captures the uncertainity of predicting the

value of the objective function at an untried x 2 A. If the

distribution of �(x) is assumed Gaussian, thenmk(x) and

s2k(x) fully specify the conditional distribution �(x). This

distribution can be used to guide the search for small val-

ues of �(x). It seems more likely to �nd a point with small

function value where mk(x j :) is small. However, large

values of s2k(x j :) indicate regions of great uncertainity,

i.e. regions where function values can di�er greatly from

the conditional mean. Hence a rational choice has to

be discriminate between points of small mean but large

variance or points of small variance but somewhat larger

mean. We shall briey review some proposed algorithms

that �t the stochastic modeling paradigm.

2.1 Algorithms

Several algorithms for optimization using a stochas-

tic model function have been investigated. We sum-

marize some interesting approaches and �nish with the

P-Algorithm which forms the basis of our optimization

procedure. These approaches essentially di�er in the

stochastic model chosen and the method used for min-

imizing the model function.

In Adachi et. al.[3], the model function is a stationary

stochastic process. The conditional mean is an interpo-

lating function. The optimal point is chosen by minimiz-

ing the interpolating function starting from the smallest

data point found thus far, subject to a constraint on the

coe�cient of variation, which is the ratio of the mean and

variance of the conditional distribution. The procedure

is iterative, each iteration leading to (hopefully) a dif-

ferent local optimum of the objective function, so that,

eventually, all local optima can be located. The auxiliary

computations are expensive, namely the use of a nonlin-

ear optimizer at every iteration to �nd the minimum of

the interpolating function.

Bernardo et. al. [1], employ a stochastic model func-

tion to perform yield optimization of electronic circuits.

Their approach relies heavily on designer intervention to

identify signi�cant parameters through parameter e�ect

plots and also to identify promising sub-regions in the

design space.

The P-algorithm was developed and characterized in

[9]. It is an iterative procedure. At each iteration, a new

observation point xk+1 is chosen that has the highest

probability of �(xk+1) being smaller than yok, i.e.,

xk+1 = Arg maxx2A Px(yok) (4)

is chosen as the next observation point where, yok is some

value less thanminx2Amk(x j xi; �(xi); i = 1; : : : ; k), and

Px(yok) = Probability(�(x) � yok) : (5)



The P-algorithm is a general formulation of a strat-

egy to maximize the information gained by each function

evaluation, and is quite easy to implement. We now de-

tail our implementation of the P-algorithm. The process

is iterative, hence the user can stop the iterations any

time the best existing solution is satisfactory. The num-

ber of simulations to be run are directly controlled by the

user. The algorithm only identi�es the most promising

points for simulation.

1. Choose k points xi, i = 1; : : : ; k uniformly from A

using random sampling and compute �(xi) by simu-

lation. Start iteration l = 1.

2. Using the BLUP and MSE expression in [8], �nd the

mean m(xj) and variance s(xj) at k uniformly

distributed points in A.

3. Find the smallest value of m(xj), i.e.

ml(x) = minj21:::N m(xj) : (6)

Let ylok = ml(x)��l. At each xj �nd the probability

Pxj(y
l
ok).

4. Choose nl points with largest probability Px(y
l
ok)

from the points.

5. Compute �(x) at the nl points found above. If

minj21:::nl�(xj) is satisfactory, then stop, else con-

tinue

6. k = k + nl. If k > max, then stop, else l = l + 1,

go to step 2.

This algorithm is parameterized by the constants k,

nl, �l and max. These parameters have to be adapted

to the speci�c problem or left to the designer's judge-

ment. For example, k = 10 � d, nl = 2d, where d is

the dimensionality of the design space A, were found to

be good values for problems below. In this way the de-

signer directly controls the number of simulations to be

run. The choice of search points can be suitably bi-

ased by the designer's judgement, and can account for

constraints on the design space, e.g. if the design re-

gion is a polytope constrained by linear inequalities on

the design variables. Remember that only the mean and

variance has to be estimated at the points, which is

quite inexpensive.

This leads us to another very important question,

namely, handling constraints on the design. If the con-

straints are analytic, they can be handled very naturally

by screening each of the points for violation. When the

constraints are implicit and can be checked for only after

simulation, e.g. a maximum delay or power restriction

when doing a skew optimization, the procedure needs to

be modi�ed. If the constraint can be evaluated through
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Figure 1: Circuit Block for Wave-pipelining

the same simulation, then another stochastic model can

be used to model the constraint. A certain tradeo� has

to be established between evaluation of this secondary

model and the actual objective. If a penalty method is

used to incorporate the true objective and the constraint

in a single objective function, then the optimization task

is a little more di�cult, as the overall model might have

to account for disparate variations. The formulation is

exible enough to allow for either option, namely, screen-

ing the evaluated points using the constraint model, or

incorporating constraints directly into the objective func-

tion by penalty methods. The former approach is used in

the �rst example given in the next section, where a de-

lay controlled element has to be optimized for maximum

delay variation, subject to a maximum delay constraint.

The second, a clock driver circuit, is an essentially un-

constrained optimization problem.

3 Optimization examples

3.1 elay ontrolle lement for ave-

i eline circuits

The design of wave-pipelined circuits involves very

careful control of the delay of each path in the combi-

national blocks. For static CMOS gates, the delay varies

considerably with input data. A gate structure suitable

for wave pipelining is shown in �gure 1. Here the tran-

sistor M3 is used to add extra resistance to the pull-up

chain to reduce the e�ect of the simultaneous switching

of both inputs. It also has the deleterious e�ect of slow-

ing down the circuit. Hence a proper balance has to be

struck between the maximum delay through the gate, as

well as the data-dependent spread [5]. The delay spread

has to be minimized over process variations also. Hence

the goal of the optimization is to obtain a suitable sizing

scheme such that the delay spread through each circuit



block is minimized, subject to a constraint on the maxi-

mum delay through the circuit.

The optimization problem is formalized as follows:

Find x� = Arg minx2A maxV ��(x) (7)

subject to maxV delay(x) � max : (8)

Here denotes the nominal and the four process cor-

ner MOSFET models. A is the hypercube formed by re-

stricting the widths of M1-M3 between 3.6�m and 10�m,

and bias between 0.0 and 2.0 . The widths of 1 and

2 are constrained to be one-half the width ofM1 and M2

respectively. x is the vector of feasible transistor widths

and bias voltage. ote that the minimum allowed feature

size is 0.6�m and hence the widths of 1 and 2 were

restricted to vary in quanta of 0.6�m. The skew ��(x)

is de�ned as the variation in delay through the circuit

shown in �gure 1 over the six possible input transitions,

and the delay(x) is the largest delay over these input

transitions. max is the maximum delay constraint.

The models for delay and skew were initially estab-

lished by simulating k = 100 di�erent sizing schemes,

selected randomly. The �rst row of table 1 shows the siz-

ing scheme with the best skew value, satisfying the delay

constraint, among these 100 points. This sizing scheme

is not feasible.

Since the number of possible sizings is small, all the

feasible alternatives (216 distinct sizing schemes) were

evaluated with �ve values of bias voltage ranging from

0 to 2.0 using the BLUP and MSE expressions in [8].

This constitutes an exhaustive search of the design space

using the models. Since the smallest possible value for

the skew is 0, yok was chosen to be zero. 20 feasible sizes

and bias voltages with the largest probability that sat-

is�ed the delay constraint max � 1ns were chosen for

resimulation. Table 1 shows the results for these sets of

simulations. The best sizing in the second set was consid-

erably better than the results of the �rst 100 samples and

was considered quite suitable for design and hence no fur-

ther simulations were performed. The total time taken

for simulation was 540 cpu seconds on a DECstation 5000

while the overhead of model building and searching was

less than 1 cpu second.

This example illustrates how the optimization proce-

dure is employed. The search space is pruned by the

designer's judgement and a good solution is found with

very few simulations.

3.2 S loc river ircuit

The second example we present here is the skew op-

timization of a single to di�erential input clock driver

circuit shown in �gure 2. It is desired to obtain a sig-

nal and it's complement from this circuit's outputs such
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Figure 2: Clock Driver Circuit

that there is minimum skew between the two signals, i.e.

to minimize �� (see �gure 2) which is the maximum of

the high and low skew between the clock signal and its

complement. Again, this skew has to be minimized over

the process variations. This optimization has to be done

using a suitable transistor sizing scheme. The absolute

delay through this circuit is not a concern, hence the

optimization is essentially unconstrained. Temperature

and power supply variations were also considered. The

model was built over the space of transistor sizes, pro-

cess, temperature and power supply variations. As in the

previous example, process variations were considered by

simulating each sizing scheme over the 4 process corners

and the nominal process.

The problem is formalized as follows:

Find x� = Arg minx2Aw maxE ;maxV ��(x) (9)

Here, Aw is the hypercube formed by restricting the

widths P1-P6 between 3.6�m to 12�m, and represents

the temperature variation between 25-75� and dd be-

tween 4.75-5.25 . As before the widths of 1- 6 are

constrained to be one-half the widths of P1-P6 respec-

tively. represents the process variations considered.

For this problem, the sizing provided by the resident cir-

cuit design expert had a worst case skew of 290ps (row 1

of table 2). For optimization purposes, the worst process

dependent skew model was built using k = 100 simula-

tions, selected randomly again. First, the e�ect of tem-

perature and supply variation was factored out. To do

this, 1000 random points were sampled in (Aw). At each

of these 1000 points, the model was evaluated for 9 di�er-

ent combinations of the supply voltage and temperature

variations. The largest value of the probability P (yok)

(equation 5) over these 9 combinations was found for

each of the 1000 points. This value was used to estimate



Table 1: Results for Delay Controlled Element

M1 M2 M3 vbias delay skew

Best Random Sizing 6.0e-6 8.4e-6 8.4e-6 .98 1.0e-09 7.7e-10

Best Sizing after Optimization 7.2e-6 8.4e-6 9.6e-6 0.0 8.8e-10 5.4e-10

Table 2: Results for Clock Driver Circuit

M1 M2 M3 M4 M5 M6 skew

Designer's choice 9.6e-6 4.8e-6 4.8e-6 9.6e-6 4.8e-6 4.8e-6 2.9e-10

Optimal Point 7.2e-6 3.6e-6 8.4e-6 9.6e-6 9.6e-6 4.8e-6 1.1e-10

the likelihood of a sizing being the best. i.e. :

x� = Arg minx2Aw maxE Pxw(yok) (10)

was the target for further simulation. Again yok was

chosen to be 0.0 which is the minimum possible value of

the skew. From the 1000 sizing schemes evaluated, the

10 sizing schemes (instead of only one as suggested by

equation 10) with the largest probability were chosen for

further simulation. These schemes were veri�ed using the

5 process parameters and the 4 corners of power supply

and temperature uctuations. The smallest worst-case

skew among these sizings was only 110 ps, a signi�cant

improvement over the expert's design (row 2 of table 2).

The total simulation time was 640 cpu seconds on a DEC-

station 5000 and the overhead of model building and op-

timization was less than 10 cpu seconds.

These examples illustrate the power of this approach

in evaluating transistor sizing schemes e�ciently for dif-

ferent optimization problems. The stochastic model is

able to capture the relationship of any performance mea-

sure to the transistor sizes. The model accuracy is re-

ected in the few subsequent evaluations required to ar-

rive at very good designs.

4 onclusion and uture or

Wehave demonstrated an algorithm based on stochas-

tic modeling that is capable of solving some di�cult tran-

sistor sizing problems. This approach is very useful for

general transistor sizing in CMOS circuits, where the ob-

jective function can only be evaluated through circuit

simulation. We are currently exploring the e�ectiveness

of this technique for problems with higher dimensional-

ity, e.g. clock network design, and CMOS analog circuits

[10].
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