
Permissible Observability Relations in FSM Networks �

Huey-Yih Wang Robert K. Brayton
Department of EECS, University of California, Berkeley, CA 94720

Abstract
Previous attempts to capture the phenomenon of output don’t care
sequences for a component in an FSM network have been incomplete.
We demonstrate that output don’t care sequences for a component can
be expressed using a set of observability relations given that its state
transition function is kept unchanged. Each observability relation
is permissible in the sense that any implementation compatible with
one of them is feasible. The representation for a set of permissible
observability relations is not unique. We provide a method to find a
set with the minimum number of permissible relations. We briefly
discuss the exploitation of permissible observability relations in state
minimization, circuit implementation and signal encoding. We have
implemented these methods and present some preliminary results on
a few small artificially constructed examples.

1 Introduction
The flexibility in implementing an isolated combinational logic cir-
cuit can be expressed by don’t cares. For an individual component
in a hierarchically designed combinational logic circuit, a Boolean
relation, an observability relation or a symbolic relation is required
to express all possible implementations [3, 1, 10, 17]. This freedom
in implementation is due to reduced controllability and observability
from the environment. By exploiting this information, we often can
achieve a better implementation for that component.

Similarly, sequential don’t cares are important in the optimization
of sequentialcircuits. Several approacheshave been proposed. For ex-
ample, in [11], unreachablestates and equivalent states are exploited in
the logic optimization of an isolated sequential circuit. Damiani et al.
[5] introduced the notion of synchronous relations to deal with the logic
optimization of pipelined sequential circuits. This approach is moti-
vated by a circuit implementation point of view. On the other hand,
a transition relation can be used to represent an isolated finite state
machine (FSM). This allows us to deal with symbolic information, i.e.
with unencoded machines. Incompletely specified information often
refers to possible implementations. Exploiting this information may
also change the state minimality of a machine. In general, a transition
relation can be regarded as an observability relation or a symbolic
relation. State minimization for an isolated machine has been well
studied [13, 8]. Although state minimality does not imply that the
resultant logic circuit after state encoding is minimized, it is generally
regarded as a good starting point for state encoding to get smaller logic
implementations.

In the case of sequential don’t cares for an individual component
in a network of FSM’s,1 we may need to consider sequences of don’t
cares. There are a few studies related to this problem [9, 6, 14, 19].
Although by flattening a network of FSM’s into a composite machine
we may perform global optimization, the composite machine is often
too big to be handled by synthesis tools. To perform hierarchical
synthesis, we must consider the interaction between components. The
computation and exploitation of don’t care information is crucial for
the quality of the resultant circuit implementation.

The computation of don’t care information for a component in an
FSM network is much harder than its counterpart in combinational
logic. We divide this problem into two parts: sequential input and

�This project was supported by DARPA under contract number JFBI90-073 and NSF
under contract number EMC-84-19744 and MIP-87-19546.

1In this paper, only synchronous FSM networks with known initial states are
considered.

M

I
I1 O1 I 2

O2M1
M2 O

Figure 1: A cascade circuit of two FSM’s.

output don’t cares. In this paper, we deal with the latter. Consider
the cascade machine in Figure 1. The flexibility in implementing
M1 when cascaded with M2 is called sequential output don’t cares.
This was studied by Devadas [6], and later by Rho et al. [14] who
generalized Devadas’ procedure to compute fixed-length output don’t
care sequences.

In this paper, after reviewing previous work in section 3, we ex-
plain why the notion of information lossyness introduced in [14] can
not completely characterize the phenomenon of output don’t care se-
quences. Then, we discuss the difficulties in computing and expressing
these. We demonstrate that output don’t care sequences for a com-
ponent can be expressed using a set of observability relations given
that its state transition function is kept unchanged. In section 5, we
propose an implicit enumeration algorithm which exactly computes
them. Each observability relation is permissible in the sense that the
behavior of the network is preserved. We describe how to exploit
them in state minimization, circuit implementation and signal encod-
ing. Finally, we give some preliminary results on some artificially
constructed circuits.

2 Preliminaries
2.1 Finite Automata and Finite State Machines
A deterministic finite automaton (DFA), A, is a quintuple (K;Σ; �;
q0; F) where K is a finite set of states, Σ an alphabet, q0 2 K the
initial state,F � K the set of final states, and � the transition function,
� : K � Σ ! K . A nondeterministic finite automaton (NFA), A,
is a quintuple (K;Σ; �; q0; F) where �, the transition relation, is a
finite subset of K � Σ�

� K , and Σ� the set of all strings obtained
by concatenating zero or more symbols from Σ. An input string is
accepted by A if it ends up in one of final states of A. The language
accepted by A, L(A), is the set of strings it accepts.

A finite state machine (FSM), M , is a six-tuple (I;O;Q; �; �; q0),
where I is a finite input alphabet,O a finite output alphabet,Q a finite
set of states, � the transition function, � the output function, and q0 the
initial state. A machine is of Moore type if � does not depend on the
inputs, and Mealy otherwise. An FSM can be represented by a state
transition graph (STG). A machine in which transitions under all input
symbols from every state are defined is a completely specified machine;
in other words, both � and � are complete functions. Otherwise, a
machine is incompletely specified.

A distinguishing sequencefor two states q1, q2 2 Q is a sequenceof
inputs such that when applied to M , the last input produces different
outputs depending whether M started at q1 or q2. In a completely
specified machine M , two states q1 and q2 are equivalent if there is
no distinguishing sequence. In an incompletely specified machineM ,
two such states q1 and q2 are compatible.

A cascade of FSM’s M1 and M2, denoted M1 !M2, is shown in

x y z
M1 M2

Figure 2: A cascade of two combinational circuits.

Figure 1. M1 is called the driving machine, M2 the driven machine.
For x 2 QM1 , its co-reachable states in M2 are fyjy 2 QM2 such
that (x; y) is a reachable state in the cascade machine M1 ! M2g.
Similarly, a state in M2 has co-reachable states in M1.

2.2 Set Computation and Operators
Let B designate the set f0; 1g.

Definition 1 LetE be a set and S � E. The characteristic function
of S is the function �S : E ! B defined by �S(x) = 1 if x 2 S,
and �S(x) = 0, otherwise.

Definition 2 Let f : Bn
! B be a Boolean function, and x =

fx1; :::; xkg a subset of the input variables. The existential quantifi-
cation (smoothing) of f by x, with fa denoting the cofactor of f by
literal a is defined as :

9xif = fxi + fxi
9xf = 9x1 :::9xkf .

Definition 3 Letf : Bn
! B be a Boolean function, only depending

on a subset of variables y = fy1; :::; ykg. Let x = fx1; :::; xkg be
another subset of variables, describing another subspace ofBn of the
same dimension. The substitution of variables y by variables x in f
is the function of x obtained by substituting xi for yi in f :

(�y;xf)(y) = f(x) if xi = yi for all 1 � i � k.

Reduced ordered binary decision diagrams (BDD’s) [2] are well
suited to represent the characteristic functions of subsets of a set, and
efficient algorithms exist to manipulate them to perform all standard
Boolean operations. As a result, the above set operations can be done
efficiently.

The reachable states can be computed efficiently using implicit
state enumeration techniques introduced by Coudert et al. [4]. This
approach is based on representing a set of states by a characteristic
function which can be manipulated effectively using BDD’s. In the
following, we represent an FSM implicitly by a characteristic function
using BDD’s.

Definition 4 The transition relation of an FSMM = (I;O;Q; �; �;
q0) is a function T : I �Q�Q�O!B such that T (i; p; n; o) = 1
if and only if state n can be reached in one state transition from state
p and produce output o when input i is applied.

3 Previous Work
3.1 Observability Relation for Combinational Logic
In a hierarchically designed combinational logic circuit, all possible
implementations can be represented by a single Boolean relation, an
observability relation or a symbolic relation 2 [3, 1, 10, 17]. For
example, as shown in Figure 2, M is a cascade machine M1 !

M2, where M1 and M2 are combinational circuits. Let O(x; z),
O1(x; y), and O2(y; z) be the observability relations of M , M1, and
M2, respectively. If O(x; z) and O2(y; z) are given, O1(x; y) can be
computed as follows :

O1(x;y) = 9z(O(x; z) � O2(y; z)) .

O1(x; y) captures all possible implementations of M1 without vi-
olating the desired behavior of the cascade machine M . Exploiting
this freedom in implementation often leads to better logic implemen-
tations.

2In this paper, we will not make a distinction among Boolean relations, observability
relations and symbolic relations unless necessary.

3.2 Sequential Output Don’t Cares
If M1 and M2 in Figure 2 are FSM’s, computing the flexibility in
implementingM1 is much harder. Devadas [6] addressed this problem
as computing sequential output don’t cares for M1 and proposed a
simple heuristic to compute partial don’t care information for M1.
Consider a transition edge e in the STG ofM1. Let the output symbol
of e be v1. Devadas’ procedure first computes the co-reachable states
in M2 corresponding to the present state of transition e. If for every
corresponding co-reachable state inM2, an output symbolv2 from M1
drives machine M2 to produce the same output and next state as the
original output symbolv1 fromM1 does, then the output part fv1g of e
is expanded to fv1; v2g. This is repeated on e for each output symbol
v2 ofM1. Then the above process is repeated for each transition edgee
in the STG ofM1. This output expansion procedure does not change
state reachability of the composite machineM1 !M2.

This procedure, in fact, is restrictive3. First, it considers only
one transition edge of M1 at a time, and excludes the possibility of
simultaneous output expansions among all transition edges. That
is, an expanded output symbol in a transition edge may depend on the
expanded output symbols of the other transition edges. Furthermore,
next states need not be the same when an output expansion takes
place. To be more specific, the set of co-reachable states for each state
in M1 may change due to simultaneous output expansions. In the next
subsection, we show this by example.

3.3 Output Don’t Care Sequences
Later, Rho et al. [14] considered sequences of output don’t cares and
used the notion of information lossyness to explain the phenomenon
of these sequences in a cascade machine. A machine is said to be
information lossless if given the initial state, the final state and the
output sequence, the corresponding input sequence can be uniquely
determined. A machine that is not lossless is said to be lossy. A state s
of a machine is said to be a lossy state if starting from s there exist two
distinct finite-length input sequences such that their output sequences
and final states are the same. An information lossless machine cannot
contain any lossy states.

Consider the cascade machine M1 ! M2 in Figure 1. Rho et al.
[14] interpreted that output don’t care sequences forM1 are due to the
lossyness of M2. Based on this explanation, if M2 has no lossy states,
there are no output don’t care sequences for M1. In this sense, only
lossy states in M2 need to be considered for computing output don’t
care sequences. Accordingly, they gave the following definitions for
equivalent sequences and equivalent machines. Input sequences that
lead a driven machine M2 from the same initial state s to the same
final state t and produce the same output sequences, are said to be
equivalent with respect to state s. Thus, state s is a lossy state. Two
machines M 0

1 and M 00

1 are said to be equivalent with respect to M2
if and only if for each input sequence they produce output sequences
that are in the same equivalence class of input sequences of M2, i.e.
ending in the same final state if M2 is state-minimal.

According to the above definitions, a heuristic was proposed in
[14] to compute a subset of fixed-length output don’t care sequences
for M1. This is an extension of Devadas’ procedure [6]. To compute
fixed-length, say k-length, equivalent sequences inM2, this procedure
first unrolls M1 and M2 for k-length time frames. Let the unrolled
machines of M1 and M2 be Mk

1 and Mk
2 , respectively. An unrolled

machine has the same state space as that of the original machine except
that for each transition edge the input part is a k-length input sequence,
and the output a k-length output sequence. By such a construction,
k-length equivalent sequences starting at a state s of Mk

2 can be
computed. In contrast, Devadas’procedure computesequivalent value
from a state s in M2. Then the output part of each transition edge in
Mk

1 can be expanded using the same rationale in Devadas’ procedure
except that a consistency check needs to be performed between the
input and output part of all transition edges inMk

1 . Finally, to construct
a non-unrolled machine ofMk

1 ,M1
0, a heuristic based on state splitting

may be employed to accommodate this don’t care information as

3This is in contrast to the comment, “This is not restrictive, as long as we can assume
thatM2 is state-minimal.”, made in [15].

1

2

3

0/0

1/1

0/1

1/0

0/1

1/0

N :

(b)

1/1
1

2

3

0/0

1/0

0/1

1/0

M :

(a)

0/0

Figure 3: (a) An information lossless and state-minimal machine. (b)
A lossy and state-minimal machine.

much as possible. This procedure explicitly enumerates fixed-length
output don’t care sequences. In general, output don’t care sequences
are of infinite length. The complexity of this procedure may grow
exponentially with the length of don’t care sequences.

This procedure is an elegant extension of [6]. However, their
interpretation of output don’t care sequences is not general. By their
definition, output don’t care sequences for M1 can be interpreted as
those input sequences starting from the initial state of M2 (assumed
to be lossy and state-minimal), producing the same output sequence,
and ending in the same final state. Their reasoning is as follows. If
the output sequence of M2 is altered, so is the overall behavior of the
cascade. Also, if the final state is different, the behavior of the cascade
changes, unless the new final state is equivalent to the original one.

There are several factors not considered in this reasoning.
First, output sequences from M1 may change the equivalence of

states inM2 simultaneously, since the complement of output sequences
from M1 are input don’t care sequences forM2, which may change the
state minimality of M2 [9]. During the process of exploiting output
don’t care sequences for M1, the output function of M1 is changed
at the same time. Consequently, we are unable to assume that state
minimality of M2 is invariant.

Secondly, by definition, different input sequences applied to an
information lossless machine may produce the same output sequences,
but end in different final states. Consequently, ifM2 produces the same
output sequences for different input sequences, it is not necessarily
lossy. In other words, there might exist output don’t care sequences
even ifM2 is information lossless. For example, machineM in Figure
3(a) is information lossless and state-minimal. Input sequences (11�)
and (00�) produce the same output sequences (01�), but do not end
in the same final state. As a consequence, it is not necessary that input
sequences which produce the same output sequences end in the same
final state even when the driven machine is state-minimal. Moreover,
this argument is not valid even for a lossy and state-minimal machine.
An example is machineN shown in Figure 3(b). N is lossy since state
1 is a lossy state4. Input sequences (00)� and (10)� produce the
same output sequences (01)�, but do not end in the same final state.

Consider the cascademachineM �M1 !M2 as shown in Figure
4. This is an example where there are output don’t care sequences for
M1 even when M2 is state-minimal and information lossless. Let vi
denote the output value of a transition edge ei in the STG of M1. The
value of (v1; v2; v3; v4; v5; v6) in Figure 4 is (0; 1; 0;1; 0; 1). Since
the output sequences of M1 are f0; 1g�, there are no input don’t care
sequences for M2. Thus, we cannot use any input don’t care infor-
mation to simplify M2 first. If we apply Devadas’ [6] or Rho’s [14]
procedures, we cannot find any sequential output don’t cares for M1.
However, any one of the following values of (v1; v2; v3; v4; v5; v6)
preserves the same behavior as M1 !M2.

(v1; v2; v3; v4; v5; v6) =

8<
:

(0; 1; 0; 1;0; 1)
(0; 1; 0; 0;1; 0)
(1; 0; 1; 0;1; 0)
(1; 0; 1; 1;0; 1)

4Input sequences 0010, 1010 from initial state 1 produce the same output sequence
0101, and end in the same state 3.

1

2

3

M 2

0/1

1/1

1/1
0/0

1/0

0/1

1

2

3

0/0

1/1

1/0

0/1

0/0

M 1

e1

e3

e4

e
5

e2

e6

1/1

Figure 4: An example : M �M1 !M2, where both M1 andM2 are
state-minimal and information lossless.

The reachable states ofM2 are f1;2; 3gwhen (v1; v2; v3; v4; v5; v6) =
(0; 1;0; 1; 0; 1). But when (v1; v2; v3; v4; v5; v6) = (0; 1; 0; 0;1; 0),
the reachable states of M2 are f1; 2g. So, the state reachability may
change when we have different output sequences from M1. This is
why Devadas’ procedure is restrictive.

Consequently, the previous definitions of machine equivalence for
the driving machine do not include all possible machines which when
cascaded by M2 produce the same behavior as the original cascade
machine. As a matter of fact, the general definition of machine
equivalence should be the following : two machines M1

0 and M1
00

are equivalent with respect to M2 if and only if M1
0

! M2 and
M1

00

! M2 have the same input/output behavior. This specifies
the full flexibility for implementing M1. Therefore, this should be
regarded as the general definition of sequential output don’t cares.

4 Permissible Observability Relations
As mentioned earlier, an incompletely specifiedFSM can be expressed
by a symbolic relation. Using this representation for an isolated
FSM, two kinds of don’t care information can be conveyed. The first
is known as input-incompletely-specified don’t cares or unspecified
transitions. They characterize the situation that a given input symbol
never occurs when a machine is in a particular state, since there are
limited kinds of sequences that can be applied to the machine. The
other kind is called output-incompletely-specified don’t cares. They
occur when we are not interested in an output symbol associatedwith a
given state or state transition. In the following, we investigate whether
this representation is powerful enough to convey sequentialdon’t cares
for a component in an interacting FSM network.

In a cascade circuit M1 ! M2 as shown in Figure 1, we can com-
pute input don’t cares sequences for M2 by keeping M1 unchanged.
The general procedure known to solve this problem is due to Kim
and Newborn [9]. This procedure summarizes output sequences from
M1 by an NFA A

0, and then transforms A0 into a minimal DFA A.
The equivalent machine to M2 with input don’t care sequences is the
product machineA�M2. The input don’t cares sequences ofM2 are
unspecified transitions in the resultant product machine. This product
machine captures all input don’t cares sequences, and we can represent
it as an incompletely specified FSM. As a consequence, a single ob-
servability relation is sufficient to implicitly express input don’t care
sequences.

On the other hand, a single observability relation may not be suffi-
cient to express output don’t care sequences. We can compute output
don’t care sequences for M1 by keeping M2 unchanged. An FSM
can be regarded as a language transducer, i.e. transforming a regular
language to another regular language. Therefore, output sequences
from M1 can be expressed by a regular language, say L(Mo

1). We
can define an equivalence class of languages with respect to M2,
[L(Mo

1)]M2
, such that any language in this equivalence class can be

generated by a certain machineM 0

1 which preserves the same behavior
as M1 ! M2 when cascaded with M2. Next, we explain the intrinsic
difficulties in computing sequential output don’t cares even when we
adopt the definition of machine equivalence from [14], i.e. equivalent
input sequences end up in the same final state if M2 is state-minimal
in isolation. Rho’s procedure [14] computes fixed-length equivalent
sequences, and then expands these to be output don’t care sequences

I

M

M
1

M
2

M
21

M ’

OM

O
2

i2O1
i1

i
M

G

Figure 5: Feasibility testing using FSM equivalence checking.

for M1. Exploiting this information, some equivalent machines may
be derived. Let M 0

1 be an equivalent machine. Then L(M 0

1
o), output

sequences from M1
0 , is in [L(Mo

1)]M2
. However, the length of equiv-

alent sequencesmay be arbitrarily large. Furthermore, the complexity
of this computation may grow exponentially with the length of output
don’t care sequences. Therefore, it is hard to enumerate all languages
in [L(Mo

1)]M2
.

From another point of view, we can enumerate all possible lan-
guages produced by M1 with its state transition function unchanged.
Let the cardinality of the transition edges of M1 be k, and that of the
output alphabet of M1 be m. If we keep the state transition function
of M1 unchanged, there are mk possible output functions, i.e. mk

possible regular languages may be produced by M1 (some of them
may be the same). For each output function �1

0, there is a correspond-
ing machine M 0

1. The feasibility of �1
0 can be checked by testing if

M1
0 ! M2 preserves the same behavior asM1 !M2. This is shown

in Figure 5. Using this naive approach, we can check all possible
output functions one by one to find all feasible solutions. We may
need mk invocations of FSM equivalence checking.

We can interpret the above approach as simultaneous output ex-
pansions among all transition edges. An expanded output symbol
in a transition edge may be dependent on the expanded output sym-
bols of other transition edges. Consequently, the flexibility of imple-
mentations captured by the above approach is more than for output-
incompletely-specified don’t cares in an isolated FSM. All feasible
output functions possibly may not be expressed by a single observ-
ability relation. In fact, a set of observability relations is needed. We
show this in the next section. Each observability relation is permissi-
ble in the sense that any output function compatible with one of the
observability relations corresponds to a possible implementation.

In the next section, we present an implicit algorithm which finds all
such feasible output functions by executing FSM equivalence checking
once.

5 Computation of Permissible Observability Rela-
tions

LetM1 = (I1;O1;Q1; �1; �1; q10) andM2 = (I2; O2;Q2; �2; �2; q20)
be two FSM’s. M = (I;O;Q; �; �; qM 0) is M1 ! M2, the cascade
machine. Let Λ1 denote the set of all possible output functions of
M1 while keeping its state transition function unchanged. LetM1j�1

0

denote a machine which is the same as M1 except with an output
function �1

0 2 Λ1. Suppose that the cardinality of transition edges in
M1 is k. For each transition edge ej , we associate it with a symbolic
variable vj which takes values from O1. Let V denote the space
spanned by v0; v1; : : : ; vk�1, i.e. Ok

1 . Any minterm in V is called an
output assignment. An output assignment corresponds to an output
function in Λ1, and vice versa. An assignment mapping is a bijective
mapping M : V ! Λ1 which maps a minterm v 2 V to an output
function �1

0 in Λ1. An output function �1
0 2 Λ1 is feasible if and

only if M1j�1
0 ! M2 preserves the same behavior as M1 ! M2.

An output assignment v is feasible if and only if M(v) is a feasible
output function. The set of feasible output assignments is denoted as

. .i 1
i 2. o

2
o

M
.h

x y

Figure 6: A transition defined in T .

f(v), the feasible output assignment function.
Our goal is to compute all �1

0 2 Λ1 such that M1j�1
0 ! M2 pre-

serves the same behavior as M1 ! M2. This is pictorially explained
in Figure 5.

5.1 Reachability Relation
Here, we present an implicit enumeration method based on a gener-
alization of implicit FSM equivalence checking. The most important
step in the FSM equivalence checking is the computation of reachable
states. The state space for our equivalence checking is Q1 �Q2 �Q,
denoted as S. For an output assignment v, there is a corresponding
output functionM(v) and a set of reachable states which is a subset of
S. Different output functions may result in different sets of reachable
states. With this observation, we introduce the concept of reachability
relation.

Definition 5 A reachability relation is a function F : S � V ! B
such that F(s;v) = 1 if and only if s is reachable from the initial
state when the output function isM(v).

For an output assignment v, the transition relation of M1jM(v) is
T1jM(v). We can composeT1jM(v), T2, andTM , and then use implicit
reachability computation to check whetherG in Figure 5 is a tautology.
However, this is an explicit enumeration method since we need to enu-
merate explicitly for all v 2 V . To perform implicit enumeration, we
construct an abstract transition relation forM1, T 01 , as follows. First,
give a labeling for each transition edge inM1. Leth be a k-valued vari-
able. We substitute j, i.e. the literal hfjg, for the output part of ej . The
abstract transition relation is T 01 (i1; p1; n1; h). Let the transition rela-
tion ofM2 beT2(i2; p2; n2; o2) and that ofM , TM (iM ; pM ; nM ; oM).
Define T (i; h; i2; p; n; o2; oM) = T 01 � T2 � TM , where i = i1 = iM ,
p = (p1; p2; pM) and n = (n1; n2; nM). The initial state is q0 =
(q10; q20; qM 0). The motivation for constructing the abstract transi-
tion relation, T 01 , is explained below. T contains all possible transitions
for any composite machine ofM1jM(v),M2, andM . Consider a tran-
sition defined in T (i; h; i2; p; n; o2; oM) as shown in Figure 6. The
expression associated with this transition is (i � h � i2 � o2 � oM). Let
the value of h be j. It means that when the output value of ej in M1
is equal to that of i2, this transition is made, and vice versa. Different
output values of transition edge ej result in different output assign-
ments. Therefore, this provides a way to relate output assignments to
transitions in T .

Since F � S � V , F is a finite set. In the following theorem, we
demonstrate that the reachability relation can be computed by a least
fixed point computation.

Theorem 5.1 5 Let P(p; n; v) be defined as follows :

P(p; n; v) =

k�1X

j=0

�i2;vj f[(9i;o2;oM T)](h=j)g . (1)

F(p; v) is the limit of the following sequence :

F0 = (p = q0) � 1
Fm = �n;p9pfFm�1 � P(p; n; v)g+ Fm�1

F1 = Fm if Fm = Fm+1 .

5Detailed proofs of the theorems presented in this paper are given in [20].

Corollary 5.2 For an output assignment �, its corresponding set of
reachablestates up to them-th iteration (Rm(p))

�
is (Fm(p; v))

v=�.
In particular, the set of reachable states,(R1(p))

�
, is (F1(p; v))

v=�.

5.2 Feasible Output Assignment Function
An FSM can be regarded as a language transducer, i.e. transforming
a regular language to another regular language. If M2 is completely
specified, M2 maps I2

� to another regular language. That is, for all
input sequences, the behavior of M2 is defined. First, we consider the
case when M2 is completely specified.

For each output assignmentv, there is a corresponding set of reach-
able states in S. This results in T j

M(v), the transition relation of the
composite machine of M1jM(v), M2 and M . If there are different
values between o2 and oM in a transition of T j

M(v), G in Figure 5 is
not a tautology. Therefore, v is not a feasible output assignment. An
output assignmentv is infeasible if and only if T j

M(v) has a transition
with (o2 6� oM). Consider a transition in T as shown in Figure 6. Let
the value ofh be j, and the value of i2 be r. Therefore, when the output
value of ej in M1 is equal to that of i2, this transition is made. State x
is reachable if and only if the output assignments are in (F1)p=x . If
this transition is with (o2 6� oM), (F1)

p=x � (vj = r) are infeasible
output assignments. We need to enumerate all transitions of T with
(o2 6� oM) to compute the set of all infeasible output assignments;
the set of feasible output assignments is just the complement. In the
following theorem, we present an implicit enumeration method to find
the feasible output assignment function, f(v).

Theorem 5.3 (M2 : completely specified)
LetW(p; v) be defined as follows :

W(p; v) =

k�1X

j=0

�i2;vj f[9n;oM ;o2 ((9iT) � (o2 6� oM))](h=j)g . (2)

The feasible output assignment function f(v) is :

f(v) = 9p(F1 � W(p; v)) .

The feasible output assignment function f(v) may be a relatively
small subset of all output assignments, V . Moreover, it is not nec-
essary to construct F first using the method in Theorem 5.1, and
then remove all infeasible output assignments using Theorem 5.3. We
may incrementally remove the infeasible output assignments during
the construction of the reachability relation. In the next theorem, we
present an incremental approach.

Theorem 5.4 (M2 : completely specified)
The set of feasible output assignments f(v) is the limit of the follow-
ing sequence, where Cm(p; v) is the reachability relation restricted to
fm(v), the feasible output assignment function up to the m-th itera-
tion. P(p; n; v) and W(p; v) are defined in Equations (1) and (2),
respectively.

C0 = (p = q0) � 1 , f0(v) = 1 (3)

Cm
0 = �n;p9pfCm�1 � P(p; n; v)g+ Cm�1 (4)

fm(v) = 9p(Cm
0
� W(p; v)) + fm�1(v) (5)

Cm = Cm
0
� fm(v) (6)

C1 = Cm; f1 = fm if Cm = Cm+1 . (7)

In particular, C1 is the reachability relation restricted to f(v), the
feasible output assignment function.

When M2 is input-incompletely-specified (i.e. with unspecified
transitions), we need to modify the above theorem to compute f(v).
As explained in the previous section, input-incompletely-specified
don’t cares are due to the interaction with other machines (in our

case, M1). Let L(M i
2) denote the input sequences of M2 where the

behavior is defined. We can construct an automaton A to accept
L(M i

2) as follows. Every state of M2 is a final state. For each
transition in the STG of M2, remove the output part. Then for each
state with unspecified input values, create a transition edge to the
dead state (a non-final state), and associate those unspecified values
to that transition. Any input sequences not in L(M i

2) drive M2 to
exhibit undefined behavior. Suppose M �M1 ! M2 does not have
undefinedbehavior. Then a feasible output assignmentv,M1jM(v) !

M2 should not have undefined behavior, either. In other words, if v
is a feasible output assignment, the output sequences generated by
M1jM(v) must be in L(M i

2) (i.e. L(Mo
1)jM(v) � L(M i

2)).

Theorem 5.5 (M2 : input-incompletely-specified)
The feasible output assignment function f(v) can be computed using
Equations (3) – (7) except thatW(p; v) is defined as follows :

TC2 (i2; p2) = 9n2;o2 (T2)

W(p; v) =

k�1X

j=0

�i2;vj f[T
C
2 + 9n;oM ;o2 ((9iT) � (o2 6� oM))](h=j)g .

We can compute the feasible output assignment functionf(v) using
Theorem 5.4 or 5.5 depending on whether M2 is input completely
specified. As an example, consider the cascade machine in Figure 4,
where M2 is completely specified. The feasible output assignments
f(v) can be computed by the above algorithms.

f(v1; v2; v3; v4; v5; v6) = v1 v2 v3 v4 v5 v6 + v1 v2 v3 v4 v5 v6

+v1 v2 v3 v4 v5 v6 + v1 v2 v3 v4 v5 v6 .

5.3 Relationship Between Feasible Output Assign-
ments and Permissible Observability Relations

The feasible output assignment function, f(v), is a multiple-valued
function, thus it can be expressed in terms of a multiple-valued sum-
of-products.

Lemma 5.6 Let c be a multiple-valued cube in the space of V .
T1jM(c) can be expressed using a single symbolic relation. Con-
versely, the outputassignmentsof a symbolic relationT1(i1; p1; n1; o1)
can be expressed in terms of a multiple-valued cube in the space of V .

Definition 6 Let c be a cube of f(v), the feasible output assignment
function. T1jM(c) is called a permissible observability relation in
the sense that any implementation compatible with T1jM(c) is feasible.

Definition 7 Let p be a prime of f(v), the feasible output assignment
function. Then T1jM(p) is called a prime permissible observability
relation in the sense that it is not contained in any other permissible
observability relations.

Theorem 5.7 Let f(v) be the feasible output assignment function.
fT1jM(f(v))g is a set of permissible observability relations.

Therefore, all feasible output functions can be expressed in terms
of a set of permissible observability relations, and vice versa. By
Lemma 5.6, a permissible observability relation covers some feasible
output functions. Therefore, the representation for a set of permissible
observability relations is not unique. The minimum set of permissible
observability relations is a cover which covers all feasible output func-
tions with the minimum number of permissible observability relations.

Theorem 5.8 The cardinality of the minimum set of permissible ob-
servability relations is equal to the cardinality of the minimum sum-of-
products cover of f(v), the corresponding feasible output assignment
function.

M1
M2

Figure 7: A two-way-communication FSM network.

In contrast, we only need to use a single observability relation,
say O(i; o) (where i is the input, and o is the output), to express all
the flexibility of implementation for a component in a hierarchically
designed combinational logic circuit. A minterm of i may map to
several minterms of o, and it is independent of other minterms of i.
However, this is not true in the sequential case. That is, a minterm of
i may map to several minterms of o, but it is dependent on the other
minterms of i. Consequently, the notion of Boolean relations must be
generalized for hierarchical designed sequential circuits, i.e. sets of
permissible observability relations.

5.4 Permissible Observability Relations vs. Output
Don’t Care Sequences

In the next theorem, we state the relationship between the set of
permissible observability relations and output don’t care sequences.

Theorem 5.9 If the transition function ofM1 is not changed,and f(v)
is the feasible output assignment function, then the corresponding set
of permissible observability relations, fT1jM(f(v))g, exactly captures
output don’t care sequences for M1.

In a sense, our algorithms compute a class of permissible machines,
and these machines can be expressed in terms of a set of permissible
observability relations.

Although we have only considered one-way-communication cir-
cuits (i.e. cascade machines) so far, the above algorithms can be
directly applied to compute permissible relations for a component in
a two-way-communication circuit as shown in Figure 7. An inter-
esting extension is to use these algorithms to compute permissible
relations for both submachines M1 and M2 in Figure 7 simultane-
ously. We simply keep both state transition functions of M1 and M2
intact, and then use the above algorithms to get the feasible output
function assignments of both machines simultaneously, i.e. the new
output assignment space is the Cartesian product of output assignment
spaces of M1 and M2. Note that the flexibility in implementing one
submachine is dependent on that of the other. That is, their flexibility
of implementation need to be compatible. With this approach, we
are able to compute this compatible flexibility in implementing these
submachines.

5.5 Further Discussion
A restriction on our algorithms is that during the computation step the
state transition function of M1 is kept unchanged, although the state
transition function may change after the exploitation of output don’t
care information using state minimization procedures for incompletely
specified FSM’s. This may limit possible exploitation of other output
don’t care information. Therefore, the don’t care information derived
using our algorithms may be affected by the given state transition
function of M1. In contrast, Rho’s procedure [14] employs a heuris-
tic based on state splitting to accommodate don’t care information (a
subset of output don’t care sequences with a fixed-length) as much
as possible. Therefore, the state transition function of the component
may change. This limits the exploitation of other possible output
don’t care information as well since the definitions of equivalent se-
quences in [14] is not general as explained in Section 3.3. Moreover,
our algorithms implicitly enumerate infinite-length output don’t care
sequences using FSM equivalence checking, while Rho’s procedure
is limited to fixed-length sequences. Besides, our algorithms can be
directly applied to handle two-way-communication circuits as shown
Figure 7, and can be extended to compute compatible flexibility in
implementing these two interacting components.

Consider the following case. Let M 0

1 be a machine with the same
input and output alphabets as those of M1 but with a different state
space Q01 and a different transition function �01. Our algorithms can
be applied to check if there exists an output function �01 such that
M 0

1 !M2 and M1 !M2 have the same I/O behavior.
Based on the above discussion, a possible approach to effectively

compute and exploit output don’t care sequences is as follows. Some
fixed-length output don’t sequences can be exploited by using state
splitting. Therefore, the state transition function of M1 changes.
Infinite-length output don’t care sequences can be implicitly enumer-
ated to check if there exist better feasible output functions under this
new transition function. Thus, how to perform state splitting properly
such that as much output don’t care information as possible can be
exploited is of interest. Currently, we are investigating this problem.

6 Exploitation of Permissible Observability Relations
In the following, we discuss different aspects of exploiting permissible
observability relations.

6.1 State Minimization
Limited observability may be beneficial in minimizing the number of
states of a machine. A machine with the minimum number of states
may not have the best implementation. However, it can be a good
starting point for state assignment if the machine is not encoded yet,
or for sequential logic optimization if the machine is encoded.

However, current state minimization algorithms only manipulate
one observability relation (transition relation) at a time. By Lemma
5.6, a cube of f(v) corresponds to a permissible observability relation.
So in order to fully exploit the set of permissible observability rela-
tions, one must run state minimization procedures several times. Let p
be a prime of f(v). ThenT1jM(p) is a prime permissible observability
relation which can not be contained in any other permissible observ-
ability relations. Therefore, a state minimization procedure needs to
be executed as many times as the number of primes of f(v).

6.2 Implementation
In the case of combinational logic, a Boolean relation is sufficient
to capture all the freedom of implementation. However, in the case
of FSM networks, a set of permissible observability relations may
be needed to represent output don’t care sequences for a component.
Each minterm of f(v) corresponds to a feasible implementation. Now,
suppose the machine is encoded. In order to find the best implemen-
tation, we need to consider every minterm of f(v). From Theorem
5.8, the minimum number of times we need to run the Boolean relation
minimizer to find the best implementation is equal to the number of
terms in a minimum sum-of-products for f(v). The rationale is as
follows : A product term in the minimized sum-of-products form of
f(v) corresponds to a Boolean relation, and every minterm of f(v) is
covered by the sum-of-products form with minimum cardinality. Con-
sequently, we can pick the best result from all Boolean minimization
executions.

6.3 Encoding of Interconnection Signals
Another direct application to permissible observability relations is the
encoding of signals between interacting FSM’s. We may convert the
set of interacting binary signals between components into a symbolic
variable for the purpose of re-encoding. For example, let us consider
a cascade machine M1 ! M2. A good output encoding of M1 may
be a bad input encoding for M2, and vice versa. Re-encoding can
be imagined as a means of moving logic between two interacting
machines [6].

Shen et al. [18] give a formulation to this problem but without
experimental results. They simply combine the I/O constraints from
each individual component and convert them into a dichotomy cov-
ering problem with some conflict resolution techniques. Then they
try to satisfy as many constraints as possible. However, this is not
an exact formulation since it does not consider the exact output en-
coding (e.g., GPI’s [7]) or any don’t care information (e.g. symbolic
relation). Moreover, they did not consider sequential don’t cares (e.g.
permissible observability relations and input don’t care sequences are
not used). The general formulation is still an open problem.

circuit driving driven # fea. # rel. CPU
I O S I O S time

P 1 1 3 1 1 3 4 4 0.1
bbara-bbtas 4 2 7 2 2 6 203584 6 51.5
bbtas-ex5 2 2 6 2 2 8 2096 5 1.9
bbtas-ex7 2 2 6 2 2 8 160512 4 1.6
dk27-lion 1 2 7 2 1 4 499941 18 41.1
ex2-ex5 2 2 19 2 2 8 32768 1 57.8
ex2-ex7 2 2 19 2 2 8 8704 2 20.4
ex3-bbtas 2 2 11 2 2 6 81 1 4.2
ex3-ex7 2 2 11 2 2 8 12 1 7.9
ex5-bbtas 2 2 8 2 2 6 243 1 2.6
ex5-ex7 2 2 8 2 2 8 128 1 3.2
ex3-ex5 2 2 11 2 2 8 1 1 10.9
ex2-ex3 2 2 19 2 2 11 1 1 20.9

Table 1: Experimental results

S : number of states in isolation
fea. : number of feasible output assignments of the driving machine
rel. : minimum number of permissible observability relations
CPU time : in seconds on a DEC 5000/260 with 128 MB

Permissible observability relations allow us to have many feasible
output functions, and in theory these should be useful for encoding
the interacting signals.

7 Experimental Results
In this section, we present some preliminary results. Most of the
examples are obtained by interconnecting FSM’s from the MCNC
benchmarks. These FSM’s are completely specified and state-minimal
in isolation. Example P is shown in Figure 4.

Table 1 shows the results of some cascade circuits consisting of
two FSM’s. The minimum number of permissible relations is ob-
tained using ESPRESSO-MV [16]. The CPU time indicated includes
both the computation of feasible output assignments and ESPRESSO-
MV. Although the feasible output functions of examples ex2-ex5,
ex3-bbtas, ex3-ex7, ex5-bbtas and ex5-ex7 can be ex-
pressed by a single relation individually, they cannot be computed us-
ing either Devadas’ or Rho’s procedures. In examplesbbara-bbtas,
P,bbtas-ex5, bbtas-ex7, dk27-lion andex2-ex7, the min-
imum number of permissible relations to express the feasible output
functions is more than one. The number of feasible output functions
in examples ex3-ex5 and ex2-ex3 is one.

Our implicit algorithm based on BDD’s deals with all output as-
signments at a time. With our current implementation, we can handle
small-size examples in a reasonable amount of CPU time as shown
in Table 1. In contrast, the explicit algorithm which enumerates all
possible output assignments one by one is very inefficient since the
number of all output assignments is too large. For instance, there
are 2152 possible output assignments in example ex2-ex7, but only
8704 of them are feasible. The feasible output assignment function,
f(v), is normally a relatively small subset of V , the set of all out-
put assignments. Therefore, proper BDD variable ordering or use
of 0-Sup-BDDs [12] should enhance the ability and efficiency of our
algorithms. Currently, we are studying a good BDD variable ordering
to handle larger examples.

The output part of a transition edge in a permissible relation is a
multiple-valued literal. As pointed out in [6], pairwise compatibility
of a set of states S does not imply S is compatible. Thus, additional
checking has to be performed during state minimization. At the present
time, there are no state minimization programs with this ability in our
logic synthesis system.

8 Conclusion
We discussed intrinsic difficulties in computing output don’t care se-
quences for a component in an FSM network. We pointed out that
these can not be explained using information lossyness [14]. We

demonstrated that output don’t care sequences for a component can
be expressed using a set of permissible observability relations given
that its state transition function is kept unchanged. We presented a
novel approach to exactly compute them. The representation for a set
of permissible observability relations is not unique. We provided a
method to find a set with the minimum number of permissible observ-
ability relations. We also discussed the applications of permissible
observability relations in different contexts, such as state minimiza-
tion, circuit implementation and signal encoding.

9 Acknowledgements
The authors are thankful to Dr. June-Kyung Rho for providing valuable
information. We thank Dr. Rajeev Murgai for reading and improving
this manuscript. Also special thanks to Szu-Tsung Cheng and Thomas
Shiple for helpful discussions on the BDD package.

References
[1] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification

of Logic Networks. In VLSI’89, August 1989.
[2] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8):677–691, August 1986.
[3] E. Cerny and M. A. Marin. An Approach to Unified Methodologyof Combinational

Switching Circuits. In IEEE Transactions on Computers, pages 745–756, August
1977.

[4] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based
on Symbolic Execution. In Proceedings of the Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, 1989.

[5] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of
Synchronous Circuits. In 28th ACM/IEEE Design Automation Conference, pages
556–561, June 1992.

[6] S. Devadas. Optimizing Interacting Finite State Machines Using Sequential Don’t
Cares. In IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, pages 1473–1484, December 1991.

[7] S. Devadas and A. R. Newton. Exact Alogrithms for Output Encoding, State As-
signment and Four-level Boolean Minimization. In IEEE Transactions on Computer
Aided Design of Integrated Circui ts and Systems, pages 13–27, January 1991.

[8] G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms
for the Minimization of Incompletely Specified State Machines. In The European
Conference on Design Automation, 1991.

[9] J. Kim and M. M. Newborn. The Simplification of Sequential Machines With Input
Restrictions. In IEEE Transactions on Computers, pages 1440–1443, December
1972.

[10] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In IEEE International
Conference on Computer-Aided Design, pages 88–91, November 1990.

[11] B. Lin, H. Touati, and A. R. Newton. Don’t Care Minimization of Multi-Level
Sequential Logic Networks. In IEEE International Conference on Computer-Aided
Design, pages 414–417, November 1990.

[12] S. Minato. Zero-SuppressedBDDs for Set Manipulationin CombinatorialProblems.
In 30th ACM/IEEE Design Automation Conference, pages 272–277, June 1993.

[13] M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely
Specified Sequential Circuits. In IRE Transactions on Electronic Computers, pages
356–366, September 1959.

[14] J. K. Rho, G. Hachtel, and F. Somenzi.Don’t Care Sequences and the Optimization of
Interacting Finite State Machines. In IEEE International Conference on Computer-
Aided Design, pages 418–421, November 1991.

[15] J. K. Rho, G. Hachtel, and F. Somenzi. Don’t Care Sequences and the Optimization
of Interacting Finite State Machines. In International Workship on Logic Synthesis,
May 1991.

[16] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for PLA
Optimization. In IEEE Transactions on Computer Aided Design of Integrated Circuit
and Systems, pages 727–750, 1987.

[17] H. Savoj and R. K. Brayton. Observability Relations and Observability Don’t Cares.
In IEEE International Conference on Computer-Aided Design, pages 518–521,
November 1991.

[18] J. J. Shen, Zafar Hasan, and M. J. Ciesielski. State Assignment for General FSM
Networks. In The European Conference on Design Automation, pages 245–249,
1992.

[19] H.-Y. Wang and R. K. Brayton. Input Don’t Care Sequences in FSM Networks.
In IEEE International Conference on Computer-Aided Design, pages 321–328,
November 1993.

[20] H.-Y. Wang and R. K. Brayton. Permissible Observability Relations in FSM Net-
works. Technical Report UCB/ERL M94/15, University of California, Berkeley,
February 1994.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

