
Automatic Verification of Pipelined Microprocessors

Vishal Bhagwati Srinivas Devadas
Research Laboratory of Electronics

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

Abstract - We address the problem of automatically verify-
ing large digital designs at the logic level, against high-level
specifications. In this paper, we present a methodology which
allows for the verification of a specific class of synchronous
machines, namely pipelined microprocessors. The specification
is the instruction set of the microprocessor with respect to
which the correctness property is to be verified. A relation,
namely the β-relation, is established between the input/output
behavior of the implementation and specification. The relation
corresponds to changes in the input/output behavior that result
from pipelining, and takes into account data hazards and con-
trol transfer instructions that modify pipelined execution. The
correctness requirement is that theβ-relation hold between the
implementation and specification.

We use symbolic simulation of the specification and imple-
mentation to verify their functional equivalence. We character-
ize the pipelined and unpipelined microprocessors asdefinite
machines (i.e. a machine in which for some constantk, the out-
put of the machine depends only on the lastk inputs) for verifi-
cation purposes. We show that only a small number of cycles,
rather than exhaustive state transition graph traversal and
state enumeration, have to be simulated for each machine to
verify whether the implementation is in β-relation with the
specification. Experimental results are presented.

1 Introduction
We address the problem of automatically verifying large

digital designs at the logic level, against high-level specifica-
tions. The work described in this paper focuses on verifica-
tion of a class of synchronous machines, namelypipelined
microprocessors.

Procedures for verifying strict input/output equivalence
between two Finite State Machines (FSMs) were introduced
in [CBM89]. This involved exhaustively traversing the State
Transition Graph of the product of the two machines, using
implicit state enumeration techniques. Recently, these proce-
dures were extended to allow for differences in the input/out-
put behavior of the specification and implementation
[AAD91]. A relation is established between the input/output
behavior of the implementation and specification. The rela-
tion corresponds to changes in the input/output behavior that
frequently result from a behavioral or sequential logic syn-
thesis step. It is then possible to automatically verify whether
the implementation satisfies the relation with the specifica-
tion.

Theorem-proving techniques (such as in [Hun85],
[Coh88] and [Joy88]) are more powerful than the approach
of [AAD91], however they typically require extensive user
interaction. These techniques contain the best-known exam-
ples of formally verified processors, but are extremely sim-
ple designs, which are generally unpipelined. Human-guided
theorem provers described in [Ros92] and [SB90] have been
successful in verifying pipelined processors, but in these
cases, either the processor was extremely simple or a large
amount of labor was required. A much more automatic tech-
nique is described in [LC91], but is not applicable to pipe-

lined microprocessors. [Cor93] describes a program for
analyzing logical expressions which is used for verifying a non-
pipelined processor, but the problems of specifying pipelined
processors are not addressed in this work. A method for verifica-
tion of pipelined hardware is described in [BK89], which uses an
abstraction functionto map the state of a pipelined machine to an
abstract unpipelined state.

In our approach, the implementation to be verified is a pipe-
lined microprocessor, and is described in a high-level language
similar to BDS [Seg87]. The specification is the instruction set of
the microprocessor with respect to which the correctness prop-
erty is to be verified. It corresponds to an unpipelined implemen-
tation of the same instruction set, and is also described in BDS.
Logic implementations of these descriptions can be synthesized
using a program similar to BDSYN [Seg87]. The correctness
requirement is that aβ-relation holds between the implementa-
tion and specification. Theβ-relation relates a circuit, that pro-
cesses inputs at certain relevant time points, and produces outputs
at certain relevant time points only, to a circuit of similar func-
tionality that takes and produces relevant inputs and outputs at all
time points.

Our strategy of verifying the functionality of the implementa-
tion against that of the specification involves implicit state enu-
meration techniques as described in [CBM89]. We characterize
the pipelined and unpipelined microprocessor asdefinite
machines (i.e., a machine in which for some constantk, the out-
put of the machine depends only on the lastk inputs) for verifica-
tion purposes. We show in Section 3 that only a small number of
cycles, rather than exhaustive traversal, have to be simulated for
each machine to verify correctness using theβ-relation. Theβ-
relation can be used to model changes in pipelined execution due
to data hazards and control transfer instructions. This makes our
methodology viable for large digital systems with complex pipe-
lines.

This paper is organized as follows. Section 2 contains prelim-
inaries on string function relations, and symbolic simulation of
synchronous machines. In Section 3, we characterize micropro-
cessors as definite machines and state some of their properties
that are essential for verification purposes. Section 4 contains the
methodology used for verifying the pipelined processor imple-
mentation against the unpipelined specification. In Section 5, we
present experimental results. In Section 6, we conclude with a
summary of our work and give directions for future work in this
area.

2 Preliminaries
2.1 String Function Relations

This section presents the formal correctness requirement we
verify, in the form of a relation between the implementation and
the specification. The relation corresponds to changes in the
input/output behavior that frequently result from a behavioral or
sequential logic synthesis step. Formally, we take both the speci-
fication and implementation to be synchronous machines. Syn-

chronous machines realize a certain string function, first
introduced in [Bro89]. They map a sequence (string) of input
values into a sequence of output values.

With Σ as alphabet, the set of strings,Σ* , is defined as the
set of all finite concatenations of elements of the alphabet.
We use variables u, v, ... for characters, and x, y, ... for
strings. The empty string is denoted byε. String functions
are functions fromΣ* to Σ* . Useful operations on strings
include:
• the concatenation operation, written as ., which concate-

nates two strings (or a string and a character),
• a length operation written as, where x is the length

of string x,
• an operation written as ↑, which takes a character and a

number n, and returns n repetitions of the character,
• and an operation written as↓, which takes a string and a

number n, and extracts the nth character from the string.
We will use x↓i..j as an abbreviation for (x↓i).....(x↓j).
An implementation is considered correct with respect to

a specification, if a certain relation holds between the two
machines. The relation verified in our research is similar to
the “don’t care times” relation,β, which is defined in
[AAD91]. To define theβ-relation, a functionRelevant has
to be defined first.
Definition 2.1.1 (Relevant):Σ*× B* → Σ* :

Relevant(ε,ε) =ε
Relevant(x.u,y.v) = Relevant(x,y) ,v = 0
 = Relevant(x,y).u ,v = 1
The symbol× represents the string Cartesian product,

which combines strings of equal length. TheRelevant-func-
tion takes a string over an arbitrary alphabet and a Boolean
valued string, and returns what remains of the first string
after deleting all values for which there is a 0 in the corre-
sponding place in the Boolean valued string.

Let G be the specification andF be an implementation.
Let H be a function that filters out the relevant outputs from
F andG for verification. Letn be the delay between the out-
put streams ofF andG. Then theβ-relation is defined as fol-
lows.
Definition 2.1.2(β-relation):

Let H be a length and prefix preserving string function
from Σ* to B*, realizable by some synchronous machine.

F βH,n G ⇔ ∀x ∈ Σ* s.t.x  ≥ n,
Relevant (F(x), R0↑n o H(x)) =
 G (Relevant (x↓1...(x -n), H(x↓1...(x - n)))).
This definition says that string functionsF andG are in

β-relation if applyingF to an input streamx, and then pick-
ing out the relevant output values, gives the same result as
applyingG to the relevant input values only. Figure 1 gives
an example of applying theβ-relation. HereH is a modulo-2
counter andn=1.

Fig 1.The β-relation betweenF and G

Specification (G)

Implementation (F)

x2 x3x1 y1 y2 y3

x1 x2 x3 y1 y3y2

2.2 Binary Decision Diagrams and Symbolic Simulation
We verify theβ-relation between the implementation and the

specification by traversing the state space and enumerating the
states for each machine. We uses symbolic simulation of logic
using Reduced Ordered Binary Decision Diagrams (ROBDD’s)
for this purpose. A more detailed description of ROBDD’s and
their application to combinational logic verification can be found
in [Bry86].

For sequential machines, the state transition relation can be
obtained from the state transition graph and can be expressed in a
canonical form using ROBDD’s. Given a current set of states,
image computations are done using the transition relation for
determining next set of states for the machine. This method
traverses the state space of the machine in a breadth-first manner.
We will not elaborate on sequential machine state traversal and
enumeration here; a more detailed treatment of this topic is given
in [CBM89].

3 Microprocessors as Definite Machines for
Verification

3.1 Definite Machines
Definition 3.1.1 (Definite Machine):

A sequential machineM is called adefinite machine of order
µ if µ is the least integer, such that the present state ofM can be
determined uniquely from the knowledge of the lastµ inputs to
M.

A definite machine hasfinite input memory. On the other
hand, for a nondefinite machine there always exists at least one
input sequence of arbitrary length, which does not provide
enough information to identify the state of the machine. If a
machine isµ-definite, it is also of finite memory of order equal to
or smaller thanµ. Figure 2 shows a canonical realization of aµ-
definite machine. A more detailed treatment of definite machines
is given in [Koh78].

Fig 2.Canonical Realization of a µ-definite machine

3.2 Verification Properties of Definite Machines and
Microprocessors

3.2.1 Verification of Definite Machines
Theorem 3.2.1.1 Given twoµ-definite machines, let π be the

number of possible inputs to eachµ-definite machine. Then the
two µ-definite machines can be verified withπµ sequences of
lengthµ.

Proof:
We know that the present state of aµ-definite machine can be

uniquely determined from the lastµ inputs. Since the number of
possible inputs isπ, the number of all possible permutations of
inputs sequences of lengthµ is πµ. These sequences will enumer-
ate all the unique states of each of theµ-definite machines and the
corresponding outputs. If the enumerated states and outputs of
the two machines are equivalent, then the two machines are func-
tionally equivalent for the set ofπµ input sequences.

If the machines are not functionally equivalent even ifπµ

sequences of lengthµ produce equivalent present states and out-
puts of the two machines, then there exists a sequence of length
greater thanµ which produces a different present state or output,
or does not provide enough information to identify the state of
either machine. But then it would make the machine nondefinite

.........
x x1 x2 xµxµ-1

Machine M

CL
Y

D D D D

and with non-finite input memory. This is a contradiction to
the original assumption of havingµ-definite machines.

Thus the claim holds true, and twoµ-definite machines
can be verified withπµ sequences of length µ. ❑
3.2.2 Microprocessors as Definite Machines

We argue in this section that a microprocessor, pipelined
or unpipelined, can be approximated as a definite machine
for verification purposes.

A pipelined microprocessor is designed to havek pipe-
line stages to take advantage of instruction level parallelism
to issue a new instruction every cycle. An unpipelined
microprocessor consists of the same stages of execution,
except that a new instruction is issued only after the previous
instruction has completed execution.

Assumek is fixed for now, but our argument will hold for
variablek, e.g., pipelined machines which need more infor-
mation for annulling instructions in delay slots created by
control transfer instruction, and for event handling.

Each of the pipelined and unpipelined microprocessors
are acyclic machines. An instruction is issued, it performs
the operation and changes the state of the machine, which
could include modifying the instruction pointer, register file
or memory, all of which are completely observable. The only
dependencies are because of register file values. But the reg-
ister file is completely observable, and differences between
the two machine executions can be detected (using theβ-
relation as will be shown later). Moreover, in each imple-
mentation, there arek register stages, each of which feed into
combinational logic to produce output. The present state and
output of the machine depends only on the previousk inputs
and can be determined uniquely, except for register file
dependencies.

Thus microprocessors have finite input memory, and can
be characterized as definite machines for verification pur-
poses.
3.2.3β-relation for Verification of Definite Machines

Theorem 3.2.3.1 Two k-definite machines, one an
unpipelined machine and the other a pipelined machine can
be verified for functional equivalence using the β-relation for
synchronous machines.

Proof:
Let SF be the pipelinedk-definite machine, and SG the

unpipelinedk-definite machine. Logic transformations are
performed on each machine, and string functions are used to
filter out the relevant outputs produced by each machine on
relevant inputs for verification using theβ-relation.

We know that for twok-definite machines withp possible
inputs, pk distinct sequences of lengthk can verify their
equivalence. We need to show that given the same input
sequences to the unpipelined and pipelined machines, the
same outputs can be obtained but at different times, and the
β-relation can be used to verify their equivalence.

For each machine,k is the latency of each instruction. So
for both machines, the firstk-1 outputs are irrelevant.n = k-1
in βH,n.

Figure 3 shows the logic transformation SG’ and the
string function SH1 to filter the relevant outputs for the
unpipelined machine SG. Figure 4 shows the logic transfor-
mation SF’ and the string function SH2 to filter the relevant
outputs for the pipelined machine SF. For the unpipelined
machine, the inputs change everyk cycles after the previous
instruction has completed execution, and outputs are sam-
pled everyk clock cycles. For the pipelined machine, inputs

change every clock cycle, and outputs are sampled every clock
cycle after the firstk-1 cycles. By construction, comparing the
outputs of the logic transformations givenpk input sequences of
length k verifies the functional equivalence of the two
machines. ❑

Fig 3.Logic Transformation SG’ to Unpipelinedk-definite machine SG

Fig 4.Logic Transformation SF’ to Pipelinedk-definite machine SF
3.2.4 Verification ofk-definite machines with variablek

In some pipelined machines,k may vary during execution.
For example, after control transfer instructions, delay slots are
created, and instructions in these delay slots have to be annulled.
To effectively annul an instruction, the machine may need infor-
mation about instructions that may have executed ahead of it.
This may increase the order of definiteness of the machine during
execution.

Of thek pipeline stages in a pipelined machine, if the target of
the current control transfer instruction is known in stagei, 1 ≤ i ≤
k, and is effective in the next cycle, all instructions issued and
which are currently in stages1...(i-1) have to be annulled. If an
instruction in delay slotq, 1 ≤ q ≤ (i-1) modifies the state of the
machine (i.e., writes registers, modifies program counter etc., in
the case of a microprocessor) in stagej, q < j ≤ k, then during
stagej, instructionsi-q beyond stagej have to be known to annul
the instruction. So now, the machine becomesmax (k, j+i-q)-def-
inite. In the worst case, we have a (2k-1)-definite machine.

Theorem 3.2.4.1A pipelined k-definite machine, wherek
varies during execution can be verified against an unpipelinedk-
definite machine, using theβ-relation for synchronous machines.

Proof:
The same logic transformations as shown in Figure 3 and Fig-

ure 4 hold for verifying the two machines, except SH2 has to be
modified not to include the annulled instruction outputs in the rel-
evant values set for the pipelined machine.

Let the control transfer instruction havem delay slots. Then
SH2 is modified as follows:

SH2 = 1 1 1 . . . 1 1 (as shown in Figure 4)
except when an instruction is a control transfer instruction,

then the nextm 1’s are 0’s, i.e. the instructions are annulled and
outputs are irrelevant. Any incorrect change in state of the
machine, i.e., if any instruction is not annulled, will be detected.
So the relevant outputs are filtered out and compared for verify-
ing the functional equivalence of the two machines.

The length of the sequence in the unpipelined machine
remainsk, while in the pipelined machine, it ismax(k, j+i-q). We
may need sequences as long as2k-1 wherek-1 instructions are

CLG

SH1

.......

00.....0
n

k

I
SH1 = 10..010...010...010...01.......0

n

Y

0 0
1

YRelevant

CLF

SH2

.......

00.....0
n

k

SH2 = 11111.......1

Z

I
0 0

1
ZRelevant

annulled. If thexth instruction is a control transfer instruction
with i-1 delay slots, then
1. InputUnpipelinedMachine1....x = InputPipelinedMa-

chine1....x,
2. InputUnpipelinedMachinex+1......k = InputPipelinedMa-

chinex+i.........max (k, j+i-q), and
3. Outputs for InputPipelinedMachinex+1.....x+i-1 are not rele-

vant.
For instructions for which outputs are relevant, the length

of the sequence isk. Therefore, the number of possible
instruction sequences ispk, where p is the cardinality of the
instruction set. But to fill up thei-1 delay slots, there would
be pi-1 possible instruction sequences of lengthi-1. There-
fore the number of possible instruction sequences becomes
x∗pk∗pi-1 + pk, wherex is the probability of having at least
one control transfer instruction in the original sequences of
lengthk.

If z is the number of types of control transfer instructions
in the instruction set, then

❑
3.2.5 Pipelined Microprocessors with Data Hazards

A major effect of pipelining is to change the relative tim-
ing of instructions by overlapping their execution. This
introduces data hazards. Data hazards occur when the order
of access to operands is changed by the pipeline versus the
normal order encountered by sequentially executing instruc-
tions. The possible data hazards are Read After Write
(RAW), Write After Read (WAR), and Write After Write
(WAW). A more detailed description of data hazards and
ways of eliminating them can be found in [PH90].

RAW hazards are the most common hazards and occur in
most pipelined microprocessors. We will consider only these
hazards, since we are evaluating static pipelines, which issue
instructions in order and in which each stage executes in one
cycle, precludingWAW andWAR hazards.

The problem ofRAW hazards can be solved with a sim-
ple hardware technique calledbypassing (or forwarding),
which is described in [PH90]. Bypassing results in feedback
from one stage of a pipeline to one or more stages preceding
that one. But this does not alter our definite machine model
of microprocessors for verification purposes, as shown in the
following theorem.

Theorem 3.2.5.1 Pipelinedk-definite machines with
bypassing can be verified against unpipelinedk-definite
machines using theβ-relation for synchronous machines.

Proof:
Bypass paths provide correct register values to be used

by instructions during execution, and thus facilitate correct
execution of the microprocessor. Without bypass paths, one
would need to stall the instructions till the source operands
become available.

Although bypassing results in feedback from one stage of
a pipeline to a stage preceding that, the dependencies are
again due to the register file values, which are observable
and are allowed for verification purposes. Bypass paths just
facilitate these register values to be available at the time
when the instructions require them as source operands.

x
z
p

()
k z

p
()

k 1−

1
z
p

−() … z
p

() 1
z
p

−()
k 1−

+ + +=

Thus our original model of a definite machine for the pipe-
lined microprocessor is preserved, and the technique mentioned
in Theorem 3.2.4 can be used to verify the twok-definite
machines. ❑

4 Verification of Pipelined Microprocessors using
Symbolic Simulation
Our methodology of verification of pipelined microproces-

sors is incorporated into sis [SSM92], a combinational and
sequential logic synthesis and verification system. The unpipe-
lined specification and the pipelined implementation are specified
in a high-level language BDS. These descriptions are then syn-
thesized into sequential logic using BDSYN, a logic synthesis
program, to obtainslif netlists.

The user has to specify the properties of the machines, which
include k to characterize them as definite machines, andd, the
number of delay slots after each control transfer instruction in the
pipelined machine. The user also specifies simulation informa-
tion for the two machines, the use of which will be explained in
the sequel.
4.1 Pipelined Microprocessors with fixedk

In this section we consider verification of pipelined micropro-
cessors with fixedk. The operations performed by such machines
would be simple ALU operations, memory operations without
stalls etc. Microprocessors with variablek will be considered in
Section 4.2.

The pseudocode of the algorithm for verification of the pipe-
lined implementation with the unpipelined specification is given
in Figure 5.

For each machine, the transition relation is computed for
symbolic simulation. To simulatek sequences of instructions, we
need to simulate the unpipelined machine fork2 cycles, and the
pipelined machine for2k-1 cycles.

For each machine, the input specification functions and out-
put filtering functions are computed from the simulation informa-
tion provided by the user. The input function specifies what
should be the instruction input in a given cycle. For now we are
simulating instructions which do not alter the order of definite-
ness for the pipelined machine for correct execution. For the
unpipelined machine, instructioni is fetched in cyclek(i-1)+1,
and is an input in cyclek(i-1)+2. At the (k(i-1)+2)th cycle, we
cofactor the transition relation outputs with respect to the inputs
such that the cofactored relation corresponds to all instructions
that do not alter the order of definiteness of the machine, for alli,
1 ≤ i ≤ k. For the rest of the cycles, the transition relation is
smoothed with respect to the inputs, since in these cycles, the
inputs to the machine are irrelevant. For the pipelined machine,
instructioni is fetched in cyclei, and is an input in cyclei+1 . At
the (i+1)th cycle, we again cofactor the transition relation outputs
as described above. Again, for the rest of the cycles, the transition
relation is smoothed with respect to the inputs, since in these
cycles, the inputs to the machine are irrelevant. The boolean for-
mula which specifies the inputs for cofactoring is provided by the
user.

The output filtering function specifies the cycle in which the
variables, which are specified by the user, need to be sampled for
verification. For the unpipelined machine, variables are sampled
every k cycles, while for the pipelined machine, variables are
sampled every cycle after the initial latency ofk-1cycles.

Section 4.3 contains a discussion on variables to be observed,
and verification of the BDD formulae of these variables.

Verify (U,P,simulationInfo) {

/* U is the Unpipelined Network,

 P is the Pipelined Network */

 Compute input specification function for P;

 Compute output filtering function for P;

 Compute transition relation for P;

Simulate P for 2k-1 cycles ;

 If in a simulation cycle, the output filtering
function is 1, sample the specified variables and
add their formulae to the array varP;

 Compute input specification function for U;

 Compute output filtering function for U;

 Compute transition relation for U;

Simulate U for k2 cycles ;

 If in a simulation cycle, the output filtering
function is 1, sample the specified variables and
add their formulae to the array varU;

 for (i=1, i ≤ K; i=i+1) {

 for (j=1, j ≤ NUM_VARS; j=j+1) {

verifyBddFormulae (varU[i][j], varP[i][j]);

 if not equal then the two machines are not func-
tionally equivalent and exit; } } }

Fig 5. Algorithm for verifying the functional equivalence of the
pipelined and unpipelined microprocessors

4.2 Pipelined Microprocessors with variablek
We modify our methodology for verification of pipelined

microprocessors described in Section 4.1 to include pipe-
lined microprocessors with variablek. The operations that
such pipelined microprocessors can perform would be effec-
tive annulment of instructions in delay slots of control trans-
fer instructions, event handling, and so on, in addition to
those performed by microprocessors with fixedk.

Let d be the number of delay slots for the control transfer
instruction. Let instructionIi be the control transfer instruc-
tion, where1 ≤ i ≤ k. The simulation strategy for the pipe-
lined and unpipelined machines is as follows:
• Pipelined Machine:

In the pipelined machine, instructionIi is the input at
cycle i+1 . So we simulate the machine for i cycles and com-
pute the set of next states, as described in Section 4.1. We get
the set of reachable states at each cycle and compute the total
set of reachable states from the reset state.

At the (i+1)th cycle, we cofactor the transition relation
outputs with respect to the inputs that specify that the current
set of instructions are control transfer instructions. The bool-
ean formula which specifies the inputs for cofactoring is pro-
vided by the user. We then compute the set of states
reachable from the current total set given the new input. In
the nextd cycles, which are the delay slots, we can compute
the next set of reachable states by smoothing away the inputs
from the transition relation, and thus simulate all possible
instructions in the delay slots. Thus we get the instructionIi
as specified and only the set of states reachable for that
instruction will be accounted for in the new total set of
reachable states. The simulation for the cycles that follow is
as described in Section 4.1. We simulate the machine for
2∗k-1+d cycles. This will account for the delay slots in the
machine and the verification algorithm will be able to check
for proper annulment.

• Unpipelined Machine:
In the unpipelined machine, instructionIi is input at cyclek(i-

1)+2. So we simulate the machine fork(i-1)+1 cycles and com-
pute the set of next states, as described in Section 4.1. We get the
set of reachable states at each cycle and compute the total set of
reachable states from the reset state.

At the (k(i-1)+2)th cycle, we cofactor the transition relation
outputs with respect to the inputs that specify that the current set
of instruction are control transfer instructions. We then compute
the set of states reachable from the current total set given the new
input. The simulation for the cycles that follow is as described in
Section 4.1. Thus we get the instructionIi as specified and only
the set of states reachable for that instruction will be accounted
for in the new total set of reachable states. We simulate the
machine fork2 cycles.

Certain control transfer instructions, such as conditional
branches, sample a value of a status register to decide the next
instruction address. Since we are following an implicit simulation
strategy, all possible values of the status register are considered,
and the next set of states is computed using this information.

The output filtering function for the pipelined machine is
modified so as to take into account the delay slots created by the
control transfer instruction in the pipeline and the effect of annul-
ment of instructions in these delay slots, i.e., sampling of the
variable formulae is not done at the cycles when the instructions
in the delay slots would produce outputs. Moreover, more than
one ofI1...kcan be a control transfer instruction, and accordingly
the next states computations can be done and the output filtering
function can be specified.

Let z be the number of control transfer instructions, and we
simulate one control transfer instruction each time, then the total
number of simulations required would bek∗z. In this scheme, in
each simulation, any one of thek instructions is one of thez con-
trol transfer instructions. Having more than one instruction as a
control transfer instruction in a simulation is not necessary as the
particular instruction execution is verified at all of the possiblek
instruction slots. This improves the efficiency of the methodol-
ogy, since it does not require simulating all possible combina-
tions of these special instructions.
4.3 Observing Specific Variables for Verification

As mentioned earlier, BDD formulae for variables are to be
observed during symbolic simulation of each machine at specific
cycles as specified by the output filtering function. The variables
to be observed for the two machines are specified by the user. For
each microprocessor the variables to be observed may include:
• General Purpose Registers,
• Instruction Address Register (the Program Counter PC),
• Memory Location Contents,
• Address to Register File and Memory for Read/Write,
• Instruction Register,
• ALU Operation.

Once the simulation is completed, the ROBDD formulae of
all specified variables at each specified cycle for both machines
are obtained. The ROBDD formulae of variables in the pipelined
machine at a given cycle are verified with the ROBDD formulae
of variables in the unpipelined machine at the corresponding
cycle using combinational verification techniques as described in
[Bry86]. Given two logic functions, checking their equivalence
reduces to a graph isomorphism check between their ROBDD’s
G1 andG2, and can be done in |G1| (= |G2|) time.
4.4 Verification of Complex Pipelined Structures

The methodology for verification of simple pipelined micro-
processors can be extended to verify the functionality of micro-

processors with complex control to handle interrupts, traps,
exceptions and also dynamically scheduled pipelines. This is
described in detail in [Bhag93]. A method to verify super-
scalar pipelined processors is also described.

5 Experimental Results
To demonstrate the feasibility of our methodology, we

performed experiments on two pipelined microprocessor
designs. The first design, VSM, is a simple RISC pipelined
microprocessor. The VSM is described in [Bhag93]. The
salient features of VSM are as follows:
• Five 13-bit single format instructions.
• 4-stage static pipeline.
• Eight 3-bit general purpose registers.
• 3-bit ALU operations.
• One delay-slot after the branch instruction,
• 5-bit Instruction Address Register (PC).

To reduce the number of latches, and thus speed up the
symbolic simulation, we experimented with having only one
general purpose register in the machine, and observed the
read/write addresses to the register file to emulate the effect
of having all eight registers. This improved the efficiency of
our methodology. Simulation time for the unpipelined VSM
was 175 sec, while that for the pipelined VSM was 292 sec
on a Sun SPARCstation 10. Verification of variable formulae
was done using ROBDD-based combinational techniques
[Bry86].

The second design, Alpha0, is a subset of the DEC-
Alpha™ microprocessor. The Alpha0 is described in
[Bhag93]. We initially experimented with a full 32-bit design
of the Alpha0, but limitations in computational capabilities
of BDD’s compelled us to condense the design, the features
of which include:
• Load/Store RISC architecture,
• Sixteen 32-bit fixed format instructions,
• 5-stage static pipeline,
• Thirty-two 4-bit registers,
• 4-bit ALU operations,
• One delay-slot after each control transfer instruction,
• 5-bit Instruction Address Register.

Again, we used the single general purpose register model
for the Alpha0 to speed up the symbolic simulation. In order
to reduce the complexity of the machine, we simplified the
ALU to have only theand, or, andcmpeq operations, and
further have 4-bit operations. The ALU operations issued by
instructions were observed to emulate a fully functional
ALU, while the more complex ALU can be verified using
combinational techniques [Bry86]. Simulation time for the
unpipelined Alpha0 was 23 min, while that for the pipelined
Alpha0 was43 min on a Sun SPARCstation 10. Verification
of variable formulae was done using ROBDD-based combi-
national techniques.

6 Summary
The main contribution of this paper is that a sound meth-

odology for verification of pipelined processors has been
developed. The primary computation cost in this and other
similar methods is BDD manipulation, and cannot be
directly applied to the verification of large industrial designs.
The basic procedures can be used indirectly, and sufficient
conditions for an overall correctness requirement can be
derived. As was done with the Alpha0 (described in Section
5), non-essential combinational logic that increases BDD
size can be discarded for improved efficiency.

The strategy described in this paper is highly automatic and
requires very little user interaction. This makes the methodology
a valuable tool for all hardware design engineers in industry, at
present and in the future.

There are several opportunities for further work. First, more
work can be done in developing better ordering constraints for
constructing BDD’s given a logic circuit, so that symbolic simu-
lation can be done efficiently. A second topic of fundamental
research would be to develop better representations of the transi-
tion relation of sequential machines, to bypass the computational
limitations of BDDs.

Acknowledgements
This research was supported in part by the Advanced

Research Projects Agency under contract N00014-91-J-1698,
and in part by a NSF Young Investigator Award with matching
funds from Mitsubishi and IBM Corporation.

References
[AAD91] F. Van Aelten, S.Y. Liao, J. Allen, and S. Devadas, Automatic

Generation and Verification of Sufficient Correctness Proper-
ties for Synchronous Processors. In Proceedings of the Int’l
Conference on Computer-Aided Design, pages 183-187,
November 1992.

[Bhag93] V. Bhagwati.Automatic Verification of Pipelined Micropro-
cessors. S.M. Thesis, MIT, 1993.

[BK89] S. Bose, and A. Fisher. Verifying pipelined hardware using
symbolic logic simulation. InProceedings of the IEEE Con-
ference on Computer Design, pages 217-221, 1989.

[Bro89] A. Bronstein.MLP: String-Functional Semantics and Boyer-
Moore Mechanism for the Formal Verification of Synchro-
nous Circuits.Ph.D. Dissertation, Stanford, STAN-CS-89-
1293,1989.

[Bry86] R. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. InIEEE Transactions on Computers, volume
C-35, pages 677-691, August 1986.

[Coh88] A. Cohn. A Proof of Correctness of the VIPER Microproces-
sor: The First Level. In G. Birtwistle and P.A. Subrahman-
yam, editors,VLSI Specification, Verification and Synthesis,
pages 111-128. Kluwer Academic Publishers, 1988.

[Cor93] F. Corella. Automatic high-level verification against clocked
algorithmic specifications. InProceedings of the IFIP
WG10.2 Conference on Computer Hardware Description
Languages and their Applications, Ottawa, Canada. April
1993. Elsevier Science Publishers B.V.

[CBM89] O. Coudert, C. Berthet, and J.C. Madre. Verification of
Sequential Machines Using Boolean Functional Vectors. In
IMEC-IFIP Int’l Workshop on Applied Formal Methods for
Correct VLSI Design, pages 111-128, November 1989.

[PH90] J. Hennessy, and D. Patterson,Computer Architecture A
Quantitative Approach, Morgan Kaufman, 1990.

[Hun85] W. Hunt,FM8501: A Verified Microprocessor. University of
Texas, Austin, Tech. Report 47, 1985.

[Joy88] J. Joyce. Formal Verification and Implementation of a Micro-
processor. In G. Birtwistle and P.A. Subrahmanyam, editors,
VLSI Specification, Verification and Synthesis, pages 129-
157. Kluwer Academic Publishers, 1988.

[Koh78] Z. Kohavi.Switching and Finite Automata Theory. McGraw
Hill, 1978.

[LC91] M. Langevin and E. Cerny. Verification of processor-like cir-
cuits. In P. Printetto and P. Camurati, editors,Advanced
Research Workshop on Correct Hardware Design Methodol-
ogies, June 1991.

[Ros92] A. W. Roscoe. Occam in the specification and verification of
microprocessors.Philosophical Transactions of the Royal
Society of London, Series A: Physical Sciences and Engineer-
ing, 339(1652):137-151, Apr. 15, 1992.

[Seg87] R. Segal.BDSYN: Logic Description Translator. UC Berke-
ley, UCB ERL Memo No. M87/33, May 1987.

[SSM92] E.M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential Circuit
Design Using Synthesis and Optimization. InProceedings of
the Int’l Conference on Computer Design: VLSI in Comput-
ers and Processors. pages 328-333, October 1992.

[SB90] M. Srivas and M. Bickford. Formal verification of a pipelined
microprocessor.IEEE Software, 7(5):52-64, September 1990.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

