Automatic Verification of Pipelined Microprocessors

Vishal Bhagwati Srinivas Devadas
Research Laboratory of Electronics
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

~Abstract - We address the problem of automatically verify- lined microprocessors. [Cor93] describes a program for
ing large digital designs at the logic level, against high-levelanalyzing logical expressions which is used for verifying a non-
specifications. In this paper, we present a methodology whichyipelined processor, but the problems of specifying pipelined
allows for the verification of a specific class of synchionousyrgcessors are not addressed in this work. A method for verifica-
machines, namely pipelined microprocessors. The spemﬂcaﬂo?ﬁon of pipelined hardware is described in [BK89], which uses an

is the instruction set of the microprocessor with respect to . . AP0 .
which the correctness property is to be verified. A relation, aPStraction functiorio map the state of a pipelined machine to an

namely the B-relation, is established between the input/output @Pstract unpipelined state.
behavior of the implementation and specification. The relation ~ In our approach, the implementation to be verified is a pipe-
corresponds to changes in the input/output behavior that result lined microprocessor, and is described in a high-level language
from pipelining, and takes into account data hazards and con-similar to BDS [Seg87]. The specification is the instruction set of
trol transfer instructions that modify pipelined execution. The the mjcroprocessor with respect to which the correctness prop-
correctness requirement is that theg-relation hold between the ety js to be verified. It corresponds to an unpipelined implemen-
implementation and specification. tation of the same instruction set, and is also described in BDS
We use symbolic simulation of the specification and imple-L ic imol tati f th d ioti b thesi d
mentation to verify their functional equivalence. We character- —°J!C Impi€mentations of these descriptions can be synthesize
ize the pipelined and unpipelined microprocessors adefinite USING @ program similar to BDSYN [Seg87]. The correctness
machines(i.e. a machine in which for some constark, the out- '€quirement is that B-relation holds between the implementa-
put of the machine depends only on the lagtinputs) for verifi- tion and specification. Th@-relation relates a circuit, that pro-
cation purposes. We show that only a small number of cyclescesses inputs at certain relevant time points, and produces outputs
rather than exhaustive state transition graph traversal and at certain relevant time points only, to a circuit of similar func-
state enumeration, have to be simulated for each machine tajonality that takes and produces relevant inputs and outputs at all
verify whether the implementation is in B-relation with the time points.
specification. Experimental results are presented. Our strategy of verifying the functionality of the implementa-
1 Introduction tion against that of the specification involves implicit state enu-
We address the problem of automatically verifying largeeration techniques as described in [CBM89]. We characterize
digital designs at the logic level, against high-level specifitae pipelined and unpipelined microprocessor a@efinite
tions. The work described in this paper focuses on verifigechinegi.e., a machine in which for some constinthe out-
tion of a class of synchronous machines, naméaglined put of the machine depends only on the kasputs) for verifica-
Microprocessors tion purposes. We show in Section 3 that only a small number of
Procedures for verifying strict input/output equivalenegcles, rather than exhaustive traversal, have to be simulated for
between two Finite State Machines (FSMs) were introdu€@¢h machine to verify correctness using hrelation. Thep-
in [CBM89]. This involved exhaustively traversing the Statelation can be used to model changes in pipelined execution due
Transition Graph of the product of the two machines, ustagdata hazards and control transfer instructions. This makes our
implicit state enumeration techniques. Recently, these pragethodology viable for large digital systems with complex pipe-
dures were extended to allow for differences in the input/dines.
put behavior of the specification and implementation This paper is organized as follows. Section 2 contains prelim-
[AAD91]. A relation is established between the input/outpgngries on string function relations, and symbolic simulation of
behavior of the implementation and specification. The redgnchronous machines. In Section 3, we characterize micropro-
tion corresponds to changes in the input/output behavior tessors as definite machines and state some of their properties
frequently result from a behavioral or sequential logic syhat are essential for verification purposes. Section 4 contains the
thesis step. It is then possible to automatically verify whethesthodology used for verifying the pipelined processor imple-
the implementation satisfies the relation with the specific@entation against the unpipelined specification. In Section 5, we
tion. present experimental results. In Section 6, we conclude with a
Theorem-proving techniques (such as in [Hun85ymmary of our work and give directions for future work in this
[Coh88] and [Joy88]) are more powerful than the appro&ka.
of [AAD91], however they typically require extensive user preliminaries
interaction. These techniques contain the best-known exgm- ., . : .
ples of formally verified processors, but are extremely sifnd String Function Relations .
ple designs, which are generally unpipelined. Human-guided! NiS section presents the formal correctness requirement we
theorem provers described in [Ros92] and [SB90] have b¥@hfy. in the form of a relation between the implementation and
successful in verifying pipelined processors, but in thdde specification. The relation corresponds to changes in the
amount of labor was required. A much more automatic teggduential logic synthesis step. Formally, we take both the speci-
nique is described in [LC91], but is not applicable to pipt&ation and implementation to be synchronous machines. Syn-

chronous machines realize a certain string function, f2s2 Binary Decision Diagrams and Symbolic Simulation
introduced in [Bro89]. They map a sequence (string) of inputwe verify thep-relation between the implementation and the
values into a sequence of output values. specification by traversing the state space and enumerating the
With X as alphabet, the set of strings, is defined as thestates for each machine. We sisymbolic simulatiorof logic
set of all finite concatenations of elements of the alphalbstng Reduced Ordered Binary Decision Diagrams (ROBDD's)
We use variables u, v, ... for characters, and X, vy, ... florthis purpose. A more detailed description of ROBDD’s and
strings. The empty string is denoted dyString functions their application to combinational logic verification can be found
are functions fromx to 2 . Useful operations on stringsn [Bry86].
include: For sequential machines, the state transition relation can be
* the concatenation operation, written as ., which concatbtained from the state transition graph and can be expressed in a
nates two strings (or a string and a character), canonical form using ROBDD’s. Given a current set of states,
* alength operation written a1, where[Ix(lis the length image computations are done using the transition relation for
of string X, determining next set of states for the machine. This method
* an operation written as, which takes a character and atraverses the state space of the machine in a breadth-first manner.
number n, and returns n repetitions of the character, We will not elaborate on sequential machine state traversal and
* and an operation written as which takes a string and aenumeration here; a more detailed treatment of this topic is given
number n, and extracts th® pharacter from the string. in [CBM89].
We will use x i..j as an abbreviation for (X).....xL]). 3 Microprocessors as Definite Machines for
An implementation is considered correct with respect to\/erification
a specification, if a certain relation holds between the two ot .
machines. The relation verified in our research is similar3td. Déefinite Machines
the “don’t care times” relationp, which is defined in Definition 3.1.1 (Definite Machine):
[AADO1]. To define theB-relation, a functiorRelevanthas A sequential machin® is called adefinite machinef order

to be defined first. . . W if pis the least integer, such that the present staté czn be
Definition 2.1.1 (Relevant)Z xB - X determined uniquely from the knowledge of the |asbputs to
Relevantg,g) =€ M.
Relevant(x.u,y.v) = Relevant(x,y) ,v=0 A definite machine hainite input memoryOn the other
= Relevant(x,y).u ,v=1 hand, for a nondefinite machine there always exists at least one

The symbolx represents the string Cartesian produbtput sequence of arbitrary length, which does not provide
which combines strings of equal length. TRelevantfunc- €hough information to identify the state of the machine. If a
tion takes a string over an arbitrary alphabet and a Bool@¢hine isi-definite, it is also of finite memory of order equal to
valued string, and returns what remains of the first str@igsmaller thamu. Figure 2 shows a canonical realization f-a
after deleting all values for which there is a 0 in the cor inite machine. A more detailed treatment of definite machines
sponding place in the Boolean valued string. Is given in [Koh78].

Let G be the specification arfd be an implementation. Machine M
Let H be a function that filters out the relevant outputs from

X X1+ Xo X1 [Xu
F andG for verification. Leth be the delay between the out- BTBT ‘Brﬂq ...
put streams of andG. Then the3-relation is defined as fol-
CL

lows. . L
Definition 2.1.2(B-relation):) _ — — _
Let H be a length and prefix preserving string function Fig 2. Canonical Realization of a1-definite machine
from" to B, realizable by some synchronous machine. 3.2 Verification Properties of Definite Machines and
FBynG e OxOX s.t.x[=n, Microprocessors
Relevant (F(x), R n 0 H(X)) = 3.2.1 Verification of Definite Machines
G (Relevant (4...(x 3n), H(x 1...(x 3 n)))). Theorem 3.2.1.1Given twop-definite machines, lgt be the

This definition says that string functioRsandG are in number of possible inputs to eagfdefinite machine. Then the
B-relation if applyingF to an input stream, and then pick- two p-definite machines can be verified with sequences of
ing out the relevant output values, gives the same resuleagth.
applying G to the relevant input values only. Figure 1 gives Proof:

an example of applying tH@relation. HereH is a modulo-2 \We know that the present state qf-definite machine can be

counter anah=1. uniquely determined from the lgstinputs. Since the number of
Specification (G) possible inputs ist, the number of all possible permutations of
8. inputs sequences of lengthis . These sequences will enumer-
X, X X3 vy Y5 % ate all the unique states of each ofjthdefinite machines and the
— v P v v v % corresponding outputs. If the enumerated states and outputs of
the two machines are equivalent, then the two machines are func-
Implementation (F) tionally equivalent for the set @ input sequences.
If the machines are not functionally equivalent evemtif
XX X > L Y2 ¥s o sequences of lengfhproduce equivalent present states and out-
puts of the two machines, then there exists a sequence of length
Fig 1. The B-relation betweenF and G greater tham which produces a different present state or output,

or does not provide enough information to identify the state of
either machine. But then it would make the machine nondefinite

and with non-finite input memory. This is a contradiction ¢hange every clock cycle, and outputs are sampled every clock

the original assumption of havipgdefinite machines. cycle after the firsk-1 cycles. By construction, comparing the
Thus the claim holds true, and twedefinite machines outputs of the logic transformations glvp;;unput sequences of
can be verified witl* sequences of length O length k verifies the functional equivalence of the two
3.2.2 Microprocessors as Definite Machines machines. O
We argue in this section that a microprocessor, pipelined
Y . et ; | Si1
or unpipelined, can be approximated as a definite machine

for verification purposes.

A pipelined microprocessor is designed to hkvape-
line stages to take advantage of instruction level parallelism
to issue a new instruction every cycle. An unpipelined
microprocessor consists of the same stages of execution, Cio
except that a new instruction is issued only after the previous
instruction has completed execution.

Assumek is fixed for now, but our argument will hold for
variablek, e.g., pipelined machines which need more infor- Sy
mation for annulling instructions in delay slots created by Syp= 11111......1
control transfer instruction, and for event handling.

Each of the pipelined and unpipelined microprocessors ' K
are acyclic machines. An instruction is issued, it performs ¢ lg LUy =
the operation and changes the state of the machine, which
could include modifying the instruction pointer, register file Cir
or memory, all of which are completely observable. The only
dependencies are because of register file values. But the recFig 4. Logic Transformation S to Pipelinedk-definite machine $

ister file is completely observable, and differences betwee 4 verification ofk-definite machines with variablek

the two machine executions can be detected (usin@-the |, some pipelined machinek,may vary during execution.
relation as will be shown later). Moreover, in each imples, example, after control transfer instructions, delay slots are
mentation, there ateregister stages, each of which feed infaateq, and instructions in these delay slots have to be annulled.
combinational logic to produce output. The present state %@ﬁectively annul an instruction, the machine may need infor-
output of the machine depends only on the prekaduguts paiion about instructions that may have executed ahead of it.

: (. a
and can be determined uniquely, except for register %ﬁs may increase the order of definiteness of the machine during
dependencies. execution.

Thus microprocessors have finite input memory, and Cangt thek pipeline stages in a pipelined machine, if the target of

be characterized as definite machines for verification QY cyrrent control transfer instruction is known in siage< i <

poses. . . - . k, and is effective in the next cycle, all instructions issued and
3.2.3B-relation for Verification of Definite Machines which are currently in stagds..(i-1) have to be annulled. If an

Theorem 3.2.3.1 Two k-definite machines, one amstruction in delay slog, 1 < q < (i-1) modifies the state of the
unpipelined machine and the other a pipelined machine grithine (i.e., writes registers, modifies program counter etc., in
be verified for functional equivalence using faeelation for the case of a microprocessor) in stagg < j < k, then during
synchronous machines. stagg, instructions-q beyond stagghave to be known to annul

Proof: the instruction. So now, the machine becomes (k, j+i-q}def-

Let & be the pipelinedk-definite machine, andgSthe inite. In the worst case, we havé2k-1)definite machine.
unpipelinedk-definite machine. Logic transformations are Theorem 3.2.4.1A pipelined k-definite machine, wherk
performed on each machine, and string functions are useghties during execution can be verified against an unpipeiined
filter out the relevant outputs produced by each machinedefinite machine, using tierelation for synchronous machines.
relevant inputs for verification using tBerelation. Proof:

_We know that for twdc-definite machines with possible The same logic transformations as shown in Figure 3 and Fig-
inputs, p* distinct sequences of length can verify their yre 4 hold for verifying the two machines, excepp 8as to be
equivalence. We need to show that given the same inagtiified not to include the annulled instruction outputs in the rel-
sequences to the unpipelined and pipelined machines,etight values set for the pipelined machine.

same outputs can be obtained but at different times, and th@et the control transfer instruction hawedelay slots. Then

Fig 3.Logic Transformation Sg: to Unpipelined k-definite machine &,

B-relation can be used to verify their equivalence. , is modified as follows:

For each machindis the latency of each instruction. So Sp=111...11 (as shown in Figure 4)
for both machines, the firkt1 outputs are irrelevam.=k-1 gxcept when an instruction is a control transfer instruction,
N By then the nexm 1's are 0’s, i.e. the instructions are annulled and

_Figure 3 shows the logic transformatiog; Sand the outputs are irrelevant. Any incorrect change in state of the
string function &, to filter the relevant outputs for thenachine, i.e., if any instruction is not annulled, will be detected.
unpipelined machine$ Figure 4 shows the logic transforgg the relevant outputs are filtered out and compared for verify-
mation & and the string function, to filter the relevant jng the functional equivalence of the two machines.
outputs for the pipelined maching. 3-or the unpipelined “the |ength of the sequence in the unpipelined machine
machine, the inputs change evé&rgycles after the PreviouSemainsk, while in the pipelined machine, itisax(k, j+i-q) We

instruction has completed execution, and outputs are Sgifly need sequences as long2ksl wherek-1 instructions are
pled evenyk clock cycles. For the pipelined machine, inputs

annulled. If thed" instruction is a control transfer instruction Thus our original model of a definite machine for the pipe-

with i-1 delay slots, then lined microprocessor is preserved, and the technique mentioned
1. InputUnpipelinedMachinge = InputPipelinedMa-in Theorem 3.2.4 can be used to verify the thdefinite
ching machines. O

XL . L
2. InputUnpipelinedMaching, i = InputPipelinedMa- 4 vferification of Pipelined Microprocessors using
chingy . max (k j+i-q'_ and
|

- _ Symbolic Simulation
3. S;r'g?uts for InputPipelinedMachipg . xi.1 are not rele Our methodology of verification of pipelined microproces-
For instructions for which outputs are relevant, the len ﬁts IS _|n|c?rp_orated hmtc_) SIS [SSM-?-Z]’ a combmatlorr]]al and

of the sequence ik. Therefore, the number of possiblg uential logic synthesis and verification system. The unpipe-
instruction sequencésm‘s‘ where,p is the cardinality of th ned specification and the pipelined implementation are specified
instruction set. But to fill up thiel delay slots, there would,[n a high-level language BDS. These descriptions are then syn-
be pL possible instruction sequences of Ieh'gllh There- hesized into sequential logic using BDSYN, a logic synthesis
fore the number of possible instruction sequences becoﬂfggram’ to obtaislif neth_sts. . . .
XEpkl:pl—l n pk, wherex is the probability of having at least he user has to specify the properties of the machines, which
one control transfer instruction in the original sequencedngfudek to characterize them as definite machines, dritie
lengthk. number of delay slots after each control transfer instruction in the

; : ._pipelined machine. The user also specifies simulation informa-
If zis the number of types of control transfer instructio N : : ; .)
in the instruction set, then ﬁgjn for the two machines, the use of which will be explained in

the sequel.
4.1 Pipelined Microprocessors with fixedk
k k-1 k-1 In this section we consider verification of pipelined micropro-
X = (E) + (E) (1- E) + ..+ (E) (1- E) cessors with fixe#t. The operations performed by such machines
p p p p p would be simple ALU operations, memory operations without

stalls etc. Microprocessors with varialdevill be considered in

3.2.5 Pipelined Microprocessors with Data Hazards S€ction 4.2. . L .

A major effect of pipelining is to change the relative tim- 1€ pseudocode of the algorithm for verification of the pipe-
ing of instructions by overiapping their execution. ngled implementation with the unpipelined specification is given
introduces data hazards. Data hazards occur when the didgfure - . " L
of access to operands is changed by the pipeline versus t e[?r _each machine, the transition relation is computed for
normal order encountered by sequentially executing instrgi¢TPolic simulation. To S|_mul_aiesequen_cei?8f Instructions, we
tions. The possible data hazards are Read After WRgEd to simulate the unpipelined machinekfocycles, and the
(RAW, Write After Read WAR, and Write After Write PiPelined machine fazk-1cycles. o _

(WAW. A more detailed description of data hazards and For each machine, the input specification functions and out-
ways of eliminating them can be found in [PH90]. put filtering functions are computed from the simulation informa-

RAWhazards are the most common hazards and occtiiofy Provided by the user. The input function specifies what
most pipelined microprocessors. We will consider only thé§9uld be the instruction input in a given cycle. For now we are
hazards, since we are evaluating static pipelines, which isdpellating instructions which do not alter the order of definite-
instructions in order and in which each stage executes in'##@s for the pipelined machine for correct execution. For the
cycle, precludingVAWandWARhazards. unpipelined machine, instructidnis fetched in cxﬁlek(l—l)ﬂ,

The problem oRAWhazards can be solved with a sin@1d IS @n input in cycl&(i-1)+2. At the (k(i-1)+2)™ cycle, we
ple hardware technique calldnypassing(or forwarding) cofactor the transition relation outputs with respect to the inputs
which is described in [PH90]. Bypassing results in feedbstieh that the cofactored relation corresponds to all instructions
from one stage of a pipeline to one or more stages preceHiIf do not alter the order of definiteness of the machine, fior all
that one. But this does not alter our definite machine m I <k For the rest of the cycles, the transition relation is
of microprocessors for verification purposes, as shown iniAwothed with respect to the inputs, since in these cycles, the
following theorem. inputs to the rfnacrflur:je_ are |r|r_elev3n_t. For the plpellnl_ed machine,

Theorem 3.2.5.1 Pipelinedk-definite machines with'ﬂStrucu?hm |s| etched in cyc ?’ an 'ﬁ an input in 031031' AL
bypassing can be verified against unpipeliedefinite the (+1)"' cycle, we again cofactor the transition relation outputs
machines using th-relation for synchronous machines as described above. Again, for the rest of the cycles, the transition

Proof: 9 y " relation is smoothed with respect to the inputs, since in these

roor: . . cycles, the inputs to the machine are irrelevant. The boolean for-

Bypass paths provide correct register values to be

; : 4 ; o which specifies the inputs for cofactoring is provided by the
by instructions during execution, and thus facilitate corrggly. P P gisp y

execution of the microprocessor. Without bypass paths, onerpe oytput filtering function specifies the cycle in which the

would need to stall the instructions till the source operagdgiaples, which are specified by the user, need to be sampled for

become available. _ verification. For the unpipelined machine, variables are sampled
Although bypassing results in feedback from one stag%%%%k cycles, while for the pipelined machine, variables are

a pipeline to a stage preceding that, the dependencie led every cvcle after the initial latencwkef cveles.
again due to the register file values, which are observsgb y oy ket cy

AR b ection 4.3 contains a discussion on variables to be observed,
and are allowed for verification purposes. Bypass paths verification of the BDD formulae of these variables.
facilitate these register values to be available at the time

when the instructions require them as source operands.

* Unpipelined Machine:
Verify (U,P,simulationinfo) { In the unpipelined machine, instructigrs input at cycle(i-
/* U is the Unpipelined Network, 1)+2. So we simulate the machine fqi-1)+1 cycles and com-
P is the Pipelined Network */ pute the set of next states, as described in Section 4.1. We get the
'S The Fipeaned reor set of reachable states at each cycle and compute the total set of

Compute input specification function for P; reachable states from the reset sfate.

Compute output filtering function for P; At the (k(i-1)+2)™ cycle, we cofactor the transition relation

Compute transition relation for P; outputs with respect to the inputs that specify that the current set
Simulate Pfor 2k-1 cycles ; of instruction are control transfer instructions. We then compute
If in a simulation cycle, the output filtering the set of states reachable from the current total set given the new

function is 1, sample the specified variables and input. The simulation for the cycles that follow is as described in

add their formulae to the array varP; Section 4.1. Thus we get the instructips specified and only

Compute input specification function for U- the set of states reachable for that instruction will be accounted

b ' ' for in the new total set of reachable states. We simulate the

Compute output filtering function for U; machine forkz cycles.

Compute transition relation for U; Certain control transfer instructions, such as conditional
Simulate U for kZcycles ; branches, sample a value of a status register to decide the next
If in a simulation cycle, the output filtering instruction address. Since we are following an implicit simulation

function is 1, sample the specified variables and strategy, all possible values of the status register are considered,

add their formulae to the array varuU: and the next set of states is computed using this information.

for (i=1,i <K; i=i+1) { The output filtering function for the pipelined machine is

for (L] < NUM_VARS: j=j+1) { modified so as to take into account the delay slots created by the
] ' = = - control transfer instruction in the pipeline and the effect of annul-
verifyBddFormulae (varU[il[jl, varPi[i]); ment of instructions in these delay slots, i.e., sampling of the

if not equal then the two machines are not func- variable formulae is not done at the cycles when the instructions
tionally equivalent and exit; } } } in the delay slots would produce outputs. Moreover, more than
Fig 5. Algorithm for verifying the functional equivalenceof the one ofly can be a control transfer instruction, and accordingly

pipelined and unpipelined microprocessors the next states computations can be done and the output filtering

4.2 Pipelined Microprocessors with variablek function can be specified.

We modify our methodology for verification of pipelined. Let z be the number of control transfer instructions, and we
microprocessors described in Section 4.1 to include pig@aulate one control transfer instruction each time, then the total
lined microprocessors with variable The operations thathumber of simulations required would ki€. In this scheme, in
such pipelined microprocessors can perform would be effé@ch simulation, any one of tkenstructions is one of theecon-
tive annulment of instructions in delay slots of control trari&?! transfer instructions. Having more than one instruction as a
fer instructions, event handling, and so on, in additioncwﬂ:l’m tra_nsfer instruction in a S_ImU|a_t_|0n IS not necessary as the
those performed by microprocessors with fiked particular instruction execution is verified at all of the possble

Letd be the number of delay slots for the control transf@ptruction slots. This improves the efficiency of the methodol-
instruction. Let instruction; be the control transfer instruc®9Y. since it does not require simulating all possible combina-
tion, wherel < i < k. The simulation strategy for the pipelions of these special instructions. o
lined and unpipelined machines is as follows: 4.3 Observing Specific Variables for Verification
* Pipelined Machine: As mentioned earlier, BDD formulae for variables are to be

In the pipelined machine, instructidpis the input at observed during symbolic simulation of each machine at specific
cyclei+1. So we simulate the machine famycles and com- cycles as specified by the output filtering function. The variables
pute the set of next states, as described in Section 4.1. Weode observed for the two machines are specified by the user. For
the set of reachable states at each cycle and compute thes@ghl microprocessor the variables to be observed may include:
set of reachable states from the reset state. * General Purpose Registers,

At the (i+1)th cycle, we cofactor the transition relatiom Instruction Address Register (the Program Counter PC),
outputs with respect to the inputs that specify that the currenMemory Location Contents,
set of instructions are control transfer instructions. The bool-Address to Register File and Memory for Read/Write,
ean formula which specifies the inputs for cofactoring is pro-Instruction Register,
vided by the user. We then compute the set of stateéALU Operation.
reachable from the current total set given the new input. InOnce the simulation is completed, the ROBDD formulae of
the nextd cycles, which are the delay slots, we can compatkspecified variables at each specified cycle for both machines
the next set of reachable states by smoothing away the inprg®btained. The ROBDD formulae of variables in the pipelined
from the transition relation, and thus simulate all possibbachine at a given cycle are verified with the ROBDD formulae
instructions in the delay slots. Thus we get the instrudfioof variables in the unpipelined machine at the corresponding
as specified and only the set of states reachable for d¢iiake using combinational verification techniques as described in
instruction will be accounted for in the new total set [ry86]. Given two logic functions, checking their equivalence
reachable states. The simulation for the cycles that followeduces to a graph isomorphism check between their ROBDD’s
as described in Section 4.1. We simulate the machineGgrandG,, and can be done i6{| (= [G,|) time.

2[k-1+d cycles. This will account for the delay slots in the 4 verification of Complex Pipelined Structures
machine and the verification algorithm will be able to check The methodology for verification of simple pipelined micro-
for proper annuiment. processors can be extended to verify the functionality of micro-

processors with complex control to handle interrupts, traps,The strategy described in this paper is highly automatic and
exceptions and also dynamically scheduled pipelines. Thieauires very little user interaction. This makes the methodology
described in detail in [Bhag93]. A method to verify supex-valuable tool for all hardware design engineers in industry, at

scalar pipelined processors is also described.

5 Experimental Results

To demonstrate the feasibility of our methodology,
performed experiments on two pipelined microprocesrf
designs. The first design, VSM, is a simple RISC pipeli

present and in the future.

There are several opportunities for further work. First, more
Werk can be done in developing better ordering constraints for
pstructing BDD's given a logic circuit, so that symbolic simu-
@%on can be done efficiently. A second topic of fundamental

microprocessor. The VSM is described in [Bhag93]. T[f‘e';earch would be to develop better representations of the transi-

salient features of VSM are as follows:

* Five 13-bit single format instructions.
4-stage static pipeline.

Eight 3-bit general purpose registers.

3-bit ALU operations.

One delay-slot after the branch instruction,
5-bit Instruction Address Register (PC).

To reduce the number of latches, and thus speed up_the

ion relation of sequential machines, to bypass the computational
limitations of BDDs.

Acknowledgements

This research was supported in part by the Advanced
Research Projects Agency under contract N00014-91-J-1698,
and in part by a NSF Young Investigator Award with matching
funds from Mitsubishi and IBM Corporation.

symbolic simulation, we experimented with having only oteferences

general purpose register in the machine, and observed t[AAD91]
read/write addresses to the register file to emulate the effe

of having all eight registers. This improved the efficiency of

our methodology. Simulation time for the unpipelined VSM

was 175 secwhile that for the pipelined VSM w&02 sec [Bhag93]
on a Sun SPARCstation 10. Verification of variable formulaeEBKSQ]
was done using ROBDD-based combinational technique
[Bry86].

The second design, Alphais a subset of the DEC- [Brogd
Alpha™ microprocessor. The Alpfais described in
[Bhag93]. We initially experimented with a full 32-bit design
of the Alphg, but limitations in computational capabilities [Bry86]
of BDD’s compelled us to condense the design, the feature
of which include:

Coh88

e Load/Store RISC architecture, [Cohas]
Sixteen 32-bit fixed format instructions,

5-stage static pipeline, [Coro3]

Thirty-two 4-bit registers,

4-bit ALU operations,

One delay-slot after each control transfer instruction,
5-bit Instruction Address Register. BMS89]
Again, we used the single general purpose register modg

for the Alphg to speed up the symbolic simulation. In order

to reduce the complexity of the machine, we simplified th?

ALU to have only theand, or, andcmpeqoperations, and PHO0]
further have 4-bit operations. The ALU operations issued byungs)
instructions were observed to emulate a fully functionafH
ALU, while the more complex ALU can be verified using [Joy88]
combinational techniques [Bry86]. Simulation time for the
unpipelined Alphgwas23 min while that for the pipelined

Alphag was43 min on a Sun SPARCstation 10. Verification [Koh78]
of variable formulae was done using ROBDD-based combi-
national techniques. [Leo)

6 Summary

The main contribution of this paper is that a sound methig,sg
odology for verification of pipelined processors has been
developed. The primary computation cost in this and other
similar methods is BDD manipulation, and cannot be[Se 87]
directly applied to the verification of large industrial designs. 9
The basic procedures can be used indirectly, and sufficie(gsmoz]
conditions for an overall correctness requirement can be
derived. As was done with the Alghédescribed in Section
5), non-essential combinational logic that increases BDD
size can be discarded for improved efficiency. [SB90]

F. Van Aelten, S.Y. Liao, J. Allen, and S. Devadas, Automatic
Generation and Verification of Sufficient Correctness Proper-
ties for Synchronous Processors. hodeedings of the Int'l
Conference on Computer-Aided Desigoages 183-187,
November 1992.

V. Bhagwati Automatic Verification of Pipelined Micropro-
cessorsS.M. Thesis, MIT, 1993.

S. Bose, and A. Fisher. Verifying pipelined hardware using
symbolic logic simulation. IfProceedings of the IEEE Con-
ference on Computer Desigmages 217-221, 1989.

A. Bronstein MLP: String-Functional Semantics and Boyer-
Moore Mechanism for the Formal Verification of Synchro-
nous Circuits.Ph.D. Dissertation, Stanford, STAN-CS-89-
1293,1989.

R. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. InIEEE Transactions on Computergolume
C-35, pages 677-691, August 1986.

A. Cohn. A Proof of Correctness of the VIPER Microproces-
sor: The First Level. In G. Birtwistle and P.A. Subrahman-
yam, editorsVLSI Specification, Verification and Synthesis
pages 111-128. Kluwer Academic Publishers, 1988.

F. Corella. Automatic high-level verification against clocked
algorithmic specifications. InProceedings of the IFIP
WG10.2 Conference on Computer Hardware Description
Languages and their Application®©ttawa, Canada. April
1993. Elsevier Science Publishers B.V.

O. Coudert, C. Berthet, and J.C. Madre. Verification of
Sequential Machines Using Boolean Functional Vectors. In
IMEC-IFIP Int'| Workshop on Applied Formal Methods for
Correct VLSI Designpages 111-128, November 1989.

J. Hennessy, and D. Pattersd@domputer Architecture A
Quantitative ApproachMorgan Kaufman, 1990.

W. Hunt,FM8501: A Verified Microprocessotniversity of
Texas, Austin, Tech. Report 47, 1985.

J. Joyce. Formal Verification and Implementation of a Micro-
processor. In G. Birtwistle and P.A. Subrahmanyam, editors,
VLSI Specification, Verification and Synthegages 129-
157. Kluwer Academic Publishers, 1988.

Z. Kohavi.Switching and Finite Automata TheoMcGraw
Hill, 1978.

M. Langevin and E. Cerny. Verification of processor-like cir-
cuits. In P. Printetto and P. Camurati, editofslvanced
Research Workshop on Correct Hardware Design Methodol-
ogies June 1991.

A. W. Roscoe. Occam in the specification and verification of
microprocessorsPhilosophical Transactions of the Royal
Society of London, Series A: Physical Sciences and Engineer-
ing, 339(1652):137-151, Apr. 15, 1992.

R. SegalBDSYN: Logic Description TranslatodC Berke-
ley, UCB ERL Memo No. M87/33, May 1987.

E.M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential Circuit
Design Using Synthesis and OptimizationPimceedings of
the Int'l Conference on Computer Design: VLSI in Comput-
ers and Processorpages 328-333, October 1992.

M. Srivas and M. Bickford. Formal verification of a pipelined
microprocessofEEE Software7(5):52-64, September 1990.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

