
Abstract — In most logic synthesis systems, technology mapping to a

target technology is performed using structural matching techniques.

Recently there has been a lot of interest on the usage of boolean tech-

niques to do matching of combinational logic. In this paper, we present

an extension of boolean matching to perform technology mapping of

sequential elements. The new technique is capable of recognizing the

presence of complex sequential elements including JK flip-flops, multi-

plexed flip-flops, flip-flops with asynchronous behavior and complex

latches. The underlying algorithm uses a notion of “timed” variables

and relies on a fast boolean matching technique to achieve efficiency.

We have implemented these ideas in a simple technology mapper and

contrast the results with two other sequential mapping techniques.

I. I NTRODUCTION

With the ever increasing complexity of ASICs, synthesis tools are

becoming widely accepted in the design community. Designers can now

specify a high-level functional description of circuit behavior, set con-

straints on the design and specify the technology library in which the

resulting circuit must be realized. This information is then fed to a set of

synthesis tools which generate a netlist that is optimized with respect to

the given constraints. The optimized netlist uses components from the

specified target technology library. Synthesis is composed of two main

steps: high-level synthesis and logic (or gate-level) synthesis. In this

paper, we focus on technology mapping, an important phase in logic syn-

thesis.

The technology mapping problem can be stated as follows: “Given a

technology independent network (a directed acyclic graph of nodes and

edges, representing the functionality of a logic circuit), and a technology

library of gates, find a ‘covering’ or a realization of the original network in

terms of the gates in the technology library that meets (or comes closest

to meeting) the constraints imposed on the circuit”. Technology mapping

consists of two distinct steps:

1. The matching step:: We try to find all gates in the technology library

that can be used to replace a sub-network in the original network.

2. The covering step:: We define a “covering” of a network as a set of

matches (library elements), such that every node in the subject graph is

contained in at least one match. The covering step finds sets of matches

(“covers”) and chooses one that is of least cost.

Several approaches have been proposed to solve the technology map-

Boolean matching of sequential elements

Shankar Krishnamoorthy and Frederic Mailhot
Synopsys Inc.

700C, E.Middlefield Rd., Mountain View, CA 94043

ping problem. Keutzer proposed a tree matching solution which was

implemented in DAGON[1, 2]. A graph matching scheme was proposed

by Detjens et al. in MIS [3, 4]. A rule-based solution was implemented in

SOCRATES [5]. All three solutions use structural equivalence as the

basis for the matching step. Recently, a number of solutions based on

boolean matching have been proposed [10, 11, 13]. Boolean matching

differs from the structural matching techniques in that the emphasis is on

logical equivalence rather than structural equivalence. We briefly review

three boolean matching techniques in section III.

A commonly used technique to optimize sequential circuits is to parti-

tion the original circuit into its combinational and sequential parts. The

combinational part of the circuit is characterized to reflect input phase

relations, arrival and required times, area and other constraints. It is then

optimized by a combinational optimization tool that performs technology

independent optimizations followed by technology dependent optimiza-

tions such as technology mapping. The memory elements that were set

aside earlier are inserted back into the circuit. At this stage, the circuit can

be further optimized by mapping the sequential elements to the target

technology. Technology mapping of sequential elements can improve the

quality of the resulting circuit by reducing the number of levels of logic

between sequential elements or primary inputs, thereby speeding up the

circuit. It can also reduce the area of the resulting circuit.

Some techniques for technology mapping of sequential elements have

been proposed earlier. SIS uses a structural technique similar to the one

used in MIS for sequential mapping. The synchronous behaviour of

sequential cells in the library are expressed as pattern trees. A tree match-

ing algorithm is used to find matches in the subject graph [6].

In rule-based systems, sequential mapping is performed by enumerat-

ing a set of rules in the rule-base that represent pattern graphs for different

sequential elements. This results in elaborate descriptions of various kinds

of flip-flops like JK, D, load-enable, negative edge-triggered etc. in the

rule base. Since there are a large variety of sequential elements in various

technology libraries, more than 60% of a typical rule base could be

devoted to rules pertaining to mapping of sequential elements. This figure

was obtained by examining a rule base that was constructed for gates in

20 different standard cell libraries [7].

In this paper, we propose a formulation to define the functionality of a

sequential element as a combinational logic equation. We also present a

scheme to perform technology mapping of sequential elements using

boolean matching. The rest of the paper is organized as follows: In section

II, we briefly describe the boolean matching technique and review exist-

ing algorithms to do boolean matching. In section III, we introduce some

notations. Section IV motivates the need for mapping of complex sequen-

tial cells. In section V, we present a new model for sequential elements

and demonstrate its effectiveness. Section VI outlines a new method to do

technology mapping of sequential elements using boolean matching. In

section VII, we present experimental results on a set of examples.

II. B OOLEAN MATCHING

Boolean matching is a technique to recognize logic equivalences

between a sub-network in the subject graph and a library cell. In com-

monly used sequential elements such as MUXed flops, flip-flops with

load-enable, JK flip-flops and flip-flops with asynchronous set-reset, there

are reconvergent fanouts in the synchronous and asynchronous logic

components of the cell. A structural technique (e.g. rule-based) would

require exhaustive enumeration of all patterns of all sequential elements

for completeness. On the other hand, boolean matching is a general tech-

nique that can be applied to match any sequential gate regardless of its

structure. Therefore, we choose boolean matching as the basic paradigm

for mapping sequential elements.

Definition: Two functionsf andg are said to beNPN equivalent if and

only if f can be obtained fromg (or vice versa) by input variable negation,

input variable permutation and function negation. Bothf andg are said to

be in the sameNPN equivalence class. For example, AND, OR, NOR,

NAND all belong to the same NPN class [8].

A boolean matching scheme must have an efficient way to determine

if two functions belong to the same NPN class. This operation has a com-

plexity of O(n! 2n) wheren is the number of inputs of the function. Mail-

hot et al. presented a boolean matching technique, where the switching

function represented by the library cell was compared against the function

of a sub-graph in the subject graph to determine NPN-equivalence [9,

10]. In order to efficiently deal with the complexity of the NPN-equiva-

lence check, they proposed a heuristic in which they used the unateness

and symmetry properties. They demonstrated area/delay improvements

over the structural matching techniques used in MIS-II. The main draw-

back with this heuristic is that the symmetry computation step requires

O(n2) BDDs to be built.

Burch et al. observed that in order to check if two functionsƒ1 andƒ2
belong to the same NPN class, it is sufficient to compare theirpermuta-

tion-phase canonical formsƒ1* andƒ2* for logic equivalence [11]. They

presented an exact canonicalization procedure for phase assignment of

inputs. However, this procedure has complexityψ = O(|V|2+ |V| . n3)

where |V| is the number of nodes in the BDD and n is the number of vari-

ables in the support of the function. Due to the complexity of the canoni-

calization step, the matching phase can be expensive.

Mohnke et al. observed that instead of using a computationally expen-

sive but exact canonicalization algorithm, fast heuristics could be applied

to pseudo-canonicalize the phase assignment and permutations of the

inputs [12]. These heuristics were not exact (i.e did not guarantee a unique

phase assignment or permutation). However, they did produce a unique

phase assignment or permutation for several functions. The algorithm

computes a set of signatures {Si(v) } for each variable v in the support of a

function f using a set of signature generatorfunctions {Si}. Each signature

generator function Si provides a criterion for distinguishing variables in

the support of the function that could not be distinguished by any of the

earlier signatures in the set. This way it was possible to compute canoni-

cal forms for several functions very efficiently. However, there were some

functions for which the signatures were ineffective and hence canonical

forms could not be computed. In these cases, all the pseudo-canonical

forms of the function would have to be stored, thereby increasing mem-

ory usage relative to the scheme presented in [11].

III. N OTATION

We adopt the following notation for the rest of the paper:

For a functionf ,

Ω(f) represents the support set of the functionf

Φf represents a set of phase assignments to inputs off obtained by apply-

ing a phase canonicalization procedure tof

πf represents a set of input permutations obtained by applying a permuta-

tion canonicalization procedure tof

Φf (v) is the phase of the variable v under phase assignmentΦf

πf (v) is the new position of the variable v under permutationπf

Given two sets A and B, the set A— B contains all elements in A that are

not in B.

A flip-floprefers to a sequential cell that is edge-sensitive. It does not have

transparent behaviour.

A latch refers to a sequential cell that is level-sensitive. It has transparent

behaviour.

IV. T ECHNOLOGY MAPPING OF SEQUENTIAL ELEMENTS

Sequential elements are an integral part of digital circuits. A technol-

ogy mapping solution that considers sequential elements should improve

the area and delay of the final implementation. Area and delay improve-

ments occur in designs where complex sequential gates replace simple

sequential elements and surrounding logic. For example, assume a logic

network with the function of a multiplexor (MUX) that drives the data pin

of a D flip-flop which lies on the critical path. We can reduce the critical

path delay if we replace the flip-flop and its surrounding logic by a multi-

plexed flip-flop. (Fig 1)

V. A NEW FORMULATION FOR SEQUENTIAL ELEMENTS

Boolean matching depends on the presence of a switching function

representation for both the library cell and the sub-network to be matched.

In order to incorporate boolean matching into technology mapping of

sequential elements, we first represent a sequential element by a combina-

tional logic function.

We now introduce a model for a sequential element. This model can

represent all flip-flops and latches except Master-Slave latches. The

generic model of a sequential element (GEN) is a cell with 6 inputs and 2

outputs. Table 1 explains the meaning of these pins. Table 2 describes

commonly used sequential elements using this model.

TABLE 1
GENERIC SEQUENTIAL CELL (GEN)

TABLE 2
COMMONLY USED SEQUENTIAL GATES

A sequential cell has at most two outputs Q and QB. If Q and QB are

opposite to each other (e.g. flip-flops with no asynchronous behaviour, D-

latches etc.), we say that Q and QB are “related”. When Q and QB are

not opposite to each other, we say that the two outputs are “unrelated”.

Pin Type Function

sync Input synchronous behavior of cell (fsync)is input to this pin.

ck Input function driving the clock pin. (fclk)

s00 Input asynchronous behavior resulting in Q=0, QB=0 (f00)

s01 Input asynchronous behavior resulting in Q=0, QB=1 (f01)

s10 Input asynchronous behavior resulting in Q=1, QB=0 (f10)

s11 Input asynchronous behavior resulting in Q=1, QB=1 (f11)

Q Output output function 1

QB Output output function 2

Cell fsync fclk f00 f01 f10 f11

D flop D CK 0 0 0 0

JK flop J.¬Q +
¬K.Q

CK 0 0 0 0

RS flop D CK R.S R.¬S ¬R.S 0

Gated clock
RS flop

D E.CK 0 ¬R.S R.¬S ¬R.¬S

D Latch 0 0 0 G¬D G.D 0

D0

D1

Ck

S

S
Ck

D0

D1

Q

QN

Q

QN

DFF MuxFF

Fig 1

A1. Assumption: The asynchronous functions are pairwise disjoint.

A crucial assumption we make in our generic model is that for a given

input stimulus, atmost one of the four asynchronous functions is equal to

1. This assumption is valid because none of the outputs are ever driven to

0 and 1 at the same time. Using assumption A1, we can make the asser-

tions: f00.f01 = 0 , f01.f10 = 0 and so on.

We begin the discussion of the formulation with the introduction of the

“plus” (+)operator. The “plus” operator is used to represent the value of a

variable or a function at an instant that is just after the present time. To

understand this new operator, we state some of its properties. Let f be a

function of n input variables <x1, x2,, xn>.

P1. If f is a constant valued function i.e f is either a tautology or the zero

function , then f+ = f

P2. f+(x1, x2, x3, .., xn) = f (x1
+, x2

+, x3
+, ..., xn

+).

P3.¬(f+(x1, x2, x3, .., xn)) = (¬f(x1, x2, x3, ..., xn))
+

Given a variable xi whose value is known at time t, xi
+ is justanother vari-

able that denotes the value of xi at a time (t +ε), that is just after t. In equa-

tion E1 given below, we present a logic function that accurately captures

the value of the Q output of a sequential element at a timeε after the

present.

Q+= [(¬fclk. fclk
+.(fsync) + (fclk +¬fclk

+).Q)¬f00.¬f01] + f10 + f11 (E1)

Let us try to express a D flip-flop (Table 2) using this formulation. A D

flip-flop exhibits the following behavior: Whenever the clock input (CK)

rises from 0 to 1, the output Q is equal to the value at the data pin D. At all

other times, the flip-flop stores its “previous” state. The “previous” state of

the flip-flop is the value at the Q output of the flip-flop. We can write the

equation for Q+ in the following manner:

Q+ =¬CK. CK+. D + (CK + ¬CK+).Q (E2)

Let us now consider a D-latch (Table 2) and try to express its behavior

using this new formulation. Note that a latch does not have any synchro-

nous behavior as per our sequential model. Assuming that the latch has a

data pin D and an enable pin G, we can write the equation for a latch in

the following manner:

Q+ = Q.¬G + D.G (E3)

Equation E3 states that the output of a latch is 1 whenever both D and

G pins are 1. This depicts the transparent behaviour of a latch. We can

also see from E3 that when the enable pin G is 0, the output is the previ-

ous state. Note the absence of the clock variables CK, CK+ in E3.

Now that we have seen two applications of this formulation, we now

explain the meaning of E1. Equation E1 has two parts : a part that depicts

the synchronous behavior of the sequential cell and a part that depicts the

asynchronous behavior. If either of the asynchronous functions f10 or f11
is equal to 1, then the value of Q+must be equal to 1 regardless of any of

the other components of the equation. Similarly if either of f01 or f00 are

equal to 1, the value of Q+must be 0. The synchronous behavior is

always expressed in relation to a clock edge. If there is a transition in the

clock function (fclk) from 0 to 1, we want the output to follow the value

of the synchronous functionality (fsync) of the cell. At all other times,Q+

remains in the “previous” state (Q).

In an analogous manner, we can write the equation for QB output of the

cell :

QB+= [(¬fclk. fclk
+.(¬fsync) + (fclk + ¬fclk

+).QB)¬f00.¬f10] +f01 + f11(E4)

Lemma 1: If f00 = 0 and f11 = 0 then Q+ = ¬QB+

VI. M ATCHING OF SEQUENTIAL ELEMENTS

Our method for matching sequential elements has two phases - model-

ing and matching. In the modeling phase, we process the sequential gates

in the target technology to store pseudo-canonical forms for them. In the

matching phase, we identify the presence of these sequential gates in the

subject graph and find the match with the best cost. We first present the

modeling phase in sub-sectionA. The matching phase is presented in sub-

sectionB.

A. Modeling of sequential elements

In this section, we present the algorithmSEQ_model which models

a sequential cell. The algorithm is applied to every sequential gate in the

library and the pseudo-canonical forms that are generated are stored for

subsequent use in the matching phase.

Definition: We say that a phase assignmentΦ of a sequential cell is

complete if and only if the phase for each input of the cell has been deter-

mined. The definition is also extended to permutationsπ.

We defineΦ to be the phase assignment andπ to be the permutation of

all inputs of the cell. If f is an output (Q or QB) of the cell then computing

Φf does not necessarily mean thatΦ iscomplete, because the support of

the sequential cell might be larger thanΩ(f). Let PHASE(f) and PER-

MUTE(f) represent the phase and permutation canonicalization proce-

dures that are applied to function f to obtain a set S of functions h that

represent the pseudo-canonical forms (PCF’s) of the function f. The

“effectiveness” of the procedures PHASE and PERMUTE is measured

by the cardinality of the set S. Associated with each function h in S is a

permutationπh and a phase assignmentΦh, such that applyingΦh andπh
to f produces h. We shall present a brief overview of the procedures

PHASE and PERMUTE later in this section.

algorithm SEQ_model(T, cell) {
/* T - a search table to store the PCFs */
Initialize Φ and π to any phase and permutation.
Q = first_output(cell) /* Equation E1 */
QN = second_output(cell) /* Equation E4 */
process_seq(Q, QN, T, cell)
if (Q and QN are not related) {

process_seq(QN, Q, T, cell)
}
} end_algorithm;

procedure process_seq(f, fn, T, cell) {
/* f is the primary function, fn is the secondary function
*/
Apply PHASE(f), PERMUTE(f)to obtain set S1 = {<h , Φh,πh>}.
foreach <h, Φh , πh> in S1 { /* loop L1 */

Key1 = h
Assign Φh and πh to corr.variables in Φ and π
Compute function t by applying Φ and πto fn
Key2 = t
if (Φ or π is not complete){/* some inputs unas

signed*/
Apply PHASE(t),PERMUTE(t) to obtain S2 =

{<g ,Φg, πg>}

foreach <g , Φg, πg> in S2 { /* loop L2 */
Incrementally update Φ and π using Φg, πg
Key2 = g
Store <cell, Φ, π> in T with keys <Key1,Key2>
}

} else { /* all inputs assigned */
Store <cell, Φ, π> in T with keys <Key1,Key2>

}
}
} end_procedure

At any point in the algorithm, we assign permutations and phase assign-

ments to only those inputs that are unassigned. For sequential cells that

have Q and QB outputs opposite to each other, the procedure pro-

cess_seq is called just once. The canonicalization step on the primary

function f is sufficient to find theΦ andπ of the entire cell. The inner loop

L2 that applies the canonicalization procedures to the secondary output fn

does not get exercised. If a sequential cell has outputs Q and QB that are

unrelated, procedureprocess_seq is called twice, once for Q and once

for QB. The canonicalization procedures, when applied to the secondary

function fn, compute phase assignment and permutation for variables that

are in the setΩ(QB+) — Ω(Q+). From E1 and E4 in section VI-A, this set

has exactly one member, QB.

In our implementation, we adopted the paradigm of fast pseudo-canoni-

calization procedures proposed by Mohnke et al. The procedure PHASE

tries to assign phases to the variables of a function using cofactor minterm

counts (also known as Chow parameters [14]). The complexity of the

PHASE procedure is O(V) where V is the number of nodes in the BDD of

the function. PERMUTE assigns permutations to the variables using

cofactor minterm counts, hamming distances and variable symmetry. The

complexity of the symmetry computation component of the PERMUTE

procedure is O(n2) where n is the number of variables in the support of

the function. The variable symmetry heuristic is useful when neither the

minterm count nor the hamming distance heuristics are effective. The

minterm count heuristic is O(V) and the hamming distance heuristic has a

complexiy of O(n2.V) [12]. For the sake of brevity, we useψ to refer to

the complexity of the canonicalization step.

Another component of the complexity of the algorithmSEQ_model

is the cardinality of the set S1. The set S1 is the set of all PCF’s of the pri-

mary function f. In theory, the cardinality of this set is n!2n provided PER-

MUTE and PHASE are completely “ineffective” for the function f. In

practice, we observed that the largest number of PCF’s generated (over a

set of 5 ASIC vendor libraries) was 16 for a sequential cell that had 11

inputs. Assuming M to be the cardinality of the set S1, the complexity of

the algorithm for the related outputs case is O(ψ + M). The complexity of

the algorithm for the unrelated outputs case is O(ψ.(M + 1)), because the

procedures PERMUTE and PHASE need to be executed once for each

element in S1 to canonicalize the secondary function fn. In the complex-

ity analysis presented above, we have ignored the cost of building the

BDD of the function.

B. Matching of sequential elements

After the sequential gates in the library are processed and the PCF’s

have been computed, we examine the logic network to perform technol-

ogy mapping of sequential elements. In order to simplify the covering

step, we examine each sequential element in the network completely

independently of the others. For each sequential element, we find the

match with the best cost and implement it before moving on to the next

sequential cell.

We assume every sequential element that is to be mapped is represented

in terms of the generic sequential cell GEN, which was introduced in sec-

tion V. For every GEN cell in the network, we use a DAG enumeration

scheme to find all relevant DAGs that are rooted at the GEN cell. We then

use the algorithmSEQ_match (presented below) to find all matches in

the target library that can replace the GEN cell and surrounding combina-

tional logic. These matches are then evaluated using a cost mechanism (

e.g area and/or delay) and the best one is chosen.

algorithm SEQ_match(N, T) {
/* N is the sub-network to be matched */
/* T is the search table from SEQ_model */

Pick any output of the GEN cell as a primary
root R 0.
Let the other root be R 1
Compute function f Ro for root Ro from N

Initialise ΦN, πN
Apply PERMUTE(f Ro) and PHASE(f Ro) to obtain S1 =
{<h, Φh, πh>}
Pick any h from S1
Update ΦN, πN with Φh, πh
Key1 = h
Compute function f R1 for R 1
Apply ΦN, πN to f R1 to obtain t
Key2 = t
if (ΦN, πN are not complete) {

Apply PHASE(t), PERMUTE(t) to get S2 = {<g , Φg, πg>}
Pick any g in S2
Update ΦN, πN with Φg, πg
Key2 = g

}
Search T, with key <Key1,Key2> to get match set R
return (R).
} end_algorithm

In the algorithmSEQ_match, we pick any one PCF for the output

functions, because the execution ofSEQ_model has already computed

all PCFs in the search table T. It is more efficient from a run time perspec-

tive to do the PCF enumeration once (at the library load time) and keep

the matching step as fast as possible. The complexity analysis of the algo-

rithmSEQ_match is very similar to the analysis presented for

SEQ_model and is omitted here.

VII. E XPERIMENTAL RESULTS

In order to understand the effectiveness of the proposed technique we

ran a set of experiments. Experiment A reflects the memory efficiency of

our technique by enumerating the PCFs for sequential cells in a standard

cell library. Experiment B demonstrates some transformations that are

possible with the new technique. Experiment C compares three sequential

mapping techniques: sd_map (simple D-type elements), rb_map (rule

based) and bm_map(boolean matching based). We decided not to com-

pare our results with the SIS system because the SIS timing model is not

as accurate as the one used in our mapper. In addition, it is not possible to

model complex sequential cells in SIS.

A. Standard cell library evaluation

For all our experiments, we used a popular ASIC standard cell library

L. This library has 18 different types of sequential elements. Each sequen-

tial element type has two drive strengths with different delay and area

characteristics. Table 3 presents some simple statistics for the library L.

The column C1 reflects the number of sequential element types (a cell

and its higher drives are all counted as one type since the function is the

same). The column C2 reflects the number of PCF’s that are stored for

the corresponding type. On an average, we store 2.6 PCF’s for each

sequential element. The time taken to compute the PCFs for library L is 3

seconds on a SUN sparc 2.

TABLE 3
PCF’S FOR SEQUENTIAL CELLS IN L

B. Examples to illustrate the effect of boolean matching

We present three simple examples C1, C2, C3 (Fig 2). Each example

demonstrates a capability which can be achieved with our boolean tech-

nique but cannot be done easily with a structural technique The GEN

model representation of 5 gates that appear in these three examples are

given in Table 4.

TABLE 4
SEQUENTIAL GATES USED IN EXPERIMENT B

For each circuit, we also contrast the area and delay for the boolean

matching scheme (bm) with a simple mapping scheme where only D flip-

flops/D latches are instantiated (sd) (Table 5).

 TABLE 5
AREA/DELAY FOR EXPERIMENT B

Types C1 C2

flip-flops 11 25

latches 7 22

Total 18 47

Cell fsync fclk f00 f01 f10 f11

FD1 D CK 0 0 0 0

FJK1 J.¬Q +
¬K.Q

CK 0 0 0 0

FD2 D CK 0 ¬CD 0 0

FD4 D CK 0 0 ¬SD 0

LD1 0 0 0 G.¬D G.D 0

Circuit sd area sd delay bm area bm delay

C1 7 1.37 5 1.30

C2 15 4.38 11 1.69

C3 10 1.67 8 1.79

D
G

LD1

LD1

D

G

Q

QB

Q

QB

FJK1
J

K

Q

QB

CK

J

K

Q

QB
FD1

FD2

R

D

R
D QB

Q

FD4

CK

CK QB

Q

C1 - SD

C1 - BM

C2 - SD

C2 - BM

C3 - SD

C3 - BM

Fig 2

CK

C. Experiments on large circuits

We implemented the ideas described in this paper on top of an existing

logic synthesis system. In order to evaluate the effectiveness of the new

technique, we ran three different sequential mapping techniques on a set

of 10 benchmark circuits from the ISCAS 89 benchmark suite.

1. sd_map - simple D flip-flops only (i.e no sequential mapping)

2. rb_map - a rule-based technique (based on the ideas presented in [5])

3. bm_map - the new boolean matching scheme

For each circuit, we used two scripts - one for area optimization and one

for delay optimization. For the rule-based technique, the rule base was

composed by examining the sequential cells in 20 different ASIC vendor

libraries. All other parameters in the experiment were unchanged. The

results are presented in Tables 6 and 7.

 TABLE 6
TABLE OF BENCHMARK RESULTS (Area)

TABLE 7
TABLE OF BENCHMARK RESULTS (Delay)

We can see that sd_map performs worse than rb_map and bm_map in

all examples either in area or in delay. This establishes that a sequential

mapping technique that can infer more complex flops than just D flip-

Area Optimization

Circuit sd_map rb_map bm_map

s27 32 30 30

s298 181 181 181

s444 264 262 260

s1423 957 953 956

s1488 550 550 550

s5378 2274 2268 2266

s9234 1898 1873 1870

s13207 6431 6396 6366

s15850 6419 6313 6309

s35932 20239 19526 19247

Delay Optimization

Circuit sd_map rb_map bm_map

s27 4.2 4.1 4.1

s298 6.71 6.4 6.2

s444 7.0 6.8 6.9

s1423 13.5 13.4 13.2

s1488 8.6 8.2 8.2

s5378 8.4 8.3 8.3

s9234 10.9 10.9 10.8

s13207 14.6 14.6 14.7

s15850 17.68 17.58 15.7

s35932 8.5 8.5 8.4

flops is beneficial as it can improve both the area and the delay of the cir-

cuit. The technique presented in this paper outperforms the rule-based

scheme in 6 out of 10 examples for area optimization, and in 5 out of 10

examples for delay optimization. All experiments were carried out on a

SUN Sparc 2 with 16MB of memory. The memory consumption of

bm_map is 10 - 20% lesser than the rb_map. The CPU times are compa-

rable to rb_map.

We used examples from the ISCAS 89 benchmark suite so as to estab-

lish a common reference point. The new technique shows substantial

improvements in several large commercial designs over the rule-based

and the simple mapping schemes. In these designs, complex sequential

cells are matched causing a reduction in area as well as delay. Table 8

shows area and delay improvements for a set of 4 commercial designs.

The numbers have been normalized to show the improvement.

 TABLE 8
TABLE OF RESULTS FOR COMMERCIAL DESIGNS

VIII. F UTURE WORK

An interesting extension of the work presented in this paper is to utilise

dont-care information while performing the matching step. Consider the

Fig 3 shown below. In 3 (i), we have a D flip-flop being driven by a multi-

plexor that chooses between the previous state Q and the new data D

using the signal EN. In configuration 3 (ii), we have a D flip-flop with the

clock CK gated using signal EN. The configurations (i) and (ii) are logi-

cally equivalent if we are guaranteed that E does not go from 0 to 1 when

the clock signal CK is 1. The transformation from (i) to (ii) is desirable if

we want to optimize the circuit for low dynamic power consumption.

Another area for future research is the inference of Master Slave ele-

Circuit Tech. rb - area bm-area rb-delay bm-delay

ex1 ACTEL 1.0 0.72 1.0 0.9

ex2 LUT 1.0 0.9 1.0 0.81

ex3 CMOS 1.0 0.92 1.0 0.98

ex4 CMOS 1.0 1.02 1.0 0.86

D

CK

Q

QB

(i) (ii)

AN2

DFF

D
Q

QB

EN

CK

DFF

Fig 3

EN

ments. The technique presented in this paper can map the Master latch

and the Slave latch independently. However it is unable to treat them

together as one element because the present sequential model is limited

by the fact that there is only one clock that feeds the sequential cell. In

order to support Master-Slave latches and multiple clock sequential cells,

we need to extend the model further.

REFERENCES

[1] K. Keutzer, “DAGON : Technology Binding and Local Optimization by DAG

matching”,24th Design Automation Conference, pp. 341 - 347, 1987.

[2] A.V. Aho, M. Ganapathi, “Efficient Tree Pattern Matching: an Aid to Code Genera-

tion”, Symposium on Principles of Programming Languages, pp 334 - 340. ACM, Jan-

uary 1985.

[3] E. Detjens, G.Gannot, R.Rudell, A. Sangiovanni-Vincentelli, A. Wang, “Technol-

ogy Mapping in MIS”,International Conference on Computer Aided Design, pp. 116 -

119, 1987.

[4] R. Rudell, “Logic Synthesis for VLSI Design”,Ph. D Thesis, U.C. Berkeley Memo-

randum UCB/ERL M89/49, Apr. 1989.

[5] D. Gregory, K. Bartlett, A. de Geus, G. Hachtel. “Socrates: a system for automati-

cally synthesizing and optimizing combinational logic”,23rd Design Automation Con-

ference, pp. 79 -85, 1986.

[6] C. Moon, B. Lin, H. Savoj, R. Brayton, “Technology Mapping for Sequential Logic

Synthesis”, Proceedings of Intl. Workshop on Logic Synthesis, North Carolina, May

1989.

[7] P. Moceyunas - Personal Communication.

[8] S. Muroga, Threshold Logic and its Applications. John Wiley, 1971.

[9] F. Mailhot, G. De Micheli, “Technology Mapping using Boolean Matching and

Don’t Care Sets”,1st European Design Automation Conference, pp. 212 - 216, 1990.

[10] F.Mailhot, G. De Micheli, “Algorithms for Technology Mapping Based on Binary

Decision Diagrams and on Boolean Operations”,IEEE Trans. on Computer Aided

Design of Integrated Circuits and Systems, Vol 12, No.5 pp. 599 - 620, 1993.

[11] J.R. Burch, D.E. Long, “Efficient Boolean Function Matching”,International

Conference on Computer Aided Design, pp. 408 - 411, 1992.

[12] J. Mohnke, S. Malik, “ Permutation and Phase Independent Boolean Compari-

son”, Proceedings ofEDAC, 1993.

[13] D.S. Kung, R.F. Damiano, T.A. Nix, D.J. Geiger, “BDDMAP: a technology map-

per based on a new covering algorithm”, 29thDesign Automation Conference, pp. 484

- 487, 1992.

[14] S.L. Hurst, D.M. Miller, J.C. Muzio, Spectral Techniques in Digital Logic. Aca-

demic Press, 1985.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

