
Though high-level synthesis tools seem to fit nicely into the
traditional top-down VLSI design methodology in which an ab-
stract algorithmic model is transformed into a detailed register
transfer level implementation, there is an important difference
between filling in the details by hand and relying on a high-level
synthesis tool to do so. Unlike the hand-designer, an engineer who
uses a synthesis tool is not likely to be familiar with the specific
register transfer level implementation. Thus, the use of high-level
synthesis tools can effectively inhibit the engineer’s ability to at-
tack design problems or make informed trade-offs at either the
specification or implementation level. A solution to this problem
that we have developed in this research is to expose register
transfer level implementation detail to the engineer, for both
analysis and modification, in terms of the original algorithmic
specification of the system. We introduce a new design abstrac-
tion that can uniformly represent both the input and output of
high level synthesis tools. When coupled with a new type of syn-
thesis tool, the attributed-behavior abstraction can increase the
potential for high-level design space exploration by making syn-
thesis results accessible to the engineer.

1 Introduction
In [2] a synthesis tool called Marionet was introduced that can

accept assertions about relationships between operations in a control-
and-data-flow-graph that must be reflected in any register transfer
level synthesized result. In order to accept these assertions, a general
consistency maintenance technique based on minimality in binary
constraint networks was implemented. Using the information gener-
ated during consistency checking, a new force-directed synthesis
heuristic was described that uniformly accounts for the affect of as-
sertions and of register transfer level design rules on the acceptable
register transfer level design space. The motivation for developing
Marionet was to increase the level of cooperation that is possible be-
tween an engineer and a high level synthesis system during design
space exploration.

In this paper we formalize the goals of the Marionet project by
defining a new high level design abstraction called attributed-behav-
ior, and a synthesis based design methodology based on this new ab-
straction. In Sections 2 and 3, we define the attributed-behavior
abstraction and give a simple example to show how it relates to the
algorithmic and register transfer abstractions that are commonly re-
garded as the input and output of high-level synthesis tools. In Sec-
tion 4 we present our vision of the attributed-behavior based design
methodology in which the engineer develops a complete attributed-
behavior model in cooperation with a general synthesis tool, and pos-

sibly a suite of specialized automated design assistants that can read and
write attributed-behavior specifications.
2 Definitions

An attributed-behavior specification consists of a control-and-
data-flow graph along with a set of relationships in the structural and
temporal domain, calledpath, cost anddelay, that can be imposed upon
features of the graph. These relationships can either be provided by the
engineer in the form of assertions that must be adhered to by the syn-
thesis tool, or they can be filled in as a result of synthesis. In this way,
the engineer and the synthesis tool effectively cooperate in the design
of a complete attributed-behavior specification.

We have identified five features of a data-flow graph that can be
involved in high level relationships. We call these features “semantic-
attributes” because they correspond to the semantic content of lexical
tokens from the original textual algorithmic description, with which the
engineer is most familiar.

FIGURE 1. A Small Example

The five types of semantic-attributes that can appear in an algorith-
mic model are indicated by the small bubbles in the data-flow graph of
Figure 1; they are:
1. Value-reference: r1 “ref(x)”, r 2 “ref(y)”, r 3 “ref(w(2))”, r 4 “ref(z)”

Value-reference semantic-attributes will eventually require re-
sources (multiplexors, busses, or wires) in the register transfer level de-
sign for retrieving operands from storage or from other functional
resources.
2. Operation: o1 “op(-)”, o2 “op(+)”

Operation semantic-attributes require functional resources in the
data-path such as adders, and multi-function ALU’s.
3. Value-creation: c1 “create(w(1))”, c2 “create(v)”

Value creation semantic-attributes require interconnection re-
sources to deliver values to storage resources.

x y

+

z

v

o2

Always
w(1) = x - y
v = w (2) + z

module library

op cost delay

+/- 25 30ns

+/- 15 45ns

mux 5 12ns

clock period 80ns

b1

c2

r3 r4

-
r1 r2

o1

s1

c1

The Attributed-Behavior Abstraction and Synthesis Tools

Lawrence F. Arnstein and Don Thomas
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

4. Value-storage: s1 “store(w(1))”
Value-storage semantic-attributes may require registers or mem-

ories to maintain a value from the time it is created to the time that it
is last consumed.
5. Block-entry: b1 “block(always)”

Block-entry semantic-attributes are similar to basic block entry
points in sequential programming languages. Block-entry attributes
are useful for expressing global temporal relationships. The code
fragment of Figure 1 contains only a single block-entry attribute be-
cause it has no conditional control operations.

In our notation, the subscripted letters{r i,oi,ci,si,bi} refer to se-
mantic-attributes of the corresponding type described above, whileai
refers to a semantic attribute of an unspecified type. In general, there
can be more than one semantic-attributed associated with a given lex-
ical token. An attributed-behavior design contains analgorithmic and
arelational component. The algorithmic component is a textual algo-
rithmic description or a CDFG. The relational component is a set of
expressions that describepath, cost, anddelay relationships between
semantic-attributes as defined below:
1. Path: Captures sequential delay relationships.

The functionpath(ai,aj), evaluates to the difference in clock cy-
cles between the start step (of the life-time) of attributeai and the start
step ofaj. For instance, the statement “o1 ando2 are scheduled into
successive control steps” is the same as the attributed-behavior ex-
pression [path(o1,o2) = 1]. The path function is defined only for static
temporal relationships.
2. Cost: Captures resource cost and sharing relationships.

Then-ary functioncost(a1, a2, ..., an) evaluates to the total cost
of the set of resources utilized by its arguments. If attributesai andaj
share a single resource, then the expressioncost(ai,aj) evaluates to the
cost of just that resource. Otherwise, it evaluates tocost(ai)+cost(aj).
Cost relationships can also be seen as a way to describe a (partial or
complete) partitioning of the semantic-attributes of a behavioral de-
scription. For example, the expression [cost(ai,aj) > cost(ai)] implies
that the two attributes do not share resources in the register transfer
level design, whereas the expression [cost(ai,aj)=cost(ai)] implies
just the opposite, that the two operation attributes share a single re-
source. In the extreme, these partitions become isomorphic to named
resources of a register transfer level model.
3. Delay: Captures combinational delay relationships.

The delay() function evaluates to the delay in continuous time
(not clock cycles) from the start of the first semantic-attribute to the
end of last semantic-attribute in the argument list. Bothpath() andde-
lay() are defined only for static relationships, and only for one or two
arguments. For example, delay(r1) evaluates to the delay of the re-
source (wire, bus, or multiplexor) that is used to transferx to the input
of the subtracter.

What makes the attributed-behavior language different from tra-
ditional algorithmic description languages for high level synthesis is
that an engineer who writes an algorithmic description faces only a
specification problem, whereas one who to writes an attributed-be-
havior description, even a partial one, faces a design problem as well.
This difference is due to the fact that the writer of attributed-behavior
model must consider design rules that govern combinations of path,
cost, and delay relationships, while the writer of an algorithmic mod-
el is only confined by the syntax of the language in expressing the de-
sired functionality.

The design rules that govern combinations of relationships are
similar to those that govern the synthesis of register transfer level
models. For instance, the expression

[(cost(o1,o2)=cost(o1)) && (path(o1,o2) = 0)]
is inconsistent because operations that are scheduled in the same con-
trol step cannot share resources. To illustrate how attributed-behavior
relationships can reflect register transfer level detail, we present two
different sets of relationships and their corresponding register trans-
fer level models for the small example of Figure 1.

Line 1 of Relational Component 1, in Figure 2 above, indicates
that the always block is scheduled into a single clock cycle. This alone
is sufficient to require two separate functional units for the add and sub-
tract operations, as is reflected in the binary cost relationship of line 2.
Expressions printed in light italicized text are redundant with respect to
earlier bold-face expressions. Lines 3 and 4 are also redundant because,
for a schedule length of one, the add and subtract operations must be
scheduled into the same control step (Line 3). Furthermore, in the ab-
sence of functional unit sharing, no multiplexor delay is experienced in
referencing values for the operations (Line 4).

FIGURE 2. Two Implementations

Due to chaining from the subtract to the add operation, at least one
fast/expensive functional unit must be purchased to satisfy the maxi-
mum clock cycle specified in Figure 1. Line 5 indicates that a slow re-
source is used for the subtract operation, so implicitly, a fast one must
be allocated for the add operation as indicated redundantly by Line 6.

In contrast, Relational Component 2 specifies a two step schedule
length for the basic block, so additional expressions are necessary to
specify the resource sharing relationship between the two operations. In
this case, the add and subtract operations share a single multi-functional
unit, giving rise to increased value referencing delays and costs, but de-
creased resource costs. Thus, the trade-off between functional unit area,
schedule length, and combinational critical path, that can be observed
at the register transfer level, can also be observed at the attributed-be-
havior level in terms of the familiar textual algorithmic representation.

The key to the synthesis based attributed-behavior design process
is to allow the engineer to specify only a partial set of relationships
while the synthesis tool is relied upon to produce a full register transfer
level model, which implicitly fills in the remaining relationships. Sup-
pose for instance, that the engineer specifies a two-step schedule and
provides the single assertion [delay(ref(x))=0]. Given a responsive syn-
thesis tool, a new complete design will be found that has different cost
and performance characteristics than the other two. One way to satisfy
these partial requirements is shown in Figure 3.

FIGURE 3. Synthesis from Partial Specifications

To satisfy the zero reference delay requirements expressed by the
engineer, an additional functional unit is allocated to prevent the need
for multiplexors. Though two functional units are allocated, this design
is actually lower in cost than the first design because a fast/expensive
functional unit is not required to meet the cycle length constraint. Fur-

Relational Component 2
1. path(block(always)) = 2 steps
2. cost(op(-),op(+)) = cost(+)
3. cost(op(+)) = 15
4. path(op(-),op(+)) = 1
5. delay(ref(x)) = 12ns
...

Relational Component 1
1. path(block(always)) = 1 step
2. cost(op(-),op(+)) > cost(op(+))
3. path(op(-),op(+)) = 0
4. delay(ref(x)) = 0ns
5. delay(op(-)=45ns
6. cost(op(+)) < 35
...

x y z

v

-

+

x y

-/+

z

w,v

Engineer Provided
1. path(block(always)) = 1 step
2. delay(ref(x)) = 0ns

Tool Provided
3. cost(op(-),op(+)) > cost(op(+)
4. cost(op(+) = 15
5. cost(op(-) = 15

x y z

v

-

+

w

thermore, it is faster than the second design because it has a shorter
minimum clock period due to the reduced reference delay. This
third interesting design point may have been inaccessible without
the control provided by the attributed-behavior language (and re-
sponsive synthesis tool).

Note that the zero reference delay requirement can also be sat-
isfied by re-using registers for intermediate values, thereby trading-
off value-reference delay for value-creation delay. In any case, the
synthesis tool is relied upon to complete the design so that all re-
quirements established by the engineer are satisfied, if such a design
exists.

The synthesis based attributed-behavior design process places
a new demand on high-level synthesis tools: to be responsive to re-
lationships provided by the engineer. In the next section, we re-cast
the high-level synthesis task in term of the attributed-behavior ab-
straction, and compare Marionet, an attributed-behavior synthesis
tool, with other existing high-level synthesis systems in terms of the
degree to which they meet the new requirements of the synthesis
based attributed-behavior design problem.
3 Tools for Attributed-Behavior Design

A synthesis tool that supports a meaningful attributed-behav-
ior design process must be able to produce register transfer level de-
signs that comply with a broad range of relationships from the
general attributed-behavior language described above. The ideal
tool would need to perform two main tasks with respect to an attrib-
uted-behavior specification:verification andsynthesis.

The verification task involves analyzing the set of assertions to
determine if they conflict with each other or imply the violation of
any design rules as defined by the capabilities of a given synthesis
tool. If so, then the specification itself is found to be inconsistent, if
not then the specification is found to be consistent, ensuring that
there exists at least one register transfer level design, and hence a
complete attributed-behavior design, that satisfies all assertions.

The synthesis task is invoked if the specification is found to be
consistent, but not complete. In performing the synthesis task, all of
thepath, cost, anddelay relationships that remain explicitly and im-
plicitly unspecified are filled in by the tool to produce a complete at-
tributed-behavior design. These relationships can be abstracted
form an actual synthesized register transfer level model, as long as
it properly reflects all of the assertions provided by the engineer.
Ideally, the tool will choose a complete design point that is optimal
with respect to the design space that remains after the set of asser-
tions has been accounted for.

Unfortunately, the verification task is NP-complete and the
synthesis task is NP-hard for general attributed-behavior specifica-
tions, requiring us to weaken the ideal attributed-behavior synthesis
tool for practical applications. By limiting the language of asser-
tions that is accepted, it becomes possible to solve the verification
problem in polynomial time, meaning that (1) that all inconsistent
designs are detected and (2) that all consistent designs can be suc-
cessfully completed. Any less ambitious goal, such as a tool that has
the first property but not the second, would probably not be very
useful. On the other hand, achieving optimality in the synthesis task,
even for trivial attributed-behavior specifications (traditional high-
level synthesis) is NP-hard, requiring us to accept less than optimal
results even for a restricted assertion language. In summary, a prac-
tical attributed-behavior synthesis tool should perform the verifica-
tion and synthesis tasks as re-defined below:

Verification: All inconsistent (restricted) attributed-behavior
specifications are detected. For a given assertion language, the ca-
pacity to perform the verification task can be formally proven and
disproven.

Synthesis: Consistent (restricted) attributed-behavior designs
are correctly completed (synthesized) with quality that is compara-
ble to existing state-of-the-art traditional synthesis, with respect to
the design space that remains after accounting for assertions. Unlike

the verification task, the synthesis capabilities of an attributed-behavior
tool are difficult to measure, but results have shown that Marionet does
perform well with and without assertions[4].

By these definitions, any traditional high level synthesis system can
be seen as an attributed-behavior synthesis tool that accepts a restricted
set of assertions. To illustrate this new way of viewing the high level syn-
thesis task, we have categorized some existing synthesis tools based on
classes of assertions for which at least the verification task has been for-
mally proven. We then define a new, more general class of assertions for
which we have developed the verification and synthesis techniques im-
plemented in Marionet, which are fully described and formally proven in
[3].
3.1 Notation

A class of assertions is defined by the types of expressions that are
included. With one exception, all assertions consist of a path, cost, or de-
lay function that is related to a constant by some relational operator. As
an example,Cn(≥) denotes the set ofn-ary cost-based clauses of the form
[cost(a1,a2,..,an) ≥ X] whereX is some constant numerical value. Simi-
larly, P2(≤,≥,=) denotes the set of binary assertions of the form
[path(a1,a2){≤,≥,=}X] where the relational operator can be member of
the indicated set. The notationD1(≤) describes the set of unary delay-
based assertions of the form [delay(a1) ≤ X].

In many cases, an engineer may wish to describe resource sharing
relationships without unduly influencing module type selection. This is
possible with two more types of cost-based assertions called sharing and
partitioning assertions, denotedCn*(=) andCn*(>) respectively. Then-
ary sharing assertion, which takes the form

[cost(a1,a2,a3,...,an) = cost(a1)]
defines a set of semantic-attributes that utilize a single register transfer
level resource, without specifying the exact cost of the resource, and
without excluding other sematic-attributes from using the resource. Sim-
ilarly, then-ary partitioning assertion takes the form

[cost(a1,a2,a3,...,an) > cost(a2,a3,...,an)]
specifically requiring thata1 not share resources with any of the other at-
tributes in the argument list regardless of the specific type of resource
used to implement them. Finally, the notationPg andCg describes the
global schedule length and resource constraints that are common in many
traditional high level synthesis systems. Thus, the maximal class of as-
sertion that can be described in this notation is the set denotedClass A:

{Pg,Cg,(P1,2(³≤,≥,≠),Cn*(=,>),Cn(≤,≥,≠),D1,2(≤,≥,≠)}{o,r,c,s,b}
In some classes, a type of assertion can be applied only to a certain type
of semantic-attribute. To denote such limitations, subscripts from the set
{ o,r,c,s,b} are used to indicate the types of attributes to which the asser-
tion can be applied. For instance, the notationP2(≥){o} describes the set
of binary path assertions that can be applied to pairs of operations. While
interpretation of many expressions in Class A are unambiguous, such as
C2*(>){o}, some expressions are open to interpretation. For instance, how
should aD1(>){s} be interpreted? Perhaps it should apply to the propaga-
tion delay of the storage device. On the other-hand, maybe it makes more
sense to regard it as a constraint on the life-time of the stored-value itself.

Furthermore, some expressions, though unambiguous, do not seem
to be particularly useful. As an example,D1(>){r} assertions can be satis-
fied in two ways. One is to make sure that a multiplexor is used to refer-
ence the value. This could be a difficult request to satisfy, and
furthermore, it is not clear that this capability would ever come in handy.
In the development of Marionet, we have attempted to provide broad
support for expressions that have relatively unambiguous and useful in-
terpretations. In the next section, we define some classes of assertion lan-
guages that are supported by existing synthesis systems, and compare
them to the class currently supported by Marionet.
3.2 Comparison to Existing Synthesis Systems

There are two basic categories into which all high level synthesis
tools can be placed: those that support global resource constraints,Cg,
and those that support global path constraints,Pg. Though some tools al-
low for the simultaneous expression of bothPg andCg they can not guar-
antee successful verification in bounded polynomial time under such

conditions. On top of eitherPg or Cg, many synthesis tools also ac-
ceptP2(≥) primarily for the purpose of specifying correct interface
behavior with other processes or with the external environment. Also
for the purpose of specifying interface behavior, some systems accept
more sophisticated temporal assertions that are described by Classes
F and G shown in Table 1.

Some of the tools referred to in the above table have temporal
constraint handling capabilities or limitations that are not fully cap-
tured by the class of assertions described above. For example, A
unique feature of the algorithm developed by Ku and DeMechelli [7]
is that it accommodates operations that have unbounded delay; this is
useful for modeling external synchronization primitives. Also, the
support for unary delay constraints provided by Camposano and
Kunzmann is limited to sets of constraints that have a hierarchical
block structure. The set of assertions supported by Marionet (Class
H) is shown below, but can be perhaps better understood by consid-
ering the comparison toClass A shown in Table 2.

Class H: {{P1(≥,≤,≠),P2(≥,≤),C1(≥,≤,≠),Cn*(=,>),C2(≥),D1(≥,≤,≠)}{o},
{D1(≤),C1(≤),Cn*(=)}{r,c}}

Also for comparison purposes, Class G and F are also entered in
the table. Marionet is weak in support of assertions that apply to
stored-value attributes. There are two reasons for this: first, like most
high-level synthesis tools, the synthesis tool upon which Marionet
was developed, called SAM[7], emphasizes the scheduling and bind-
ing of operations and associated interconnect hardware, with second-
ary concern for register binding. For this reason, it would be more
difficult to retro-fit the system to support value-storage based asser-
tions. Second, register binding freedom gained by disallowing such
assertions can be used by the algorithm to more optimistically bind
and schedule operations and value transfers in response to supported
assertions. These problems are addressed in greater detail in [3].

Along with the syntactic restrictions imposed on the assertion
language supported by Marionet, there are also some semantic re-
strictions that the model writer must be aware of. For example, a set

TABLE 1. Some Existing Systems

Class Description Representative Systems

B {Pg}{o} Sim. Ann. [6] SAM [5]

C {Cg}{o} Sim. Ann. [6] List [][]

D {Pg,P2(≥)}{o} HAL (FDS)[10]

E {Cg,P2(≥)}{o} SAW (List) [12]

F {Cg,P2(≤,≥)}{o} Ariel[1] Hercules [7]

G {Cg,D2(≤,≥)}{o} Caddy [4]

TABLE 2. Class H: Marionet

Table of
Class A
Assertions

✔ = supported,❍ = not supported
✖ = not defined in this work

Attribute Type

o r c s b
Pg ✖ ✖ ✖ ✖ ✔

P1,2(≤,≥) ✔,F ✔ ✔ ❍ ✖

Cg ❍,G,F ❍ ❍ ❍ ❍

C1(≤),D1(≤) ✔ ✔ ✔ ❍ ❍

C1(≥,≠),D1(≥,≠) ✔ ❍ ❍ ❍ ❍

C2(≥) ✔ ❍ ❍ ❍ ✖

Cn*(=) ✔ ✔ ✔ ❍ ✖

Cn*(>) ✔ ✔ ✔ ❍ ✖

Cn(≤,≥,=) ❍ ❍ ❍ ❍ ❍

D2(≤,≥,=) ❍,G ❍ ❍ ❍ ✖

of n operation attributes that are mutually related by an sharing asser-
tions must have pair-wise non-overlapping initial time-frames forn>2.
This rule prevents the simultaneous expression ofPg and Cg con-
straints. There are a few other semantic restrictions that are more de-
tailed than space allows. However, in all cases, semantic violations can
be detected in polynomial time prior to verification and synthesis. Ad-
herence to the semantic restrictions does not guarantee that a correct
register transfer level design exists, it only guarantees that Marionet
will find such a design if one exists.
4 The Design Process

Figure 4 illustrates the cooperative design process that we envi-
sion. Design space exploration is accomplished by allowing the engi-
neer to express local design requirements that must be satisfied by the
synthesized register transfer level model. Essential to the attributed-be-
havior design process is a responsive synthesis tool that can perform the
verification task for a broad class of assertions, and that can perform the
synthesis task in the presence of assertions as defined in Section 3.

FIGURE 4. The Design Process

Because of the complexity and abstract nature of the relationships
that are important in attributed-behavior design, simply having respon-
sive algorithms is not sufficient to facilitate an effective design process
at this level of abstraction. Along with synthesis algorithms, a design
environment is needed that helps the engineer to understand and manip-
ulate these abstract relationships. Sylver, an attributed-behavior design
environment that has been developed specifically to address these
needs, is based on a mouse driven user interface that allows the engi-
neer to graphically superimpose attributed-behavior relationships (as-
sertions and query results) on the original textual representation. Some
of the main features of Sylver are highlighted below--a more thorough
description can be found in [3].
1. Evaluation and Analysis Tools: Attributed-behavior design analy-
sis involves the derivation and visualization of unspecified relation-
ships that are implicit in a synthesized register transfer level design in
response to queries provided by the engineer. Queries are similar to the
attributed-behavior expressions that we have introduced for assertions,
except that queries can contain free variables of numerical and seman-
tic-attribute data types, and there are fewer restrictions on their con-
struction. In the course of query evaluation, Sylver determines all of
the bindings for the free variables that make the expression true based
on synthesized register-transfer level details. Query results can then be
graphically superimposed on the textual representation. Also included
in the design analysis category are algorithms for design comparison,
and a high-level simulation interface that is similar to a mouse driven
source level debugger for software, but with finer granularity.
2. Modification Tools: Currently integrated into the environment are
simple tools for the editing and observation of assertions. Additionally,
specialized tools that can automatically perform such sub-tasks as
hierarchy extraction[13], architectural partitioning[10], module selec-
tion, etc., can integrated into the Sylver environment simply by
designing them to read and write assertions that reflect design deci-
sions made automatically. The potential for the attributed-behavior

High Level Model

Algorithmic
Component

Relational
Component

RTL
Design
Space

Marionet: A-B Synth.

Sylver Environment:
• Analysis Tools
• Modification Tools
• Framework Services

Synthesis = Completion
of Relational Component

• Graphical Interface

abstraction to support cooperation between the engineer and a suite
of specialized automated design assistants is discussed in [4] and in
greater detail in [3].
3. Framework Services: Design space exploration in the attrib-
uted-behavior domain involves the generation of design alterna-
tives by inheriting and modifying assertions from previous designs.
Thus, we have identified some framework services that are impor-
tant in managing the design process. These include design inherit-
ance to facilitate the generation of new alternatives and design tree
maintenance to facilitate backtracking and design comparison.

In [3] we present a thorough example to demonstrate the attrib-
uted-behavior design concepts implemented in Marionet/Sylver.
We were able address a range of issues that arose in the design of a
cell of a systolic array for nucleotide sequence comparison as de-
scribed in [13]. Examples of design issues that we were able to ad-
dress include pipeline synchronization problems, interconnect
versus functional unit cost and delay trade-offs, and module selec-
tion based cost/performance trade-offs. In addition, we were also
able to correct some idiosyncracies of the synthesis tool having to
do with the scheduling and allocation of dummy functional units for
extracting bit-ranges of values in the data-flow graph. To test the ap-
plicability of attributed-behavior based design concepts on a realis-
tic design problem, the systolic array cell was synthesized using
Marionet/Sylver with a special FPGA/FPIC based hardware archi-
tecture called the RASA Board as the target technology. We found
that high-level assertions had a significant and reasonably predict-
able impact on delay and cost characteristics of final placed and
routed designs [14].
5 Limitations and Future Work

One can imagine some of the useful ways in which the class of
assertions can be extended beyond that which is supported by Mar-
ionet to give engineers even greater control over synthesis results.
For instance, we currently offer no way for the engineer to directly
influence the register-to-register storage and interconnection archi-
tecture. While the constraint network approach used in Marionet
can be extended to allow assertions of this type, there are two prob-
lems. First, the mapping from the algorithmic representation to the
life-times of values is more convoluted than it is for operations, so
it will be more difficult for an engineer to properly express and un-
derstand these types of requirements. Second, the large number of
values, homogeneity of resources that store them (registers) and
long life-times all conspire to make large domains. Marionet, whose
run-time is sensitive to domain size, is perhaps not ideally suited to
dealing with the register binding problem.

Another capability that would greatly increase the expressive-
ness of the assertion language is to allow contingency relations. For
example, the expression [path(x,y)=path(a,b)] is a 4-way relation-
ship that cannot be directly represented in the binary constraint net-
work used by Marionet. However, by further specifying that
path(x,y) is subordinate topath(a,b) the order of scheduling deci-
sions made by the synthesis tool can be influenced, which can be a
powerful way to control synthesis results. Oncepath(a,b)is estab-
lished, the assertion can be handled the same as any other binary
path assertions.

 The support of disjunction in the assertion language would
also be useful, though problematic. For instance, one might like to
specify that an operation shares resources with at least one of a set
of other operations; this can be expressed by a disjunction of sharing
assertions. Unfortunately, the existence of disjunction contributes
significantly to computational complexity. A possible way to deal
with a less structured class of assertions, such as one that includes
n-ary relations or disjunction, would be to apply randomized ap-
proaches like simulated annealing that have been shown to be good
at solving systems of constraints for which known polynomial algo-
rithms do not exist.

In the Sylver environment only complete attributed-behavior spec-
ifications can be simulated or statically interrogated. Thus, to observe the
effect of a new assertion, it is necessary to synthesize a complete design,
thereby bringing to light only one of the many possibilities. It would be
interesting, and probably useful, to allow the engineer to issue queries
about potential relationships in a partial specification. For instance, one
might like to observe the effect on the time-frame of some operation due
to the addition of a single new assertion. This incremental approach to
attributed-behavior design would encourage even greater interaction be-
tween the engineer and the tool.

Acknowledgment
This work was supported by and NSF Graduate Research Fellow-

ship and by NSF Grant # MIP-9112930.
References

[1]Abramson, J.M., Birmingham, W.P.,Binding and Scheduling under
External Timing Constraints: The ARIEL Synthesis System, Techni-
cal Report Number CSE-TR-83-91, Computer Science and Engi-
neering Division, Electrical Engineering and Computer Science
Department, University of Michigan.

[2]Arnstein, L.F., Thomas, D.E., “A General Consistency Technique for
Increasing the Controllability of High Level Synthesis Tools”,Pro-
ceedings of the IEEE/ACM International Conference on Computer
Aided Design, California, November, 1993, pp. 741-744.

[3]Arnstein, L.F.,A High-Level Synthesis Based VLSI Design Methodol-
ogy, Ph.D. Thesis, Department of Electrical and Computer Engineer,
Carnegie Mellon University, Pennsylvania, Dec. 1993.

[4]Arnstein, L.F., Thomas, D.E., “Applications of Attributed-Behavior
Synthesis”, The Proceedings of the 7th IEEE/ACM International
Symposium on High-Level Synthesis, Ontario, April 1994.

[5]Bergamaschi, R.A., Camposano, R., Payer, M., “Scheduling Under
Resource Constraints and Module Assignment”,INTEGRATION,
vol. 12, December 1991.

[6]Camposano, R., Kunzmann, A., “Considering Timing Constraints in
Synthesis From a Behavioral Description”,Proceedings of the Inter-
national COnference on Computer Design, November 1986.

[7]Cloutier, R., “Force Directed Scheduling Allocation and Mapping”,
Proceedings of the 27th ACM/IEEE Design Automation Conference,
pp. 71-76, 1990.

[8]Devadas, S., Newton, A.R., “Algorithms for Hardware Allocation in
Data-Path Synthesis”,IEEE Transactions on Computer Aided
Design, Vol 8., No. 7, July 1989, pp. 768-779.

[9]Ku, D.C., De Michelli, G., Relative Scheduling under Timing Con-
straints: “Algorithms for High Level Synthesis of Digital Circuits”,
IEEE Transactions on Computer Aided Design, Vol 11, No 6, June
1992, pp 696.

[10]Lagnese, E.,Architectural Partitioning for System Level Design of
Integrated Circuits, Ph.D. Thesis, Carnegie Mellon University, ECE
Department, 1989.

[11]Paulin, P.,High Level Synthesis of Digital Circuits Using Global
Scheduling and Binding Heuristics, Ph.D. Thesis, Department of
Electronics, Faculty of Engineering, Carleton University, January
1988.

[12]Powell, P.,Sequence Similarity Algorithms and a Linear Systolic
Implementation, Technical Report TR 89-44, Computer Science
Department, Institute of Technology University of Minnesota, Min-
neapolis, Minnesota, 1989.

[13]Rao, D.S., Kurdahi, F.J., “Hierarchical Design Space Exploration
for a Class of Digital Systems”, IEEE Transactions of Very Large
Scale Integration Systems, Vol 1, No 3, September 1993, pp. 282-
295.

[14]Schmit, H., Arnstein, L.F., Thomas, D., Lagnese, B., “Behavioral
Synthesis for FPGA Based Computing”,IEEE Workshop on FPGA’s
for Custom Computing, April, 1994.

[15]Thomas, D.,The System Architect’s Workbench User’s Guide, Tech-
nical Report CMUCAD-91-42, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, May 1991.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

