Permissible Observahbility Relationsin FSM Networks *

Huey-Yih Wang

Robert K. Brayton

Department of EECS, University of California, Berkeley, CA 94720

Abstract

Previous attempts to capture the phenomenon of output don’t care
seguencesfor acomponentin an FSM network have beenincomplete.
We demonstrate that output don’t care sequencesfor acomponent can
be expressed using a set of observability relations given that its state
transition function is kept unchanged. Each observability relation
is permissible in the sense that any implementation compatible with
one of them is feasible. The representation for a set of permissible
observability relations is not unique. We provide a method to find a
set with the minimum number of permissible relations. We briefly
discuss the exploitation of permissible observability relationsin state
minimization, circuit implementation and signal encoding. We have
implemented these methods and present some preliminary results on
afew small artificialy constructed examples.

1 Introduction

The flexibility in implementing an isolated combinational logic cir-
cuit can be expressed by don’t cares. For an individual component
in a hierarchically designed combinational logic circuit, a Boolean
relation, an observability relation or a symbolic relation is required
to express all possible implementations [3, 1, 10, 17]. This freedom
in implementation is due to reduced controllability and observability
from the environment. By exploiting this information, we often can
achieve a better implementation for that component.

Similarly, sequential don’t cares are important in the optimization
of sequential circuits. Several approacheshavebeen proposed. For ex-
ample, in[11], unreachablestates and equivalent states are exploitedin
thelogic optimization of an isolated sequential circuit. Damiani et al.
[5] introduced the notion of synchronousrelationsto deal with thelogic
optimization of pipelined sequential circuits. This approach is moti-
vated by a circuit implementation point of view. On the other hand,
a transition relation can be used to represent an isolated finite state
machine (FSM). Thisallowsusto deal with symbolicinformation, i.e.
with unencoded machines. Incompletely specified information often
refers to possible implementations. Exploiting this information may
also changethe state minimality of amachine. In general, atransition
relation can be regarded as an observability relation or a symbolic
relation. State minimization for an isolated machine has been well
studied [13, 8]. Although state minimality does not imply that the
resultant logic circuit after state encoding is minimized, it isgenerally
regarded asagood starting point for state encodingto get smaller logic
implementations.

In the case of sequential don't cares for an individual component

in anetwork of FSM’s,' we may need to consider sequencesof don't
cares. There are a few studies related to this problem [9, 6, 14, 19].
Although by flattening a network of FSM’s into a composite machine
we may perform global optimization, the composite machine is often
too big to be handled by synthesis tools. To perform hierarchical
synthesis, we must consider the interaction between components. The
computation and exploitation of don’t care information is crucial for
the quality of the resultant circuit implementation.

The computation of don’t care information for a component in an
FSM network is much harder than its counterpart in combinational
logic. We divide this problem into two parts: sequential input and

*This project was supported by DARPA under contract number JFBI90-073 and NSF
under contract number EMC-84-19744 and M1P-87-19546.

YIn this paper, only synchronous FSM networks with known initial states are
considered.

- 1
\ \
| 0.
I—}; Ml o1 M2 —Z‘LO
\ \
\ \
- —
M

Figure 1: A cascadecircuit of two FSM’s.

output don’'t cares. In this paper, we deal with the latter. Consider
the cascade machine in Figure 1. The flexibility in implementing
M when cascaded with M is called sequential output don't cares.
This was studied by Devadas [6], and later by Rho et al. [14] who
generalized Devadas' procedureto compute fixed-length output don’t
care seguences.

In this paper, after reviewing previous work in section 3, we ex-
plain why the notion of information lossynessintroduced in [14] can
not completely characterize the phenomenon of output don’t care se-
guences. Then, wediscussthedifficultiesin computing and expressing
these. We demonstrate that output don’'t care sequences for a com-
ponent can be expressed using a set of observability relations given
that its state transition function is kept unchanged. In section 5, we
propose an implicit enumeration algorithm which exactly computes
them. Each observability relation is permissible in the sense that the
behavior of the network is preserved. We describe how to exploit
them in state minimization, circuit implementation and signal encod-
ing. Finally, we give some preliminary results on some artificially
constructed circuits.

2 Preiminaries

2.1 Finite Automata and Finite State Machines

A deterministic finite automaton (DFA), A, is a quintuple (K, %, 6,
qo, F') where K is afinite set of states, > an alphabet, g0 € K the
initial state, /' C K thesetof final states, and 6 thetransition function,
8 K x Z — K. A nondeterministic finite automaton (NFA), A,
is a quintuple (K, %, 6, qo, ') where 4, the transition relation, is a
finite subset of K x 2* x K, and * the set of all strings obtained
by concatenating zero or more symbols from Z. An input string is
accepted by A if it ends up in one of final states of .A. The language
accepted by A, C(Azl, isthe set of strings it accepts.

A finite state machine (FSM), M, isasix-tuple (1, O, @, 8, A, qo),
where I isafiniteinput alphabet, O afinite output alphabet, @ afinite
set of states, § thetransition function, A the output function, and go the
initial state. A machineis of Mooretype if A does not depend on the
inputs, and Mealy otherwise. An FSM can be represented by a state
transition graph (STG). A machinein which transitionsunder all input
symbolsfrom every state are defined isacompl etely specified machine;
in other words, both 6§ and A are complete functions. Otherwise, a
machine is incompletely specified.

A distinguishing sequencefor two states ¢, g2 € @ isasequenceof
inputs such that when applied to M, the last input produces different
outputs depending whether M started at ¢1 or ¢2. In a completely
specified machine M, two states ¢; and ¢» are equivalent if there is
no distinguishing sequence. In an incompletely specified machine M,
two such states ¢1 and ¢» are compatible.

A cascadeof FSM’s M, and M, denoted M1 — M, isshownin

S My M,

Figure 2: A cascadeof two combinational circuits.

Figure 1. M; is called the driving machine, M, the driven machine.
For = € Qus,, its co-reachable states in M> are {y|y € Qar, such
that (x, y) is a reachable state in the cascade machine M1 — M>}.
Similarly, astatein M, has co-reachable statesin M.

2.2 Set Computation and Operators
Let B designate the set {0, 1}.

Definition 1 Let £’ beasetand S C E. Thecharacteristicfunction
of Siisthefunctionys : £ — B definedby ys(z) = 1ifz € S,
and xs(z) = 0, otherwise.

Definition 2 Let f : B™ — B be a Boolean function, and z =
{z1,...,zx} asubset of theinput variables. The existential quantifi-
cation (smoothing) of f by =, with f, denoting the cofactor of f by
literal « isdefinedas:

3oif = fa, + S
f = Fuy.TFu S

Definition 3 Let f : B" — B beaBooleanfunction, only depending
on a subset of variablesy = {y1,...,yx}. Letz = {z1,...,z%} be
another subset of variables, describinganother subspaceof B™ of the
same dimension. The substitution of variablesy by variablesz in f
isthe function of = obtained by substituting z; for y; inf:

By f)y) = f(z) if 2;=9; forall 1< <k.

Reduced ordered binary decision diagrams (BDD’s) [2] are well
suited to represent the characteristic functions of subsetsof a set, and
efficient algorithms exist to manipulate them to perform all standard
Boolean operations. As aresult, the above set operations can be done
efficiently.

The reachable states can be computed efficiently using implicit
state enumeration techniques introduced by Coudert et al. [4]. This
approach is based on representing a set of states by a characteristic
function which can be manipulated effectively using BDD’s. In the
following, werepresent an FSM implicitly by acharacteristic function
using BDD'’s.

Definition 4 ThetransitionrelationofanFSM M = (1,0,Q, 6, A,
go) isafunctionT': I x @ x @ x O — BsuchthatT'(i,p,n,0)=1
if and only if state » can bereached in one state transition from state
p and produce output o when input ¢ is applied.

3 Previous Work

3.1 Observability Relation for Combinational Logic

In a hierarchically designed combinational logic circuit, all possible
implementations can be represented by a single Boolean relation, an
observability relation or a symbolic relation 2 [3, 1, 10, 17]. For
example, as shown in Figure 2, M is a cascade machine M; —
M>, where M; and M, are combinational circuits. Let O(z, z),
O1(z, y), and Oz(y,) be the observability relations of A, M3, and
Mo, respectively. If O(z, z) and O2(y, =) are given, O1(z, y) can be
computed asfollows :

O1(z,y) = 3.(0(z, z) - Oa(y, 2)) .

O1(z, y) captures al possible implementations of A/1 without vi-
olating the desired behavior of the cascade machine /. Exploiting
this freedom in implementation often leads to better logic implemen-
tations.

2In this paper, we will not make a distinction among Boolean relations, observability
relationsand symbolic relations unless necessary.

3.2 Sequential Output Don’t Cares

If My and M> in Figure 2 are FSM’s, computing the flexibility in
implementing A ismuch harder. Devadas[6] addressedthis problem
as computing sequential output don’t cares for M; and proposed a
simple heuristic to compute partial don’t care information for ;.
Consider atransition edgee inthe STG of M. Let the output symbol
of e be v1. Devadas' procedurefirst computes the co-reachable states
in M> corresponding to the present state of transition e. If for every
corresponding co-reachablestatein >, an output symbol v, from My
drives machine M to produce the same output and next state as the
original output symbol v, from M, does, thenthe output part {v1} of e
isexpandedto {v1, v2}. Thisisrepeated on e for each output symbol
v of M7. Thenthe aboveprocessisrepeatedfor eachtransition edgee
inthe STG of M. Thisoutput expansion procedure doesnot change
state reachability of the composite machine M — M.

This procedure, in fact, is restrictive®. First, it considers only
one transition edge of M, at atime, and excludes the possibility of
simultaneous output expansions among all transition edges. That
is, an expanded output symbol in atransition edge may depend on the
expanded output symbols of the other transition edges. Furthermore,
next states need not be the same when an output expansion takes
place. To be more specific, the set of co-reachable statesfor each state
in M1 may change due to simultaneousoutput expansions. In the next
subsection, we show this by example.

3.3 Output Don’t Care Sequences

Later, Rho et al. [14] considered sequencesof output don't cares and
used the notion of infor mation lossynessto explain the phenomenon
of these sequencesin a cascade machine. A machine is said to be
information lossless if given the initial state, the final state and the
output sequence, the corresponding input sequence can be uniquely
determined. A machinethat isnot losslessissaid to belossy. A state s
of amachineis said to be alossy stateif starting from s there exist two
distinct finite-length input sequencessuch that their output sequences
and final states are the same. An information lossless machine cannot
contain any lossy states.

Consider the cascade machine M1 — M in Figure 1. Rho et al.
[14] interpreted that output don’t care sequencesfor M are dueto the
lossynessof M. Based onthis explanation, if M» hasno lossy states,
there are no output don’t care sequencesfor 3. In this sense, only
lossy statesin M need to be considered for computing output don’t
care sequences. Accordingly, they gave the following definitions for
equivalent sequences and equivalent machines. Input sequencesthat
lead a driven machine M from the same initial state s to the same
final state ¢ and produce the same output sequences, are said to be
equivalent with respect to state s. Thus, state s is a lossy state. Two
machines M, and M/’ are said to be equivalent with respect to M>
if and only if for each input sequencethey produce output sequences
that are in the same equivalence class of input sequencesof Mo, i.e.
ending in the samefinal state if A is state-minimal.

According to the above definitions, a heuristic was proposed in
[14] to compute a subset of fixed-length output don’t care sequences
for M1. Thisisan extension of Devadas' procedure [6]. To compute
fixed-length, say k-length, equivalent sequencesin M, this procedure
first unrolls M1 and M, for k-length time frames. Let the unrolled
machines of M, and M, be M and M}, respectively. An unrolled
machinehasthe same state spaceasthat of the original machineexcept
that for each transition edgethe input part isa k-length input sequence,
and the output a k-length output sequence. By such a construction,

k-length equivalent sequences starting at a state s of M5 can be
computed. In contrast, Devadas’ procedurecomputesequivalent value
from a state s in M». Then the output part of each transition edge in
MF can beexpanded using the samerationalein Devadas' procedure
except that a consistency check needs to be performed between the
input and output part of all transition edgesin M ¥. Finally, to construct
anon-unrolled machineof M, My, aheuristic based onstatesplitting
may be employed to accommodate this don’t care information as

3Thisisin contrast to the comment, “Thisis not restrictive, aslong aswe can assume
that M is state-minimal ", made in [15].

01
(@)

1/0
0/0

0/0

1/0 m

Figure 3: (a) Aninformation losslessand state-minimal machine. (b)
A lossy and state-minimal machine.

much as possible. This procedure explicitly enumerates fixed-length
output don’t care sequences. In general, output don’t care sequences
are of infinite length. The complexity of this procedure may grow
exponentially with the length of don’t care sequences.

This procedure is an elegant extension of [6]. However, their
interpretation of output don’'t care sequencesis not general. By their
definition, output don’t care sequencesfor M can be interpreted as
those input sequences starting from the initial state of M, (assumed
to be lossy and state-minimal), producing the same output sequence,
and ending in the same final state. Their reasoning is as follows. If
the output sequence of M is altered, so isthe overall behavior of the
cascade. Also, if the final stateis different, the behavior of the cascade
changes, unless the new final stateis equivalent to the original one.

There are several factors not considered in this reasoning.

First, output sequences from A; may change the equivalence of
statesin M, simultaneously, since the complement of output sequences
from M, areinput don’t care sequencesfor M», which may changethe
state minimality of 3, [9]. During the process of exploiting output
don't care sequencesfor A, the output function of A, is changed
at the same time. Consequently, we are unable to assume that state
minimality of M> isinvariant.

Secondly, by definition, different input sequences applied to an
information losslessmachine may producethe same output sequences,
but end indifferent final states. Consequently, if M>» producesthe same
output sequences for different input sequences, it is not necessarily
lossy. In other words, there might exist output don’t care sequences
evenif M isinformation lossless. For example, machine M in Figure
3(a) isinformation losslessand state-minimal. Input sequences (11*)
and (00*) produce the same output sequences (01*), but do not end
inthe samefinal state. Asaconseguence, it isnot necessary that input
seguenceswhich produce the same output sequencesend in the same
final state even when the driven machineis state-minimal. Moreover,
thisargument is not valid even for alossy and state-minimal machine.
Anexampleismachine N shownin Figure 3(b). V islossy since state
lisalossy state®. Input sequences (00)* and (10)* produce the
same output sequences (01)*, but do not end in the samefinal state.

Consider the cascademachine M = M1 — M> asshownin Figure
4. Thisis an example where there are output don’t care sequencesfor
M7 even when M is state-minimal and information lossless. Let v;
denotethe output value of atransition edgee; inthe STG of M. The
value of (w1, vz, v3, v4, vs, v6) IN Figure 4 is (0,1,0,1,0,1). Since
the output sequencesof M, are {0, 1}*, there are no input don’t care
sequences for M,. Thus, we cannot use any input don’t care infor-
mation to simplify M first. If we apply Devadas' [6] or Rho's [14]
procedures, we cannot find any sequential output don't caresfor M;.
However, any one of the following values of (v1, v2, v3, va, vs, ve)
preserves the same behavior as M1 — M.

y Py Ty My

(v1, 02,03, v4, v5,06) =

(0,1,0,1,0,1)
(0,1,0,0,1,0)
(1,0,1,0,1,0)
(1,0,1,1,0,1)

) ==y My

4Input sequences 0010, 1010 from initial state 1 produce the same output sequence
0101, and end in the same state 3.

€

3

0/1

6

Figure4: Anexample: M = M; — M>, whereboth M, and M, are
state-minimal and information lossless.

Thereachablestatesof M»are{1,2, 3} when (v, vz, v3, v4, vs, v6) =
(0,1,0,1,0,1). But when (v1, v2, v3, va, vs,v6) = (0,1,0,0,1,0),
the reachable states of M, are {1, 2}. So, the state reachability may
change when we have different output sequences from M;. Thisis
why Devadas' procedureis restrictive.

Consequently, the previous definitions of machine equivalencefor
the driving machine do not include all possible machineswhich when
cascaded by M> produce the same behavior as the original cascade
machine. As a matter of fact, the general definition of machine
equivalence should be the following : two machines M;" and 1"
are equivalent with respect to M> if and only if M1’ — M, and
Mi" — M, have the same input/output behavior. This specifies
the full flexibility for implementing M. Therefore, this should be
regarded as the general definition of sequential output don't cares.

4 Permissible Observability Relations

Asmentioned earlier, anincompletely specified FSM canbe expressed
by a symbolic relation. Using this representation for an isolated
FSM, two kinds of don’t care information can be conveyed. The first
is known as input-incompletely-specified don’t cares or unspecified
transitions. They characterize the situation that a given input symbol
never occurs when a machine is in a particular state, since there are
limited kinds of sequencesthat can be applied to the machine. The
other kind is called output-incompletely-specified don’'t cares. They
occur whenweare not interested in an output symbol associatedwith a
given state or state transition. In thefollowing, we investigate whether
thisrepresentationispowerful enoughto convey sequential don't cares
for acomponentin an interacting FSM network.

In a cascadecircuit M, — M> asshownin Figure 1, we can com-
pute input don’t cares sequencesfor M, by keeping M1 unchanged.
The general procedure known to solve this problem is due to Kim
and Newborn [9]. This procedure summarizes output sequencesfrom
M by an NFA A’, and then transforms .4’ into a minimal DFA A.
The equivalent machineto M> with input don’t care sequencesis the
product machine.A x M». Theinput don’t cares sequencesof M» are
unspecified transitions in the resultant product machine. This product
machinecapturesall input don’t cares sequences, and we can represent
it as an incompletely specified FSM. As a consequence, a single ob-
servability relation is sufficient to implicitly expressinput don't care
sequences.

On the other hand, a single observability relation may not be suffi-
cient to express output don’t care sequences. We can compute output
don't care sequences for M1 by keeping M, unchanged. An FSM
can be regarded as alanguagetransducer, i.e. transforming aregular
language to another regular language. Therefore, output sequences
from M; can be expressed by a regular language, say £(M7). We
can define an equivalence class of languages with respect to Mo,
[£(M7)],, such that any language in this equivalence class can be

generated by acertain machine M which preservesthe same behavior
as M1 — M> when cascadedwith M». Next, we explain the intrinsic
difficulties in computing sequential output don't cares even when we
adopt the definition of machine equivalencefrom [14], i.e. equivalent
input sequencesend up in the same final state if M> is state-minimal
in isolation. Rho’s procedure [14] computes fixed-length equivalent
seguences, and then expands these to be output don’t care sequences

1M’ My o M i}»M
e R =
o vt

Figure 5: Feasibility testing using FSM equivalence checking.

for M;. Exploiting this information, some equivalent machines may
be derived. Let M, be an equivalent machine. Then £(M), output
sequencesfrom A1/, isin [£(M7)],,- However, the length of equiv-
alent sequencesmay be arbitrarily large. Furthermore, the complexity
of this computation may grow exponentially with the length of output
don't care sequences. Therefore, it is hard to enumerate all languages
in[L(M7)]yp, -

From another point of view, we can enumerate all possible lan-
guages produced by M, with its state transition function unchanged.
Let the cardinality of the transition edges of M3 be &, and that of the
output alphabet of M1 be m. If we keep the state transition function
of M1 unchanged, there are m* possible output functions, i.e. m*
possible regular languages may be produced by M1 (some of them
may bethe same). For each output function \,’, thereis a correspond-
ing machine M. The feasibility of A" can be checked by testing if
M, — M, preservesthe same behavior as My — M>. Thisisshown
in Figure 5. Using this naive approach, we can check all possible
output functions one by one to find all feasible solutions. We may
need m* invocations of FSM equivalence checking.

We can interpret the above approach as simultaneous output ex-
pansions among all transition edges. An expanded output symbol
in a transition edge may be dependent on the expanded output sym-
bols of other transition edges. Consequently, the flexibility of imple-
mentations captured by the above approach is more than for output-
incompletely-specified don’t cares in an isolated FSM. All feasible
output functions possibly may not be expressed by a single observ-
ability relation. In fact, a set of observability relationsis needed. We
show this in the next section. Each observability relation is per missi-
ble in the sensethat any output function compatible with one of the
observability relations correspondsto a possible implementation.

In the next section, we present an implicit algorithm which findsall
such feasible output functionsby executing FSM equivaencechecking
once.

5 Computation of Permissible Observability Rela-
tions

Let M1 = (]1, 01, Ql, 51,)\1, qlo) and Mz = (]2, 02, Qz, 52,)\2, qzo)
betwo FSM’'s. M = (1,0, Q, 8, X, qar) is M1 — M>, the cascade
machine. Let A; denote the set of all possible output functions of
M1 while keeping its state transition function unchanged. Let M| Ay
denote a machine which is the same as 3 except with an output
function A1’ € A1. Suppose that the cardinality of transition edgesin
M isk. For each transition edge e;, we associate it with a symbolic
variable v; which takes values from O1. Let V' denote the space
spanned by vo, v1,. . ., vk_1, i.e. OF. Any mintermin V iscalled an
output assignment. An output assignment correspondsto an output
functionin /A1, and viceversa. Anassignment mappingisabijective
mapping M : V — A1 which mapsaminterm » € V' to an output
function A1’ in A1. An output function X\;’ € A, is feasible if and
only if M1|A1, — M preserves the same behavior as M1 — Mo.
An output assignment v is feasible if and only if M(v) isafeasible
output function. The set of feasible output assignmentsis denoted as

Figure 6: A transition defined in 7.

f(v), thefeasible output assignment function.

Our goal isto compute all A1’ € Az such that M1|A1, — M pre-
serves the same behavior as M1 — M>. Thisis pictorially explained
in Figure 5.

5.1 Reachability Relation

Here, we present an implicit enumeration method based on a gener-
alization of implicit FSM equivalence checking. The most important
stepin the FSM equivalencecheckingis the computation of reachable
states. The state spacefor our equivalencecheckingis @1 x Q2 x @,
denoted as S. For an output assignment v, there is a corresponding
output function M (v) and aset of reachablestateswhich is asubset of
S. Different output functions may result in different sets of reachable
states. With this observation, we introduce the concept of reachability
relation.

Definition 5 Areachability relation isa function 7 : S xV — B
suchthat F(s,v) = 1if andonly if s is reachable from the initial
state when the output function is M(v).

For an output assignment », the transition relation of M1|M(v) is
T1|M(v). Wecan composeT1|M(v), T5,and T, andthenuseimplicit
reachability computationto check whether GG in Figure 5isatautology.
However, thisisan explicit enumeration method since we need to enu-
merate explicitly for all v € V. To perform implicit enumeration, we
construct an abstract transition relation for M1, 77, asfollows. First,
givealabelingfor eachtransition edgein M. Let h beak-valuedvari-
able. Wesubstitutey, i.e. theliteral £/}, for the output part of ¢;. The
abstract transition relation is 773 (i1, p1, n1, k). Let the transition rela-
tion of M> bETz(iz, P2, N2, 02) and that of M, TM(iM, PM, M, OM).
DefineT(i, h,t2,p, 1,02, OM) = Tll -1 - T, wheres = 11 = 13,
p = (p1,p2,pam) and n = (n1,n2,nar). Theinitial state is go =
(410, 920, gn10)- The motivation for constructing the abstract transi-
tionrelation, 77, isexplained below. T' containsall possibletransitions
for any composite machine of M1|M(v), M>,and M. Consider atran-
sition defined in T°(i, h, i2, p, n, 02, 0asr) as shown in Figure 6. The
expression associated with this transition is(¢ - b - i2 - 02 - oar). Lét
the value of & be 3. It meansthat when the output value of e; in M
is equal to that of 1, this transition is made, and vice versa. Different
output values of transition edge e; result in different output assign-
ments. Therefore, this provides away to relate output assignmentsto
transitionsin 7.

Since F C S x V, Fisafinite set. In the following theorem, we
demonstrate that the reachability relation can be computed by a least
fixed point computation.

Theorem 5.1 ® Let P(p, n, v) be defined asfollows :

k-1
P, 0) = Y i {lFiozonr Dlne)} - @)
=0
F(p, v) isthelimit of the following sequence:
TO = (p = qo) . 1
Frn = OnpIp{Fm-1-Plp,n,v)} + Fm1
Too == Tm |f fm = m+1 -

SDetailed proofsof the theorems presentediin this paper are givenin [20].

Corollary 5.2 For an output assignment «, its corresponding set of
reachablestatesupto them-thiteration (R (p)),, iS(Fm (P, v)),0-
Inparticular, theset of reachablestates, (.. (p)) ., I1S(Foo (P, v)), _ -

5.2 Feasible Output Assignment Function

An FSM can be regarded as a language transducer, i.e. transforming
aregular language to another regular language. If M, is completely
specified, M> maps I>* to another regular language. That is, for all
input sequences, the behavior of M> isdefined. First, we consider the
case when M3 is completely specified.

For each output assignment v, there isa corresponding set of reach-
able statesin .S. Thisresultsin T|M(v), the transition relation of the

composite machine of M1|M(v), M, and M. If there are different
values between o> and o in atransition of T|M(v), G inFigure5is

not atautology. Therefore, v is not afeasible output assignment. An
output assignment v isinfeasibleif and only if T|M(v) hasatransition

with (02 # o). Consider atransitionin 7" asshownin Figure 6. Let
thevalueof k bej, andthe valueof i, ber. Therefore, whenthe output
valueof e; in M1 isequal to that of 15, thistransition ismade. State
isreachableif and only if the output assignmentsarein (7o), . If
this transition iswith (02 Z oar), (Fec),, - (v = r) areinfeasible
output assignments. We need to enumerate all transitions of 7" with
(02 # our) to compute the set of all infeasible output assignments;
the set of feasible output assignmentsiis just the complement. In the
following theorem, we present an implicit enumeration method to find
the feasible output assignment function, f(v).

Theorem 5.3 (M> : completely specified)
Let W(p, v) be defined as follows::

W) = i, AFnonsa((3T) - (022 010))] ey} - D

The feasible output assignment function f(v) is:

f(v) = Fp(Feo - Wi(p, 0)) -

The feasible output assignment function f(v) may be a relatively
small subset of all output assignments, V. Moreover, it is not nec-
essary to construct F first using the method in Theorem 5.1, and
then remove all infeasible output assignmentsusing Theorem 5.3. We
may incrementally remove the infeasible output assignments during
the construction of the reachability relation. In the next theorem, we
present an incremental approach.

Theorem 5.4 (M> : completely specified)

The set of feasible output assignments f(v) is thelimit of the follow-
ing sequence, whereC;, (p, v) isthereachability relation restricted to
fm(v), the feasible output assignment function up to the m-th itera-
tion. P(p,n,v) and W(p,v) are defined in Equations (1) and (2),
respectively.

Co = (p=q)-1, folv) =1 ©)
C' = 0rpAp{Crm-1-P(p,n,v)} + Crn1 4
fu(0) = 3p(Cn - W(p,) + frn1(v) ©)
Crn = Cu' fm(v) (6)
Coo = Cm, foo = fom If Comn = Cony1-)

In particular, Co is the reachability relation restricted to f(v), the
feasible output assignment function.

When M> is input-incompletely-specified (i.e. with unspecified
transitions), we need to modify the above theorem to compute f(v).
As explained in the previous section, input-incompletely-specified
don't cares are due to the interaction with other machines (in our

case, M1). Let £(M;) denote the input sequences of M, where the
behavior is defined. We can construct an automaton .4 to accept
L(Mj3) as follows. Every state of M» is a final state. For each
transition in the STG of M;, remove the output part. Then for each
state with unspecified input values, create a transition edge to the
dead state (a non-final state), and associate those unspecified values
to that transition. Any input sequencesnot in £(M;) drive M> to
exhibit undefined behavior. Suppose M = M1 — M> does not have
undefined behavior. Thenafeasible output assignmentwv, M1|M(v) —

M should not have undefined behavior, either. In other words, if v
is a feasible output assignment, the output sequences generated by
M| ¢, mustbein £(M3) (i.e. L(MT)]) C £(M3)).
Theorem 5.5 (M> : input-incompletely-specified)

The feasible output assignment function f(v) can be computed using
Equations (3) — (7) except that W(p, v) is defined as follows :

Tzc (iZa pz) = anyoz(TZ)
k-1

WE,0) =Y i T8 + Fniong oo (3T) - (022 000))])} -

J=0

We can computethe feasible output assignment function f (v) using
Theorem 5.4 or 5.5 depending on whether M is input completely
specified. As an example, consider the cascade machine in Figure 4,
where M> is completely specified. The feasible output assignments
f(v) can be computed by the above algorithms.

f(v1,v2,v3,v4,v5,06) = U1 v2 T34 Ts ve+ U1 v2T3 V4 U5 e

+v1 U2 v3 V4 U5 Vg + VU1 V2 U3 V4 Us Vg .

5.3 Relationship Between Feasible Output Assign-
ments and Permissible Observability Relations

The feasible output assignment function, fgv), is a multiple-valued
function, thus it can be expressed in terms of a multiple-valued sum-
of-products.

Lemmab5.6 Let ¢ be a multiple-valued cube in the space of V.
T1|M(c) can be expressed using a single symbolic relation. Con-

versely, the output assignmentsof asymbolicrelation T (i1, p1, n1, 01)
can be expressedin terms of a multiple-valued cubein the spaceof V.

Definition 6 Let c be a cube of f(v), the feasible output assignment
function. T1|M(c) is called a permissible observability relation in

the sensethat any implementation compatiblewith 73| , , © isfeasible.

Definition 7 Let p beaprimeof f(v), thefeasible output assignment
function. Then T1|M(p) is called a prime permissible obser vability

relation in the sensethat it is not contained in any other permissible
observability relations.

Theorem 5.7 Let f(v) be the feasible output assignment function.
{71l py £y} 1s @ set of permissible observability relations.

Therefore, all feasible output functions can be expressed in terms
of a set of permissible observability relations, and vice versa. By
Lemma 5.6, a permissible observability relation covers some feasible
output functions. Therefore, the representation for aset of permissible
observability relationsis not unique. The minimum set of permissible
observabilityrelationsis acover which coversall feasible output func-
tions with the minimum number of permissible observability relations.

Theorem 5.8 The cardinality of the minimum set of permissible ob-
servability relationsis equal to the cardinality of the minimum sum-of-
products cover of f(v), the corresponding feasible output assignment
function.

A

1 MZ ’

=

Figure 7: A two-way-communication FSM network.

In contrast, we only need to use a single observability relation,
say O(1, 0) (where ¢ is the input, and o is the output), to express all
the flexibility of implementation for a component in a hierarchically
designed combinational logic circuit. A minterm of ¢ may map to
several minterms of o, and it is independent of other minterms of .
However, this is not true in the sequential case. That is, a minterm of
1 may map to several minterms of o, but it is dependent on the other
minterms of :. Consequently, the notion of Boolean relations must be
generalized for hierarchical designed sequential circuits, i.e. sets of
permissible observability relations.

54 Permissible Observability Relationsvs. Output
Don't Care Sequences

In the next theorem, we state the relationship between the set of
permissible observability relations and output don’t care sequences.

Theorem 5.9 Ifthetransitionfunction of M isnot changed,and f(v)
is the feasible output assignment function, then the corresponding set
of permissible observability relations, {T1|M(f(v)) }, exactly captures

output don’t care sequencesfor M;.

In a sense, our algorithms compute a class of permissible machines,
and these machines can be expressed in terms of a set of permissible
observability relations.

Although we have only considered one-way-communication cir-
cuits (i.e. cascade machines) so far, the above algorithms can be
directly applied to compute permissible relations for a component in
a two-way-communication circuit as shown in Figure 7. An inter-
esting extension is to use these algorithms to compute permissible
relations for both submachines M1 and M, in Figure 7 simultane-
ously. We simply keep both state transition functions of M1 and M>»
intact, and then use the above algorithms to get the feasible output
function assignments of both machines simultaneously, i.e. the new
output assignment spaceis the Cartesian product of output assignment
spaces of M1 and M». Note that the flexibility in implementing one
submachineis dependent on that of the other. That is, their flexibility
of implementation need to be compatible. With this approach, we
are able to compute this compatible flexibility in implementing these
submachines.

5.5 Further Discussion

A restriction on our algorithms is that during the computation step the
state transition function of 3/; is kept unchanged, although the state
transition function may change after the exploitation of output don't
careinformation using state minimization proceduresfor incompletely
specified FSM’s. Thismay limit possible exploitation of other output
don’t careinformation. Therefore, the don’t care information derived
using our algorithms may be affected by the given state transition
function of M;. In contrast, Rho's procedure [14] employs a heuris-
tic based on state splitting to accommodate don’t care information (a
subset of output don’t care sequences with a fixed-length) as much
as possible. Therefore, the state transition function of the component
may change. This limits the exploitation of other possible output
don't care information as well since the definitions of equivalent se-
guencesin [14] is not general as explained in Section 3.3. Moreover,
our algorithms implicitly enumerate infinite-length output don’t care
seguences using FSM equivalence checking, while Rho’s procedure
is limited to fixed-length sequences. Besides, our algorithms can be
directly applied to handle two-way-communication circuits as shown
Figure 7, and can be extended to compute compatible flexibility in
implementing these two interacting components.

Consider the following case. Let M be a machine with the same
input and output alphabets as those of M but with a different state
space @ and a different transition function §;. Our algorithms can
be applied to check if there exists an output function A7 such that
M{ — M, and M1 — M> havethe same /O behavior.

Based on the above discussion, a possible approach to effectively
compute and exploit output don’t care sequencesis as follows. Some
fixed-length output don’t sequences can be exploited by using state
splitting. Therefore, the state transition function of A/; changes.
Infinite-length output don’t care sequences can be implicitly enumer-
ated to check if there exist better feasible output functions under this
new transition function. Thus, how to perform state splitting properly
such that as much output don’t care information as possible can be
exploited is of interest. Currently, we are investigating this problem.

6 Exploitation of PermissibleObservability Relations

Inthefollowing, wediscussdifferent aspectsof exploiting permissible
observability relations.

6.1 State Minimization

Limited observability may be beneficial in minimizing the number of
states of a machine. A machine with the minimum number of states
may not have the best implementation. However, it can be a good
starting point for state assignment if the machine is not encoded yet,
or for sequential logic optimization if the machineis encoded.

However, current state minimization algorithms only manipulate
one observability relation (transition relation) at atime. By Lemma
5.6, acubeof f(v) correspondsto apermissible observability relation.
So in order to fully exploit the set of permissible observability rela-
tions, onemust run state minimization proceduresseveral times. Let p
beaprimeof f(v). Then T1|M(p) isaprime permissible observability
relation which can not be contained in any other permissible observ-
ability relations. Therefore, a state minimization procedure needs to
be executed as many times as the number of primes of f(v).

6.2 Implementation

In the case of combinational logic, a Boolean relation is sufficient
to capture all the freedom of implementation. However, in the case
of FSM networks, a set of permissible observability relations may
be needed to represent output don't care sequencesfor a component.
Eachmintermof f(v) correspondsto afeasibleimplementation. Now,
suppose the machineis encoded. In order to find the best implemen-
tation, we need to consider every minterm of f(v). From Theorem
5.8, the minimum number of timeswe need to run the Booleanrelation
minimizer to find the best implementation is equal to the number of
terms in a minimum sum-of-products for f(v). The rationale is as
follows : A product term in the minimized sum-of-products form of
f(v) correspondsto aBoolean relation, and every minterm of f(v) is
covered by the sum-of-productsform with minimum cardinality. Con-
sequently, we can pick the best result from all Boolean minimization
executions.

6.3 Encoding of I nterconnection Signals

Another direct application to permissible observability relationsisthe
encoding of signals between interacting FSM’s. We may convert the
set of interacting binary signals between componentsinto a symbolic
variable for the purpose of re-encoding. For example, let us consider
a cascade machine M1 — M;. A good output encoding of M1 may
be a bad input encoding for M>, and vice versa. Re-encoding can
be imagined as a means of moving logic between two interacting
machines[6].

Shen et al. [18] give a formulation to this problem but without
experimental results. They simply combine the I/O constraints from
each individual component and convert them into a dichotomy cov-
ering problem with some conflict resolution techniques. Then they
try to satisfy as many constraints as possible. However, this is not
an exact formulation since it does not consider the exact output en-
coding (e.g., GPI’'s [7]) or any don't care information (e.g. symbolic
relation). Moreover, they did not consider sequential don’t cares (e.g.
permissible observability relations and input don't care sequencesare
not used). The general formulation is still an open problem.

demonstrated that output don’t care sequences for a component can
be expressed using a set of permissible observability relations given
that its state transition function is kept unchanged. We presented a
novel approach to exactly compute them. The representation for a set
of permissible observability relations is not unique. We provided a
method to find a set with the minimum number of permissible observ-
ability relations. We also discussed the applications of permissible
observability relations in different contexts, such as state minimiza-
tion, circuit implementation and signal encoding.

9 Acknowledgements

Theauthorsarethankful to Dr. June-Kyung Rhofor providing valuable
information. We thank Dr. Rajeev Murgai for reading and improving
thismanuscript. Also special thanksto Szu-Tsung Chengand Thomas

‘ circuit ‘ driving] driven [[#fea. ‘ #rel. ‘ CPU ‘
FIToOT s[[rJoTJ s time
P 1 1 3 1 1 3 4 4 0.1
bbara-bbtas 4 2 7 2 2 6 203584 6 515
bbtas-ex5 2 2 6 2 2 8 2096 5 19
bbtas-ex7 2 2 6 2 2 8 160512 4 1.6
dk27-lion 1 2 7 2 1 4 499941 18 411
ex2-ex5 2 2 19 2 2 8 32768 1 57.8
ex2-ex7 2 2 19 2 2 8 8704 2 20.4
ex3-bbtas 2 2 11 2 2 6 81 1 42
ex3-ex7 2 2 11 2 2 8 12 1 7.9
ex5-bbtas 2 2 8 2 2 6 243 1 2.6
ex5-ex7 2 2 8 2 2 8 128 1 3.2
ex3-ex5 2 2 11 2 2 8 1 1 10.9
ex2-ex3 2 2 19 2 2 11 1 1 20.9
Table 1: Experimental results

S: number of states inisolation

#fea. : number of feasible output assignments of the driving machine

#rel. : minimum number of permissible observability relations

CPU time: in secondson a DEC 5000/260with 128 MB

Permissible observability relations allow us to have many feasible
output functions, and in theory these should be useful for encoding
the interacting signals.

7 Experimental Results

In this section, we present some preliminary results. Most of the
examples are obtained by interconnecting FSM’s from the MCNC
benchmarks. These FSM’s are completely specified and state-minimal
inisolation. Example P is shown in Figure 4.

Table 1 shows the results of some cascade circuits consisting of
two FSM’s. The minimum number of permissible relations is ob-
tained using ESPRESSO-MV [16]. The CPU time indicated includes
both the computation of feasible output assignmentsand ESPRESSO-
MV. Although the feasible output functions of examples ex2- ex5,
ex3- bbt as, ex3-ex7, ex5-bbtas and ex5-ex7 can be ex-
pressed by asingle relation individually, they cannot be computed us-
ing either Devadas’ or Rho’sprocedures. Inexamplesbbar a- bbt as,
P,bbt as- ex5, bbt as- ex7,dk27-1i onandex2- ex7, themin-
imum number of permissible relations to express the feasible output
functions is more than one. The number of feasible output functions
in examplesex3- ex5 and ex2- ex3 isone.

Our implicit algorithm based on BDD'’s deals with all output as-
signments at atime. With our current implementation, we can handle
small-size examples in a reasonable amount of CPU time as shown
in Table 1. In contrast, the explicit algorithm which enumerates all
possible output assignments one by one is very inefficient since the
number of all output assignments is too large. For instance, there

are 2152 possible output assignmentsin example ex2- ex7, but only
8704 of them are feasible. The feasible output assignment function,
f(v), is normally a relatively small subset of V', the set of all out-
put assignments. Therefore, proper BDD variable ordering or use
of 0-Sup-BDDs [12] should enhance the ability and efficiency of our
algorithms. Currently, we are studying agood BDD variable ordering
to handle larger examples.

The output part of a transition edge in a permissible relation is a
multiple-valued literal. As pointed out in [6], pairwise compatibility
of a set of states .S does not imply S is compatible. Thus, additional
checking hasto beperformed during stateminimization. Atthepresent
time, there are no state minimization programswith this ability in our
logic synthesis system.

8 Conclusion

We discussed intrinsic difficulties in computing output don’t care se-
quences for a component in an FSM network. We pointed out that
these can not be explained using information lossyness [14]. We

Shiple for helpful discussionson the BDD package.
References

1
2
[3l

[4

(5]

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

R. K. Brayton and F. Somenzi. Boolean Relationsand the ncompl ete Specification
of Logic Networks. In VLS’ 89, August 1989.

R. E. Bryant. Graph Based Algorithmsfor Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

E. Cerny and M. A. Marin. An Approachto Unified Methodology of Combinational
Switching Circuits. In |EEE Transactions on Computers, pages 745-756, August
1977.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential MachinesBased
on Symbolic Execution. In Proceedings of the Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, 1989.

M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of
Synchronous Circuits. In 28th ACM/IEEE Design Automation Conference, pages
556-561, June 1992.

S. Devadas. Optimizing Interacting Finite State Machines Using Sequential Don’t
Cares. In|EEE Transactionson Computer Aided Design of Integrated Circuits and
Systems, pages 1473-1484, December 1991.

S. Devadas and A. R. Newton. Exact Alogrithms for Output Encoding, State As-
signment and Four-level Boolean Minimization. In|EEE Transactionson Computer
Aided Design of Integrated Circui ts and Systems, pages 13-27, January 1991.

G. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. Exact and Heuristic Algorithms
for the Minimization of Incompletely Specified State Machines. In The European
Conference on Design Automation, 1991.

J. Kimand M. M. Newborn. The Simplification of Sequential Machines With Input
Restrictions. In |EEE Transactions on Computers, pages 1440-1443, December
1972.

B. Linand F. Somenzi. Minimization of Symbolic Relations. In|1EEE International
Conference on Computer-Aided Design, pages 88-91, November 1990.

B. Lin, H. Touati, and A. R. Newton. Don’'t Care Minimization of Multi-Level
Sequential Logic Networks. In | EEE International Conference on Computer-Aided
Design, pages414-417, November 1990.

S. Minato. Zero-SuppressedBDDs for Set Mani pulationin Combinatorial Problems.
In 30th ACM/IEEE Design Automation Conference, pages 272—277, June 1993.

M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely
Specified Sequential Circuits. In |RE Transactions on Electronic Computers, pages
356-366, September 1959.

J. K. Rho, G. Hachtel, and F. Somenzi. Don’t Care Sequencesand the Optimization of
Interacting Finite State Machines. In | EEE I nternational Conference on Computer-
Aided Design, pages418-421, November 1991.

J. K. Rho, G. Hachtel, and F. Somenzi. Don’t Care Sequences and the Optimization
of Interacting Finite State Machines. In International Workship on Logic Synthesis,
May 1991.

R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for PLA
Optimization. In 1 EEE Transactionson Computer Aided Design of Integrated Circuit
and Systems, pages 727-750, 1987.

H. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares.
In IEEE International Conference on Computer-Aided Design, pages 518-521,
November 1991.

J. J. Shen, Zafar Hasan, and M. J. Ciesielski. State Assignment for General FSM
Networks. In The European Conference on Design Automation, pages 245-249,
1992.

H.-Y. Wang and R. K. Brayton. Input Don’t Care Sequencesin FSM Networks.
In IEEE International Conference on Computer-Aided Design, pages 321-328,
November 1993.

H.-Y. Wang and R. K. Brayton. Permissible Observability Relations in FSM Net-
works. Technical Report UCB/ERL M94/15, University of California, Berkeley,
February 1994.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

