
Data Flow Partitioning for Clock Period and

Latency Minimization
�

Lung-Tien Liu, Minshine Shih�� and Chung-Kuan Cheng

Computer Science and Engineering ��Department of EECS

University of California, San Diego University of California, Berkeley

La Jolla, CA 92093-0114 Berkeley, California 94720

Abstract| We propose an e�cient performance-

driven two-way partitioning algorithm to take into ac-

count clock cycle period and latency with retiming.

We model the problemwith a Quadratic Programming

formulation to minimize the crossing edge count with

nonlinear timing constraints. By using Lagrangian Ap-

proach on Modular Partitioning (LAMP), we merge nonlin-

ear constraints to the objective function. The problem

is then decomposed into primal and dual two subpro-

grams. The primal and dual problems are solved by

a Quadratic Boolean Programming approach and by

a subgradient method using cycle mean method, re-

spectively. Experimental results show our algorithm

achieves an average of 23.25% clock cycle period and

19.54% latency reductions compared to the Fiduccia-

Mattheyses algorithm. In terms of the average num-

ber of the crossing edges, our results are only 1.85%

more.

1 Problem Formulation

A synchronous digital system can be represented by a
directed graph, G(V = R [C; E); where R is the set
of register nodes and C is the set of combinational block
nodes. Each node i has an associated size si and delay
di. E is the set of directed edges which correspond to
signal
ow in the system. Each edge (i; j) is associated
with an attribute ci;j, which denotes the number of the
interconnections from nodes i to j.

A two-way partition P = (V1; V2) maps V into two
modules, such that V1 [V2 = V and V1 \ V2 = ;. The
capacity limits of these modules are denoted by S1 and
S2, respectively. An edge (i; j) is a crossing edge of P if
node i and node j are in di�erent subsets V1 and V2. We
assume register nodes and non-crossing edges are of zero
delay. The crossing edges have an intermodule delay �
determined by technologies.

1.1 Assumptions

We make the following assumptions in this paper:
1. The intermodule delay is less than the desired clock

period, T .
2. Data
ow are �ne-grained in nature.
Although we assume the combinational blocks are �ne-

grained, some structures, e.g. the delays on crossing
edges, are inherently coarse-grained and cannot be split.

�This work was supported in part by grants from NSF I/UCR
Center, ICAS and NSF MIP-9117328 as well as AT&T, Hughes, and
Quickturn under MICRO.

1.2 Iteration Bound and Latency

Iteration Bound: Suppose the data
ow contains no
loop or feedback, we can utilize the concept of parallel
and pipeline processing to increase the throughput arbi-
trarily. However, this is not the case for a data
ow with
feedbacks. Feedbacks impose an inherent lower bound on
the loop iteration [11]. Given a feedback loop l, let dl,
bdl, and rl be the sum of combinational block delays, the
sum of edge delays, and the number of registers on loop
l respectively. The delay-to-register ratio of l is equal to
dl +bdl
rl

. The iteration bound is de�ned by:

J = max (
dl + bdl

rl
) 8 loop l : (1)

The iteration bound of a given circuit stands for the lower
bound of the clock period achieved by retiming.
Cycle Mean Problem: For the special case that each
edge contains one register, the iteration bound becomes
a cycle mean problem [5]. In our test case, each combi-
national block node connects between two register node.
Thus, we can transform the iteration bound into the cycle
mean problem. Karp [5] proposes an O(nm) algorithm to
solve the cycle mean problem.
Latency: Given a path p, we use r(p) to denote the
number of register on the path. Let W (i; j) denote the
minimum r(p) among all possible path from i to j, i.e.
W (i; j) = min r(p) 8 p from i to j. Let T be the clock pe-
riod. We de�ne the latency between primary input i and
primary output j to be the minimumnumber of clock pe-
riods that pass between the signal arrival at node i and its
�rst e�ect on the signal at node j, i.e. (W (i; j) � 1) � T .
Note that the primary inputs and outputs are register
nodes. The signal at primary input i takes W (i; j) � 1
clock periods to �rst arrive at primary output j. How-
ever, if there is no path between i and j, we set its latency
to zero. Thus, we de�ne the latency of the whole system
be the maximum latency among all possible input output
pairs, [7, 4, 12] i.e.

N = max (W (i; j) � 1) � T (2)

where i and j are primary input and primary output,
repectively.
Latency Bound: We de�ne a path p from i to j a critical
path if the number r(p) of registers it contained equals
W (i; j). If node i is the primary input and node j is the
primary output, the path p is also called the IO-critical

path. Let dp and bdp be the sum of functional block delays
and the sum of intermodule delays on path p. The input

signal at node i will take at least dp + bdp delays to arrive
at node j. Let D(i; j) = max dp + bdp for all critical path
p. Leiserson et al. [8] propose an all-pairs shortest-paths
algorithm to calculate the quantities W and D. Since
the critical paths from nodes i to j determine the latency
between i and j, the latency bound is de�ned as follows:

M = max dp + bdp 8 IO-critical path p. (3)

Leiserson's algorithm can be adopted to identify the la-
tency bound and the edges that contribute to the bound.
The latency bound also imposes the lower bound on the
latency of the circuit. We want to generate a partition
with small iteration and latency bounds.
Retiming: Given data
ow graph G(V = R [C; E),
let IR � R be the set of primary inputs; OR � R be
the set of primary outputs. A retiming of a data
ow
graph G(V = R [C;E) is an integer labeling of com-
binational, primary input, and primary output nodes:
� : C [IR [OR ! Z. The retiming speci�es a trans-
formation of the original graph in which registers, except
primary inputs and primary outputs, are added or re-
moved so as to change the graph G into a new graph
G� = (V� = R� [C;E�). Let r�(pu;v) denote the num-
ber of registers of path p after retiming �. According to
[8], we have equation (4).

r�(p) = r(p) + �(j) � �(i): (4)

From (4), we know if a path p from nodes i to j is crit-
ical before retiming, p is still critical after retiming. We
derive the following theorem:

Theorem 1 Let G(V = R [C;E) be a data-
ow graph,
K be an arbitrary positive real number, and H be an in-
teger. Let � be a function from C [IR [OR to integers,
where IR � R and OR � R. Then � is a legal retiming
of G, which can achieve a clock period of K and a latency
of H clock periods i�:

(i) �(i) � �(j) � W (i; j) for any two nodes i and j.
(ii) �(i)��(j) �W (i; j) � 1 for any two nodes i and

j such that D(i; j) > K.
(iii) �(j)��(i) � H �W (i; j) for any i 2 IR and any

j 2 OR.

From Theorem 1, the problem to �nd out a retiming
which can achieve a clock period of K and latency of H
clock periods is equal to one to �nd out a function � from
C [IR [OR to integers which satis�es all the constraints
in (i), (ii), and (iii) of Theorem 1. In other words, we
need to determine the feasible values for all the unknowns
�(i) under a set of inequality constraints with the form of
�(i) � �(j) � ui;j, where ui;j is a constant. Constraints
systems with such format arise in shortest paths problems.
We can use the Bellman-Ford algorithm [6] to solve it.

1.3 The Performance-Driven Partitioning
Problem

Since the performance of the circuit is measured by
both clock cycle period and latency, we want to generate

the partition which can achieve a good clock cycle period
and latency with retiming.

Given a partition P = (V1; V2), let X(P) and Y (P) de-
note the minimum cycle period and latency which can be
obtained by retiming the circuit partitioned by P . Now we
state the performance-driven partitioning problem

as follows:
Given a data
ow graph G(V = R [C; E) with each
node i of size si, two numbers K and H, size constraints
S1 and S2, and intermodule delay �, �nd a partition
P = (V1; V2) with the minimum number of crossing edges,
subject to

P
i2V1

si � S1,
P

i2V2
si � S2, X(P) � K, and

Y (P) � H.
Let J(P) denote the iteration bound andM (P) denote

the latency bound with respect to partition P . In practice
to simplify the performance-driven partitioning problem,
we will replace the cycle period X(P) and latency Y (P)
with their lower bounds J(P) and M (P), respectively.
Retiming is then performed after the partitioning to de-
rive the exact system cycle period and latency.

We use examples shown in Fig. 1 , 2 , 3 and 4 to
illustrate the essence of the performance-driven partition-
ing problem. In Fig. 1 , 2 , 3 and 4, shaded octagons
denote crossing edges. In these examples, combinational
block delays are one unit and intermodule delays � are
two units. Register I and O denote primary input and
output, respectively.

Given a circuit in Fig. 1, the clock cycle period is dom-
inated by the longest combinational node delay between
registers, which is from A to B with a delay of 3 units.
There are two paths from nodes I to O. One path has
9 registers, the other has 10 registers. So, the latency
of this circuit is 8 clock periods, i.e. 24 units. However,
using retiming, we can move B to a new location as indi-
cated by the dashed line. The longest path is from A to
B or from B to C. Both have a shorter delay of 2 units.
Furthermore, the latency become 16 units, which is much
less than the original one, 24 units. Because the iteration
bound, which is determined by the left loop, is 2 units,
we cannot obtain a smaller clock period.

b

L

C

m M

E

O

I a

A D

B
Kd

c

J

H

F

G

f

e

hg

j

k

i

l

Figure 1: Final clock period and latency are 2 and 16 units

Suppose the circuit is partitioned into two modules
(Fig. 2). The clock cycle period is 5 units. Even after
retiming which shifts B to its new location as indicated
by the dashed line, the delay, 4 units, is more than 3 units.
The latency increases to 32 units. In Fig. 3, before retim-
ing, the clock cycle period is 3 units; hence, compared

b

L m M

EA

OB

I a

JK

D

c
d

C

H

G

F

f h

e

g

i

j

kl

Figure 2: A partition with 4 units delay and 32 units latency

to Fig. 2, a better choice of partition can automatically
reduce the delay. If we perform the retiming as shown
by the dashed lines, the delay in Fig. 3 is reduced to 2
units. The retiming adds one extra register P between
the combinational node k and register O. This turns the
latency into 9 clock periods, 18 units. But in Fig. 4, we
can achieve a clock period of 2 units. The latency is still
8 clock periods. Hence, Fig. 4 is preferred.

2 Quadratic Boolean Programming For-
mulation

The performance-driven partitioning problem can be
represented by a Quadratic Boolean Programming for-
mulation with nonlinear constraints. We then absorb the
nonlinear constraints into the objective function as a La-
grangian. Finally, the Lagrangian is decomposed into pri-
mal and dual two subproblems.

L
C b

m

E

M

OP

I a

A

JK

D

H

B d
c

G

F

f

e

hg

i

j

kl

Figure 3: A partition with 2 units delay and 18 units latency

A

d

I a

mL M

OB J

G

F

E

K

D

H

C

c

b

gf h

e
i

l

j

k

Figure 4: A partition with 2 units delay and 16 units latency

Given the circuit G(V = R [C; E) with jV j = n.
A two-way partition can be described by a vector x =
(x1;1; : : : ; x1;n; x2;1; : : : ; x2;n), where xb;i is 1 if node i

is assigned to module b, otherwise xb;i is 0. If nodes
i and j are in di�erent modules, the value of the term
x1;ix2;j + x2;ix1;j is equal to 1. This contributes one in-
termodule delay � into the delay of the edge (i; j). Let
gl(x) and (i; j) denote the delay to register ratio of loop l
and the edge from nodes i to j, respectively. gl(x) can be
written as the following formula:

gl(x) =
d` +

P
(i;j)2l �(x1;ix2;j + x2;ix1;j)

rl
(5)

Given a path p, the total delays hp(x) of p is following:

hp(x) = dp +
X

(i;j)2p

�(x1;ix2;j + x2;ix1;j) (6)

Let us formulate the problem. We use an objective
function of crossing edge count:

min
X

(i;j)2E

ci;j(x1;ix2;j + x2;ix1;j) (7)

Subject to the following constraints:

C1: (Capacity Constraints)

nX

i=1

xb;isi � Sb 8 module b 2 f1; 2g : (8)

C2: (Generalized Upper Bound Constraints)

2X

b=1

xb;i = 1 8 node i 2 V : (9)

C3: (Iteration Bound Constraints)

gl(x) � K 8 loop l : (10)

C4: (Latency Bound Constraints)

hp(x) � H 8 IO-critical path p. (11)

Actually, we don't need to consider all loops in C3. Be-
cause all loops are composed of simple loops, we have the
following lemma:
Lemma 1 Given a number K, if gl(x) is less than or
equal to K for any simple loop l, then gl(x) is less than
or equal to K for all loops l.

Let �c and �p represent the number of the simple loops
and IO-critical paths, respectively. Let � denote the vec-
tor (�g1 ; : : : ; �g�c ; �h1 ; : : : ; �h�p). Using Lagrangian Re-

laxation [13], we dualize the constraints (10) and (11) into
the objective function (7). The Lagrangian-relaxed prob-
lem is as follows.

max
��0

min
x

L(x; �) (12)

subject to constraints C1 and C2, where

L(x; �) =
X

(i;j)2E

ci;j(x1;ix2;j + x2;ix1;j) +

X

8 simple loop l

�gl (gl(x)�K) +

X

8 IO-critical path p

�hp (hp(x)�H) (13)

The Dual Problem: Given vector x, we can represent
(13) as a function of variable �, i.e. Lx(�). Thus, the dual
problem can be written as:

max
��0

Lx(�) (14)

The Primal Problem: Let Fi;j and Qi;j denote the set
of the simple loops and IO-critical paths passing the edge
(i; j). We try to rewrite equation (13) in terms of edges.
Let us de�ne ai;j as follows:

ai;j = ci;j +
X

l2Fi;j

�

rl
�gl +

X

p2Qi;j

��hp (15)

Given vector �, we can represent (13) as a function of
vector x, i.e. L�(x). Thus, the primal problem can be
rewritten as:

min L�(x) = min
X

(i;j)2E

ai;j(x1;ix2;j + x2;ix1;j) + �

(16)
subject to constraints C1 and C2, where � represents the
constant contributed by �, the number of registers rl, the
node delay dl of loop l, etc.

From the above formula, primal problem (16) can be
viewed as a Quadratic Boolean objective function with
linear constraints. Thus, we utilize a heuristic Quadratic
Boolean Programming method (QBP) [1] to calculate the
primal problem. Dual problem (14) has the nice prop-
erties of continuity and concavity for a hill-climbing algo-
rithm.

3 Subgradient Method on Dual Problem
Using Cycle Mean Method

We will use primal-dual iterations to solve the La-
grangian. Once a solution � of the dual problem (14)
is generated, formula (15) is applied to update the edge
costs. Given an edge (i; j), we need all the �gl and �hp
values of the simple loops and IO-critical paths passing
(i; j) to calculate the equation (15). The number of these
simple loops and IO-critical paths can be an exponential
function of n, the number of the nodes.

For an optimal solution of problem (14), the Lagrange
multiplier � has the properties that �gl and �hp are larger
than zero only if gl(x) and hp(x) are not less than K and
H. We de�ne these loops and paths as active loops and
paths.
Active Loops and Paths: A simple loop l is called
active, if gl(x) is not less than K. A IO-critical path p is

called active, if hp(x) is not less than H. If a loop or path
is not active, we call it inactive.
Active Edges: An edge e is active, if it is covered by an
active loop or an active path. If e is not active, we call it
inactive.
Dominant Loops and Paths: A simple loop l is called
the dominant loop of edge e, if l has the maximum delay-
to-register ratio among all loops passing e. We de�ne p
to be a dominant path of e, if the total delay of path p is
the maximum among all paths passing e.
Dominant Prices: If l is the dominant loop of e, we
de�ne the dominant-loop price of e as the delay-to-register
ratio of l. If p is the dominant path of e, the total delay
of p is de�ned as the dominant-path price of e.

Given an edge e = (i; j), let fe be the dominant-loop
price of e. re denotes the number of registers on the dom-
inant loop of e. Note that we randomly choose one domi-
nant loop to calculate re, if e has more than one dominant
loops. qe represents the dominant-path price of e.

We don't generate all the loops and paths. Instead, we
determine only dominant prices of each edge. We utilize
the minimum cycle mean algorithm [5] to calculate the
dominant-loop price of each edge. Leiserson's algorithm
[8] to compute the quantities W and D is adopted to
compute the dominant-path price of each edge. The edge
cost is updated by the subgradient approach.

At the k-th iteration, let xk and Cutk denote the de-
rived x and cut of the primal problem, respectively. Let
aki;j be the cost of edge e at the k-th iteration. We adopt

the subgradient method [13] to generate the new edge

cost, ak+1i;j .

ak+1i;j = max f 0; aki;j + tk�(fe�K)�
�

re
+ tk�(qe�H)��g

(17)
tk is de�ned as follows:

tk =
�
��Cut� �Cutk

��
P

e2E jfe �Kj
2
+
P

e2E jqe �Hj
2

(18)

where � and Cut� are two given positive numbers. By
(17), we increase the costs of active edges and decrease
ones of inactive edges, using subgradient approach. This
captures the actual direction of the edge cost changes of
active and inactive edges with respect to the equation
(15).

4 Lagrangian Approach on Modular Par-
titioning (LAMP)

We adopt a Lagrangian Approach on Modular Parti-
tioning (LAMP) which solves the partitioning problem
through primal and dual iterations on the Lagrangian.
A Quadratic Boolean Programming, QBP, [1] is used to
solve the primal problem and generate a solution x. For
the dual problem based on x, we call a minimum cycle
mean algorithm [5] and Leiserson's algorithm [8] for cal-
culating the quantities W and D to obtain the dominant
prices of each edge. We then calculate the subgradient
on the dominant prices and update the constants ai;j for

the next primal-dual iteration. The iteration proceeds un-
til the bound of all loops and paths are within the given
limits.

In the following algorithm, we initialize a set of pa-
rameters K, H and Cut� from the results of Topological
Timing Cut [9], which is very fast and can generate a par-
tition with a good iteration bound. The value of � is set
to 1.3 in our experiment.

LAMP Algorithm

1. Assign values to K, H, � and Cut�.
2. Initialize k 0; a0i;j = ci;j:

3. Call QBP [1] to generate a partition P k = (V k
1 ; V

k
2)

with crossing edge count Cut(P k).
4. a. Use the minimum cycle mean algorithm to cal-

culate the iteration of the partitioned circuit and fe
and re of each edge e;
b. Use Leiserson's algorithm to calculate the latency
bound and qe of each edge e;
c. If the iteration and latency bounds are not greater
than K and H respectively, then stop.

5. Compute tk by equation (18).
6. For each edge e = (i; j) 2 E:

Compute ak+1i;j by (17).
7. Set k k + 1 and goto 3.

Let n = jV j andm = jEj. The time complexity of Leis-
erson's algorithm is O(n3), since it is an all-pairs shortest-
paths algorithm. The minimum cycle mean algorithm
takes O(nm) time. The complexity of QBP [15] is O(n2).

5 Experimental Results

We use the same seven industrial circuits from [15] as
our test cases. All combinational blocks are of unit size
except some have size 2 in test case s1. Five of these
circuits contain feedback loops.

We compare our algorithm to the Fiduccia-Mattheyses
(FM) [3] algorithm, and Flow Timing Cut (FTC)[9]. Be-
cause TTC and FTC have close results in terms of the
number of crossing edges and iteration bound, we don't
show TTC's results in this paper. The comparison re-
sult between TTC and LAMP can be found in [10]. All
algorithms are implemented on a single-processor SUN
SPARC 10 workstation under the C/UNIX environment.
The results of FM are chosen from the best of 20 runs
each. The left partition of Table 1 (columns 2 { 5) shows
the characteristics of these test cases. The �fth column
stands for the path delay bound. A path p is called IO-
path, if p is from primary input to output. Given a path
p from the primary input to the primary output, let dp,
bdp, and rp be the sum of functional block delays, the sum
of intermodule delays, and the sum of registers on path p.
The path delay bound of a circuit is de�ned by:

B = max
dp + bdp
rp

8 IO-path p (19)

ckt #reg #comb J B FM FTC LAMP

s1 342 8280 6373 5447 2860 3043 3134
s2 472 3378 0 4421 875 948 847
s3 521 6325 2527 3238 1422 1952 1629
s4 380 3850 4922 5545 1045 1258 1032
s5 545 12172 4241 4876 3465 4889 3478
s6 357 3026 0 3724 848 1004 817
s7 607 4990 996 3563 1103 1304 1141

Table 1: Characteristics of test cases

The right partition of Table 1 (columns 6 { 9) lists the
number of crossing edges cut by di�erent algorithms.

The reductions of the crossing edge counts are as fol-
lows. When compared to the FM, LAMP achieved -14.55
� 3.65% with an average of -1.85%. When compared to
the FTC, LAMP achieved -2.99� 28.86% with an average
of 14.59%.

FM (bT) FM FTC LAMP
ckt J T J T J T

s1 9456 6373 6373 6373 6373 6373 6373
s2 7074 0 2652 0 2652 0 2652
S3 6801 3908 4103 2527 2527 2527 2527
s4 9258 4922 4922 4922 4922 4922 4922
s5 9435 6268 6894 4241 4241 4241 4241
s6 8656 0 2236 0 2236 0 2236
s7 6597 2137 2137 2137 2137 2137 2137

Table 2: Iteration bound J and cycle period T

For performance-driven partitioning, the value of �
should be dertermined. Since, as indicated by [2], the
intermodule delay increases to nearly 100% of the clock
cycle period, we set � to be of 60% of T � = max(J;B)
which is calculated using equation (20) before partition-
ing, and used these values to perform experiments for dif-
ferent algorithms. Notice that the T � is obtained before
partitioning.

Table 2 gives the detailed information of our experi-

ments for the clock period. In the �rst row, the bT asso-
ciated with FM is the maximum delay between registers
before retiming. In Table 2, except the �rst and second
columns, each column contains two subcolumns. The data
in the �rst subcolumn represents the J derived from equa-
tion (1) after partitioning. The T in the second subcolumn
is the clock cycle period of the partitioned circuit achieved
by retiming. J , calculated after partitioning, will domi-
nate the optimal clock cycle period during retiming. How-
ever, if J < �, then � will dominate the clock cycle period
because � is not decomposable. Because the size of these
loops are quite small and strongly connected, the loops are
not cut by all algorithms for most test cases. LAMP, and
FTC obtain the same iteration bound and clock period
for all test cases. Compared with FM, LAMP achieves
38.41% and 38.48% clock period reductions for s3 and s5,
respectively.

Table 3 gives the detailed information of our experi-
ments for latency. In Table 3, except the �rst column,

FM FTC LAMP
ckt M M' M M' M M'

s1 20418 25492 18195 25492 18195 19119
s2 11785 15912 9789 10608 8127 10608
s3 16897 20515 14872 17689 13308 17689
s4 25951 34454 25843 34454 25594 29532
s5 37853 41364 32347 29687 28435 29687
s6 11147 13416 9973 13416 9502 13416
s7 13283 19233 10673 12822 10140 12822

Table 3: Latency bound M and latency M 0

each column contains two subcolumns. The data in the
�rst subcolumn represents the M derived from equa-
tion (3) after partitioning. The M 0 in the second sub-
column is the latency of the partitioned circuit obtained
through retiming. When compared to the FM and FTC,
the latency reductions are as follows. LAMP achieved
1.37 � 31.03% with an average of 18.25% for M and 0
� 33.33% with an average of 19.54% for M 0, compared
with FM. When compared with FTC, LAMP achieved 0
� 16.97% with an average of 7.17% forM and 0 � 25.00%
with an average of 5.61% for M 0.

Digital systems can interact with each others. Even
though a system has no feedback loop from its primary
output to its primary input, it can interact with exter-
nal systems. Hence, macroscopically, there possibly exist
external feedback loops from the primary outputs to the
primary inputs. We call this assumption the external-loop
assumption. According to the external-loop assumption,
we have to take into account the path delay. Then the
dominant delay of a given partitioned circuit is

A = max (J;B) : (20)

If the external-loop assumption holds, Table 4 gives
the detailed information of our experiments. The data in
the �rst subcolumn represents the A derived from equa-
tion (20) after partitioning. The T in the second subcol-
umn is the clock cycle period of the partitioned circuit
after retiming. LAMP achieved 16.95 � 31.20% with an
average of 24.92% for A and 13.04 � 27.98% with an aver-
age of 23.25% for T , compared with FM. When compared
with FTC, LAMP achieved 2.54 � 21.31% with an aver-
age of 12.25% for A and -0.97 � 17.62% with an average
of 7.70% for T .

The execution time of LAMP is determined by one of
the all-pairs shortest-paths algorithm and the number of
the primal and dual iterations. According to our experi-
ments, LAMP stops within 20 iterations for all test cases.
The execution times of the seven test cases are ranged
from 47 seconds to 329 seconds.

6 Concluding Remarks

We propose an e�cient performance-driven two-way
partitioning algorithm to take into account both clock
cycle period and latency of the partitioned system. Fur-
thermore, we can easily expand our algorithm to K-way
partitioning, since QBP can handle K-way partitioning.

FM (bT) FM FTC LAMP
ckt A T A T A T

s1 9456 8371 9238 7076 7076 6373 6653
s2 7074 7074 7215 5342 5342 5206 5310
s3 6801 5338 5444 4976 4976 4019 4099
s4 9258 8239 8631 8083 8083 6360 7505
s5 9435 7666 8432 7674 7827 6366 6493
s6 8656 6544 6544 5334 5429 4502 5042
s7 6597 5103 5227 3897 3897 3644 3935

Table 4: Iteration bound A and cycle period T with external-

loop

References

[1] R.E. Burkard and T. Bonniger, \A Heuristic for
Quadratic Boolean Programs with Applications to
Quadratic Assignment Problems," European Journal of
Operational Research, 1983, 13, pp. 372 - 386.

[2] Daryl A. Doane and Paul D. Franzon ed.,Multichip Mod-
ule Technologies and Alternatives {The Basics", Van Nos-
trand Reinhold, New York, 1993, pp. 666 - 667

[3] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time
Heuristic for Improving Network Partitions," Proc. 19th
ACM/IEEE Design Automation Conference, 1982, pp.
175 - 181.

[4] F. Berman, Personal communication, 1993.

[5] R. M. Karp, \A characterization of the minimum cycle
mean in a digraph", Discrete Mathematics, 23, 1978, pp.
309 - 311.

[6] E. L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart and Winston, New York, 1976.

[7] E. A. Lee, Personal communication, 1993.

[8] C. E. Leiserson and J. B. Saxe, \Retiming Synchronous
Circuitry," Algorithmica, Vol. 6, No. 1, 1991, pp. 5 - 35.

[9] L.T. Liu, M. Shih, N.C. Chou, C.K. Cheng, and W.
Ku, \Performance-Driven Partitioning Using Retiming
and Replication," Proc. IEEE International Conference
on Computer-Aided Design, Santa Clara, Nov. 1993, pp.
269-299.

[10] L. T. Liu and C. K. Cheng, \Data Flow Partitioning for
Clock Period and Latency Minimization," Technical Re-
port CS93-327, University of California, San Diego, Oct.
1993.

[11] K. K. Parhi, D. G. Messerschmitt, \Static Rate-Optimal
Scheduling of Iterative Data-Flow Programs via Optimum
Unfolding," IEEE Trans. on Computers, Vol. 40, No. 2,
1991, pp. 178-195.

[12] K. K. Parhi, Personal communication, 1993.

[13] J. F. Shapiro, Mathematical Programming: Structures
and Algorithms, Wiley, New York, 1979.

[14] M. Shih, E. S. Kuh, and R.-S. Tsay, \Performance-Driven
System Partitioning on Multi-Chip Modules," Proc. 29th
ACM/IEEE Design Automation Conf., 1992, pp. 53 - 56.

[15] M. Shih and E. S. Kuh \Quadratic Boolean Programming
for Performance-Driven System Partitioning," Proc. 30th
ACM/IEEE Design AutomationConf., 1993, pp. 761-765.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

