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Abstract

A new partitioning approach for very large circuits
is described. We demonstrate that applying a re-
cently developed analytical placement algorithm,
that pro�ts from a linear objective function, sig-
ni�cantly improves the partitioning quality com-
pared to the well-known eigenvector approach,
which minimizes a quadratic objective function.
For the �rst time, results of benchmark circuits
with up to 100,000 cells are presented. The cut-
size and the minimum ratio cut is improved up to
90%. The average improvement is about 50%.

1 Introduction

Since high-level synthesis methods become widely ac-
cepted, the complexity of electronic systems is rapidly in-
creasing. However, manufacturing technology limits the
chip size. Consequently, the entire system has to be par-
titioned into a set of subsystems. These subsystems may
be mapped on a set of ASICs or FPGAs and the system
can be realized as a multichip module or an FPGA board.
A partitioning algorithm has to divide the whole system
into two or more subsystems by minimizing the cutsize
and ensuring subsystem sizes within prescribed ranges.

Our intention in this paper is to present a partitioning
method that o�ers the designer a variety of good parti-
tioning solutions, where a small number of nets is cut and
the size constraints are met.

Early approaches to the partitioning problem include
clustering algorithms [1] and min-cut based methods [2,3].
Clustering is a bottom-up strategy, iteratively construct-
ing strongly connected components. Starting from an ini-
tial partition, min-cut iteratively minimizes the cutsize by
exchanging or moving cells or groups of cells. The parti-
tioning quality obtained with min-cut methods largely de-
pends on the initial partition, as only local improvements
are performed. The success of these two approaches is
limited by the lack of a global view. Furthermore, typi-
cally the cells are only moved or exchanged if the partition
size limits are not violated. This restricts the possibili-

ties of minimizing the cutsize. The ratio cut method [4,5]
overcomes this drawback, but the partitioning result still
depends on the initial partitioning.

To generate a good partitioning, the use of placement
data was proposed [6,7,8]. Hagen and Kahng [9,10] com-
bined a one-dimensional placement method [11] with the
ratio cut measure. They calculate a one-dimensional
placement by solving an eigenvector problem and deter-
mine the best partitioning by computing the ratio of all
possible cuts between the cells. This algorithm keeps the
global view and produces impressive partitioning quality.
It reduces the number of possible two-way partitionings
from 2n�1 to n � 1, where n is the number of cells, as
only n� 1 possible cut positions remain between the cells
in a one-dimensional placement. This decreases the com-
putational complexity for partitioning from exponential to
linear. As the one-dimensional placement method is based
on eigenvector computations, which minimize a quadratic
objective function, throughout this paper we call it eigen-
vector approach. Recent improvements of this method led
to better results for small circuits [12,13,14,15].

Partitioning methods that use analytical placement
techniques obtained good results. Therefore, it is promis-
ing to choose the best placement techniques to guide the
partitioning. In particular, very good placement results
have been reported using the analytical placement pro-
cedure Gordian [16,17]. It has been demonstrated that
minimizing a linear objective function [17] yields a better
placement quality in terms of layout area and wire length
than minimizinga quadratic objective function. The supe-
riority of a linear objective function in cell placement has
also been shown by Hagen and Kahng [18]. Our idea is to
use this objective function for partitioning. Reduced wire
length leads to a lower probability that a net is cut. Since
the linear objective function is superior to the quadratic
objective function in terms of wire length, we claim that
it will improve the partitioning quality as well. Our ex-
periments show an improvement of up to 90% compared
to the eigenvector approach.

Our paper is organized as follows. The next section
contains some preliminaries and de�nitions. Section 3
presents a short review of the eigenvector approach. Our
new partitioning approach, which uses a linear objective
function, is described in Section 4. In Section 5, results of
benchmark circuits with up to 100,000 cells are presented
and discussed.



2 Preliminaries

2.1 Modeling the Circuit

A circuit is modeled by a hypergraph H = (V;E0) with
vertices V representing the cells and hyperedges E0 repre-
senting the nets. The hypergraph can be transformed to
a graph G = (V;E) by mapping each hyperedge in the set
E0 into a set of binary edges. To perform this mapping,
we apply the well-known clique model. Each hyperedge
consisting of k vertices is represented by a complete graph
with edge weights equal to 1=(k � 1). Thus, a graph G
is obtained that may be described by an n� n adjacency
matrixA = [aij], where n =jV j. The matrix elements aij
are calculated as the sum of the edge weights of all edges
connecting the vertices i and j.

The diagonal degree matrix D = [dij] is de�ned by:

dij =

� Pn

j=1 aij if i = j

0 if i 6= j

D is called degree matrix, because each dii is equal to the
sum of all edge weights incident to vertex i.

Now we are able to compute the matrix

B = D�A (1)

which is used for the calculations below. B is usually
called disconnection matrix [11] or the Laplacian of G [19].
The matrix is singular, has a maximum rank of n � 1, is
positive semi-de�nite, and has at least one zero eigenvalue,
while all other eigenvalues are positive. The multiplicity
of the zero eigenvalue is equal to the number of connected
components of G.

2.2 The Ratio Cut Measure

We apply the ratio of a cut in the same way as Hagen
and Kahng [9,10] to determine the best partitioning and
to measure the obtained partitioning quality. According
to Wei and Cheng [4,5] the ratio of a cut is de�ned by:

RC =
CLR

jL j � jR j (2)

The set of nodes V of H = (V;E0) is divided into two dis-
joint subsets L � V and R = V �L with L 6= ;. The cut-
size CLR is the number of nets connecting the partitions
L and R. The ratio cut favors both of our partitioning
goals: Firstly, the numerator minimizes the cutsize and
secondly, the denominator avoids uneven partition sizes.

3 The Eigenvector Approach

We present a short outline of the well-known eigenvector
approach to be able to compare it to our new algorithm.
As proposed by Hall [11] the one-dimensional placement
problem may be formulated as a quadratic programming
problem with a quadratic constraint

QPPQC: min
x2Rn

nX
i=1

nX
j=1

aij(xi � xj)
2 s.t.

nX
i=1

x2i = 1;

where x = [x1; : : : ; xi; xj; : : : ; xn]
T 2 Rn denotes the vec-

tor of the cell coordinates. The quadratic objective func-
tion to be minimized is the sum of the squared distances
between the cells. The quadratic constraint distributes
the cells around the origin with variance 1.

Using the matrix B, QPPQC can be rewritten as

min
x2Rn

xTBx s.t. xTx = 1:

To solve this problem, we form the Lagrangian

`(x; �) = xTBx � �(xTx� 1) (3)

with the Lagrange multiplier �. Setting the �rst partial
derivative of `(x; �) with respect to x to zero leads to the
eigenvalue equation

(B� �I)x = 0; (4)

where I is the identity matrix.

This equation holds for any vector x and Lagrange mul-
tiplier � if and only if x is eigenvector and � the corre-
sponding eigenvalue of B. Multiplying Equation 4 with
xT leads to

� = xTBx: (5)

This shows that the value of the objective function is equal
to � for any eigenvector x. The eigenvector corresponding
to the eigenvalue � = 0 is no practical solution as all
cell coordinates are equal to 1=

p
n. Thus, the smallest

nonzero eigenvalue and the associated eigenvector yield
the best useful solution of QPPQC. The components of
this eigenvector are interpreted as cell coordinates yielding
a one-dimensional placement. For a small example, such
a placement is shown on top of Figure 1. Nets connecting
the cells are not drawn for reasons of simplicity.

cells

optimal
cut

MRC

RC

x

x

Figure 1: Eigenvector placement and ratio cut diagram

To determine the best partitioning and to assess the
quality of the entire approach the ratio of a cut RC is cal-
culated for every possible cut position between two cells
according to Equation 2. Thus, we obtain a ratio cut dia-
gram as shown in Figure 1. The set of cells is partitioned
at the optimal cut position yielding the minimum ratio
cut (MRC ). This method was �rst presented by Hagen
and Kahng [9,10], where good partitioning results were
reported.



4 Partitioning Using a Linear

Objective Function

Our intention is to create a partitioning algorithm ob-
taining a good partitioning quality by an improved one-
dimensional placement. In addition, it must have the abil-
ity to deal even with the largest circuits available. The
largest design we partitioned up to now had about 100,000
cells.

To solve the placement problem, Gordian [16] used
the same quadratic objective function which is used in
QPPQC, but a linear constraint:

QPPLC: min
x2Rn

nX
i=1

nX
j=1

aij(xi � xj)
2 s.t.

nX
i=1

xi = f

In contrary to the quadratic constraint used in QPPQC
which distributes the cells, the linear constraint �xes the
center of gravity of all cells to the x-coordinate f . This
problem formulation yields good placement results which
can be improved signi�cantly by using the following prob-
lem formulation with a linear objective function:

LPPLC: min
x2Rn

nX
i=1

nX
j=1

aij jxi � xj j s.t.

nX
i=1

xi = f

This linear programming problem can be rewritten as a
quadratic programming problem

min
x2Rn

nX
i=1

nX
j=1

gij(xi � xj)
2 s.t.

nX
i=1

xi = f

by weighting the nets with gij =
aij

jxi� xj j
: It is solved in

GordianL very e�ciently by using a conjugate-gradient
method [17].

Since the quality of placement-based partitioning ap-
proaches largely depends on the quality of the one-
dimensional placement, we use GordianL with it's lin-
ear objective function to generate a high quality one-
dimensional placement. We apply the GordianL pro-
cedure as described in [17] except that only a one-
dimensional placement is calculated. As GordianL ob-
tains good results in cell placement with the linear con-
straint we use it for partitioning, too. A better placement
quality results in shorter wire length. Reducing the wire
length decreases the probability for a net to be cut when
partitioning the circuit. Therefore, it is reasonable to as-
sume that a better placement quality in terms of wire
length implies a lower cutsize.

SinceGordianL needs at least one �xed cell, we use the
eigenvector placement to assign extreme left and extreme
right placed cells to the left and right partition, respec-
tively. We �x the coordinates of these cells and calculate
a new placement for all remaining cells with GordianL
using it's linear objective function and constraint. An im-
proved placement result is shown on top of Figure 2. Fixed
cells are shown as �lled squares.

The optimal partitioning is determined in the same way
as presented in Section 3. Again the ratio for every possi-
ble cut position is calculated and the circuit is partitioned
at the optimal cut.

optimal
cut

MRC

x

x

RC

Figure 2: Improved placement and ratio cut diagram ap-
plying the linear objective function

5 Experimental Results

The results of our new partitioning method called
Paraboli are compared to the eigenvector approach in
terms of the minimum ratio cut (MRC ) and the cutsize
(CLR). For that purpose, we implemented the EIG1 al-
gorithm of Hagen and Kahng [9,10]. We applied both
methods to 19 circuits of the ACM/SIGDA Benchmark
Suites [20,21]. The characteristics of the circuits contain-
ing approximately 600 to 100,000 cells are summarized in
Table 1. Partitioning results for the larger circuits have
never been published before.

circuit #cells #nets #pins

s1423 619 538 1 528
sioo 664 408 1 882
s1488 686 667 2 079
balu 801 735 2 697
primary1 833 904 2 941
struct 1952 1 920 5 471
primary2 3014 3 029 11 226
s9234 5866 5 844 14 065
biomed 6514 5 742 21 040
s13207 8772 8 651 20 606
s15850 10470 10 383 24 712
industry2 12637 13 419 48 404
industry3 15406 21 924 68 290
s35932 18148 17 828 48 145
s38584 20995 20 717 55 203
avq.small 21918 22 124 76 231
s38417 23949 23 843 57 613
avq.large 25178 25 384 82 751
golem 100312 144 949 338622

Table 1: Characteristics of benchmark examples



circuit EIG1 Paraboli Improvement

CLR MRC cpu CLR MRC add'l cpu total cpu CLR MRC

[10�7] [s] [10�7] [s] [s]
s1423 23 2 416.2 1.7 6 1 453.9 6.0 7.7 73.9% 39.8%
sioo 30 7 601.1 7.1 34 3 763.4 8.7 15.8 -13.3% 50.5%
s1488 144 13 040.6 7.0 39 4 024.2 10.0 17.0 72.9% 69.1%
balu 85 5 301.6 6.2 32 2 032.6 9.3 15.5 62.4% 61.7%
primary1 15 1 464.1 3.1 14 1 338.9 15.2 18.3 6.7% 8.5%
struct 59 636.9 6.9 40 420.2 28.3 35.2 32.2% 34.0%
primary2 77 457.9 17.6 77 457.9 119.8 137.4 0.0% 0.0%
s9234 9 23.1 24.2 9 23.1 466.1 490.3 0.0% 0.0%
biomed 35 86.1 521.2 42 61.9 189.7 710.9 -20.0% 28.0%
s13207 39 42.2 43.5 10 10.2 2 016.9 2060.4 74.4% 75.7%
s15850 32 21.6 78.4 7 6.9 2 652.5 2730.9 78.1% 68.0%
industry2 280 143.5 706.6 106 30.8 660.7 1367.3 62.1% 78.5%
industry3 136 24.4 195.4 113 20.0 565.3 760.7 16.9% 16.7%
s35932 105 12.8 2 066.6 47 5.8 560.1 2626.7 55.2% 54.8%
s38584 76 7.0 347.5 55 5.0 6 170.0 6517.5 27.6% 27.9%
avq.small 241 31.9 3 139.9 27 4.8 959.0 4098.9 88.8% 84.9%
s38417 121 8.5 281.3 49 3.4 1 760.2 2041.5 59.5% 59.5%
avq.large 253 25.6 2 995.8 27 3.6 1 139.2 4135.0 89.3% 86.0%

golem 1 768 19.5 1 893.3 1 581 6.4 8 929.2 10822.5 10.6% 67.4%

Average 40.9% 47.9%

Table 2: Partitioning results for the optimal cut

5.1 Arbitrary Partition Sizes

In Table 2 the partitioning results of Paraboli and EIG1
are compared. To avoid extreme uneven partition sizes,
the extreme left and extreme right 10% of all possible cut
positions are not considered. Columns 2 to 4 show the
cutsize (CLR), the minimum ratio cut (MRC ) and the
cpu time to calculate the eigenvector in the EIG1 algo-
rithm. All computations were executed on a DEC 3000
Model 500 AXP. The results of Paraboli are summa-
rized in columns 5 to 7. The cpu-time given in column 7
is needed to calculate a one-dimensional placement with
GordianL. Column 8 gives the total cpu-time of our ap-
proach, which is the sum of the cpu-time for the eigen-
vector calculation and the improved placement calculated
with GordianL. Finally, the improvement of Paraboli
compared to EIG1 is presented with respect to the cutsize
and the minimum ratio cut.
In order to reduce computational e�ort, some eigenvec-

tor approaches remove nets with a large number of pins
[14]. However, our investigations revealed that partition-
ing results are very sensitive to net elimination. In some
cases net elimination improves the partitioning quality,
while in other cases the results are worse. Therefore, to
present comparable results, we dispense with net elimi-
nation as far as possible when calculating the eigenvector
of B. In our experiments the eigenvectors of the circuits
avq.small and avq.large only are calculated without the 4
biggest nets connecting more than 3,000 pins due to ex-
cessive memory requirements.
When applying the GordianL placement tool we ob-

served, that the placement results could be improved by

eliminating nets with a large number of pins. This im-
provement has been consistent for all investigated cir-
cuits. For this reason, Paraboli neglects nets with more
than 60 pins. This results in relatively small computation
times for designs with a large number of nets with more
than 60 pins compared to the EIG1 approach. In cases
where cpu(EIG1) < cpu(Paraboli) no or only a few nets
were removed by Paraboli. In cases where cpu(EIG1) >
cpu(Paraboli) Paraboli eliminated several large nets.

Paraboli yields up to 86% lower minimum ratio cuts.
On the average 48% better results are obtained. The min-
imum ratio cut ofParaboli is always better or equal than
the minimum ratio cut of the EIG1 algorithm. The cut-
size is reduced up to 89% with an average of about 41%.
The improvement on the cutsize is sometimes less signi�-
cant or even negative compared to the improvement of the
MRC. For the circuits sioo and biomed Paraboli creates
a higher cutsize, but more even partition sizes outweigh
this deterioration such that the MRC is improved. This
means, that Paraboli generates more even partition sizes
(see Equation 2).

Some of our partitioning results break the lower ratio
cut bound c � �=n of a minimumratio cut partition [9,10].
The proof of this bound [10] is based on a clique model
with edge weights equal to one which results in counting
all edges of the cliques that are cut. However, we propose
that a net connecting cells in both partitions causes cut
costs equal to one. Therefore, the lower ratio cut bound
c may be higher than the actual cost for a net connecting
cells in both partitions.
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Figure 3: Ratio cut diagram: Ratio cut versus cut position for the circuit biomed
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Figure 4: Ratio cut diagram: Ratio cut versus cut position for the circuit avq.large

5.2 A Reduced Ratio Cut Level

A closer look at the ratio cut diagrams reveals that not
only the minimum ratio cut should be considered to assess
the quality of our approach, but also the entire ratio cut
diagram should be taken into consideration. Figures 3 and
4 give the ratio cut diagram for the circuits biomed and
avq.large for EIG1 and Paraboli. Paraboli reduces the
ratio cut level over a wide range of cut positions. Com-
pared to the eigenvector approach with only a few minima,
Paraboli gives a great variety of good cut positions, of-
fering the designer a lot of partitioning solutions with a
small ratio cut. This advantage of our approach is essen-
tial for multiway partitioning. It clearly shows the signi�-
cant improvement compared to the eigenvector approach.

5.3 Speci�ed Partition Sizes

System design often requires approximately even parti-
tions. Thus, we compared both approaches allowing each

partition to have up to 10% more or less than the equipar-
titioned number of cells. Table 3 presents the minimum
ratio cut and the cutsize for the optimal cut in this inter-
val. Paraboli yields an improvement between 25% and
80% in terms of the cutsize and the minimum ratio cut
compared to the eigenvector approach. On the average,
about 55% improvement is obtained.

The results in Tables 2 and 3 show an average improve-
ment of 49.7%. This signi�cant improvement outweighs
the on the average moderate additional computational ef-
fort. It is important to notice that these excellent results
are produced without performing any local improvement.

In our prototype implementation we �rst calculate the
eigenvector, assign extremely placed cells to distinct par-
titions, and �nally compute an improved placement with
the linear objective function. It may be a part of future
research to unify both approaches by using net weights
during the eigenvector calculation to linearize the objec-
tive function. This will result in a lower computational
cost.



circuit EIG1 Paraboli Improvem.

CLR MRC CLR MRC CLR MRC

[10�7] [10�7] [%] [%]
s1423 23 2416.2 16 1 670.4 30.4 30.9
sioo 128 11619.0 45 4 123.3 64.8 64.5
s1488 158 13485.3 50 4 259.1 68.4 68.4
balu 85 5301.6 41 2 579.9 51.8 51.3
primary1 81 4671.7 53 3 057.6 34.6 34.6
struct 102 1081.7 40 420.2 60.8 61.2
primary2 197 876.0 146 646.6 25.9 26.2
s9234 227 265.6 74 86.0 67.4 67.6
biomed 729 687.3 135 127.8 81.5 81.4
s13207 241 125.6 91 47.6 62.2 62.1
s15850 215 78.7 91 33.2 57.6 57.8
industry2 620 155.4 193 48.7 68.9 68.6
industry3 399 67.4 267 45.3 33.1 32.7
s35932 105 12.8 62 7.6 41.0 40.5
s38584 76 7.0 55 5.0 27.6 28.0
avq.small 598 49.8 224 18.7 62.5 62.5
s38417 121 8.5 49 3.4 59.5 59.5
avq.large 571 36.0 139 8.9 75.6 75.4

golem 5 379 21.5 1 629 6.6 69.7 69.5

Average 54.9 54.9

Table 3: Partitioning results allowing up to 10% deviation
from bisection

6 Conclusions

We developed an e�cient partitioning method for two-
and multiway partitioning. The partitioning is based on a
cell placement which is calculated e�ciently by applying
analytical placement techniques. The main conclusions of
our research are:

� A linear objective function is superior to the
quadratic objective function for partitioning as well
as for placement.

� Our approach dramatically improves both, the cut-
size and the minimum ratio cut.

� The ratio cut level is reduced over a wide range of cut
positions o�ering the designer a high degree of free-
dom to choose an appropriate partitioning for speci-
�ed partition sizes.

� Excellent results are shown even on the largest avail-
able Benchmark circuits with up to 100,000 cells.
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