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Abstract: We will present the area-e�cient fault-
detection synthesis component of SY NCERE, an
integrated system for synthesizing area-e�cient self-
recovering microarchitectures. In the SY NCERE
model for self-recovery, transient fault detection is
based on duplication and comparison, while recovery
from transient faults is accomplished via checkpoint-
ing and rollback. SY NCERE minimizes the over-
head of duplication using two complementary area-
optimization techniques. Whereas imposing inter-copy
hardware disjointness at a sub-computation level in-
stead of at the overall computation level ameliorates
the dedicated hardware required for the original and
duplicate computations, restructuring the pliable in-
put representation of the duplicate computation fur-
ther moderates the overall hardware.

1 Introduction

The current generation of automotive electronic ICs
have to meet the military-quality and fault-tolerance
goals at commodity prices[1]. Likewise, life-critical ap-
plications such as medical life-support units, and in-
dustrial process controls mandate fault-tolerance. This
growing demand for fault-tolerance coupled with the
inherent unreliability attendant upon VLSI has ele-
vated the design of fault-tolerant VLSI systems into a
research problem of immediate practical relevance.
SY NCERE automates the design of self-recovering

microarchitectures from high level behavioral descrip-
tions by supporting duplication based detection and
checkpointing based recovery. SY NCERE supports
a multidimensional force-directed scheduler that per-
forms area optimization by focusing on the area
overhead of intermediate computations in addition
to the area overhead of the overall computation.
SY NCERE also restructures an input representation
so as to exploit the raggedness of its hardware utiliza-
tion pro�le. Restructuring of an input representation
is automatic and is steered by a multidimensional force
metric. Finally, it exploits the unique features of a
checkpointed computation by identifying selected in-
termediate computations and dedicating hardware for
each of them and their counterparts. Such a strategy
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fosters inter-copy hardware sharing without however
compromising the 100% fault detection capability.

In most high-level synthesis systems, only trade-o�s
between performance and area are explored[2]. Only
recently, newer quality metrics such as testability and
fault-tolerance have been considered at the microarchi-
tectural level. In [5, 3] testability issues were explic-
itly addressed at the microarchitectural level, while in
[4, 6, 8] fault-tolerance issues were explored. Orailo�glu
and Karri[6] have developed heuristic and optimal
strategies for coactive scheduling and checkpoint in-
sertion during self-recovering microarchitecture syn-
thesis. This is in contrast to the heuristic techniques
for scheduling followed by checkpoint insertion pro-
posed in [8]. Along a di�erent dimension, Karri and
Orailo�glu[4] have also developed a system for synthe-
sizing reliable microarchitectures.

The rest of this paper is organized as follows. Sec-
tion 2 outlines our model for self-recovery and presents
the methodology. Section 3 describes an area-e�cient
fault detection mechanism and a scheduling algorithm
that performs area optimization. Additional area op-
timization via 
owgraph restructuring is explored in
Section 4. Section 5 then describes incorporation of
essential fault-detection constraints such as hardware
disjointness between the original and the duplicate
computations. Section 6 summarizes the results of syn-
thesis experiments.

2 The model and the methodology

In our model for self-recovery, partial results from
two copies are compared at a checkpoint (duplica-
tion and comparison), and if they agree, are writ-
ten into the checkpoint registers (checkpointing). On
the other hand, if the results disagree, the compu-
tation rolls back to the previous checkpoint and re-
tries. Checkpoint insertion[6] completely determines
the checkpoints as well as the edges assigned to each
of them. Checkpointing groups clock cycles into check-
point zones. A checkpoint zone is the set of clock cycles
between two adjacent checkpoints. Nodes belonging to
the same checkpoint zone are coeval, while nodes that
are voted upon at a checkpoint are secured. Finally,
a secured node together with its coeval predecessors
form a r�subgraph. We will illustrate these concepts
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Figure 1: Model for self-recovery

using the checkpointed 
ow graph shown in �gure 1.
The �rst checkpoint zone comprises of clock cycles 1
and 2 while the second checkpoint zone comprises of
clock cycles 3 and 4. Nodes 4,5,8,9, and 10 are secured
since their outputs are voted upon at a checkpoint.
The nodes 1,2,3,4, and 5 are coeval. Similarly, the
nodes 6,7,8,9, and 10 are coeval. Subgraphs f1,2,4g,
f2,3,5g, f6,8g, f6,7,9g, and f7,10g are r�subgraphs.
Although each secured node belongs to one and only
one r�subgraph, two or more r�subgraphs can have
commonnodes. For example,r�subgraphs f6,8g, and
f6,7,9g have node 6 in common.
SY NCERE uses a two-pass scheduler. In the �rst

pass, checkpoints are inserted using an edge-based
scheduler[6]. Moreover, the voting area overhead is ex-
plicitly optimized. In the second pass fault-detection
constraints are incorporated. Initially, the original 
ow
graph is scheduled using an aggressive multidimen-
sional force-directed scheduler which performs �ne-
grain area optimization in addition to coarse-grain area
optimization. Subsequently, the duplicate 
owgraph
is restructured using a force-directed transformational
subsystem. However, inorder to compare results from
identical computations at a checkpoint, such 
owgraph
restructuring is con�ned to coeval subgraphs. Finally,
the duplicate 
owgraph is scheduled using a retentive
scheduler that considers (i) hardware utilization char-
acteristics of the original 
owgraph, (ii) sharing be-
tween the original and the duplicate computations, and
(iii) disjointness between the original and the duplicate
r�subgraphs.

3 Multidimensional Scheduling

Traditionally, scheduling algorithms have optimized
the peak hardware consumption of the overall 
ow-
graph (we will refer to this as coarse-grain area op-
timization). However, since the area-e�cient fault
detection mechanism enforces hardware disjointness
at the r�subgraph level, the peak hardware of each
of these r�subgraphs have to be minimized as well.
We will outline a multidimensional analog of the well
known force directed scheduling algorithm[7] that min-
imizes the maximum hardware used both by the orig-
inal 
owgraph as well as by all of its constituent
r�subgraphs (we will refer to this as �ne-grain area
optimization).

In the basic force-directed scheduler, a distribution

graph is set up for each clock cycle i and for each op-
eration type j as given by equation 1 where Fk is the
number of clock cycles that node k (of type j) can be
feasibly assigned to.

DG(i; j) =
X

type(k)=j

1

Fk
8k (1)

Next, a node is assigned to a clock if it yields the
minimum force[7]. Themultidimensional force-directed
scheduler extends and supplements the traditional
coarse-grain area optimization with �ne-grain area op-
timization. Fine-grain area optimization is accom-
plished by assigning a node to a clock that addition-
ally minimizes the peak hardware usage of each of the
r�subgraphs to which the node belongs. Fine grain
distribution graphs called the r�distribution graphs
are computed for each r�subgraph. r�forces of as-
signing a node to a clock are computed {one for each
r�subgraph to which the node belongs to{ by using
the corresponding r�distribution graphs. LetR1,R2,
.., Rn be the r�subgraphs to which the node belongs
to. Let F1, F2, .., Fn be the corresponding r�forces
resulting from assigning node to clock, and FO be the
overall force. The total force F(node; clock) of assign-
ing node to clock is given by equation 2.

F(node; clock) = FO(node; clock)+
X

node2Ri

Fi(node; clock)

(2)
The bene�ts of such �ne grain area optimization

can be illustrated. Consider �gure 2a with a check-
point inserted at the clock boundary 4-5. A coeval
subgraph (belonging to the �rst checkpoint zone) com-
prising of three disjoint r�subgraphs (r�subgraph1
= f8,6,3,4,1,2g, r�subgraph2 = f9,6,7,3,4,5,1,2g,
and r�subgraph3 = f13,12,11,10g) is also shown.
All nodes are color coded to highlight their re-
spective r�subgraph membership. Observe that
r�subgraph1 and r�subgraph2 have some opera-
tions common to them. All of these r�subgraphs
should be scheduled into the �rst checkpoint zone
alone. Traditional force-directed scheduling does not
discriminate between the assignment of operation 3 to
clock cycle 1, operation 5 to clock cycle 1, operation
10 to clock cycle 1 and operation 11 to clock cycle 1 as
all of these assignments have the same force. Hence,
a possible schedule resulting from such a scheduler is
shown in �gure 2b. However, such an assignment re-
sults in peak hardware usage of 3 (for r�subgraph1),
4 (forr�subgraph2), and 2 (forr�subgraph3). How-
ever, a superior schedule that additionally minimizes
the peak hardware usage of each of the r�subgraphs
(2 for r�subgraph1, 3 for r�subgraph2, and 1 for
r�subgraph3) is shown in �gure 2c.

4 Force-Directed Restructuring

The bene�ts of 
owgraph restructuring in the con-
text of self-recovering microarchitecture synthesis can
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Figure 2: Multidimensional force directed scheduling

be illustrated using an example shown in �gure 3.
Consider the 
owgraph on the left hand side box with
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Figure 3: Impact of Flowgraph Restructuring on area
overhead of hardware redundancy based detection

a checkpoint inserted at clock cycle boundary 3-4. The
checkpoint partitions the original computation into
two r�subgraphs enclosed in solid and dotted lines
respectively (in the left hand side box). Straightfor-
ward duplication requires four subtractors. However,
distributivity followed by associativity on the left hand
side r�subgraph and associativity on the right hand
side r�subgraph has resulted in a functionally equiv-
alent 
owgraph (shown in the right hand side box)
requiring only two subtractors. Also, transformations
have been con�ned to within a checkpoint zone. Fur-
thermore, we have annotated all nodes with a func-
tional unit to demonstrate the existence of a feasible
operator binding satisfying the hardware disjointness

constraint.
We implemented a force-directed approach to re-

structuring the duplicate coeval subgraphs. The
candidate transformations are evaluated using a
multidimensional-force metric and a transformation
with the minimum negative force is then invoked. Ini-
tially, global transformations are applied as they im-
prove hardware utilization across clock cycles in ad-
dition to uncovering 
ow graph structures amenable
to local transformations. The multidimensional force
computation described in section 3 is generalized to
derive the force associated with the invocation of a
transformation as follows: Let DGuntrans(i; j) and
DGtrans(i; j) be the distributions of the jth operator
type in the ith clock cycle prior to and after the invoca-
tion of a transformation respectively and let �DG(i; j)
be the di�erence between these distributions computed
using equation 3.

�DG(i; j) = DGtrans(i; j) �DGuntrans(i; j) (3)

In order to incorporate the hardware utilization char-
acteristics of the original scheduled 
owgraph, the dis-
tribution graph of the duplicate 
owgraph is supple-
mented with the hardware utilized by the original copy
(say H(i; j)). The force F of the transformation, is
then obtained using equation 4.

F =
X

8i

X

8j

(H(i; j) +DG(i; j)) ��DG(i; j) (4)

Since the overall hardware is in
uenced by the peak
rather than the per-clock utilization, the force compu-
tation is further enhanced to explicitly optimize the
peak hardware utilization as follows: �DG(i; j) is
modi�ed by substituting the per-clock hardware dis-
tribution DG(i; j) with the current peak committed
hardware as the reference (approximated by the peak
hardware H(j), (= max8jH(i; j)) of the scheduled
original 
owgraph) as given by equation 5.

�DG(i; j) = DGtrans(i; j) �DGuntrans(i; j);

if (DGtrans(i; j) > H(j))

= 0; otherwise (5)

Next, we will describe the incremental derivation of
DGtrans(i; j) for the distributivity transformation.

Consider the untransformed 
owgraph on the left
hand side of the arrow in �gure 4a. Assuming a time
constraint of two clock cycles, the distribution graphs
for the adder and the multiplier are shown below the

ow graph. On the right hand side of the arrow, a
transformed 
ow graph (resulting from the invocation
of distributivity) and the corresponding distribution
graph are shown. Note that the transformed 
ow
graph has a better distribution graph and consequently
a lower force when compared to the original 
ow graph.
Consider the more general 
owgraph structure within
which distributivity can be applied. In �gure 4b, if L1
and R1 are the left and right predecessor subgraphs re-
spectively of the head node (of type �)and if R2 is the
right predecessor subgraph of the tail node (of type 
)
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mulation

of the transformable 
owgraph structure. Then, the
incremental mobilities of the head node, nh, of type
�, with Fnh feasible clocks t1 through tnh and the tail
node, nt, of type 
, with Fnt feasible clocks t1 through
tnt can be computed as shown in �gure 5.

DFGtrans(i;
) = DFGuntrans(i;
) +
2

Fn
h

t1 � i � tn
h

DFGtrans(i;�) = DFGuntrans(i;�)�
1

Fn
h

t1 � i � tn
h

DFGtrans(i;�) = DFGuntrans(i;�) +
1

Fn
t

t1 � i � tnt

DFGtrans(i;
) = DFGuntrans(i;
)�
1

Fn
t

t1 � i � tnt

Figure 5: Mobility Computation for Distributivity

5 Retentive Scheduling

In this �nal step, the multidimensional force-
directed scheduler described in section 3 is supple-
mented with retention and discrimination capabilities.
The retention capability fosters hardware sharing be-
tween the original and the duplicate 
owgraph, by ex-
ploiting the compatibility of their hardware utilization
pro�les. If H1(i; j) is the hardware usage of the jth

type in clock i in the original schedule, andDG2(i; j) is
the hardware distribution graph of the duplicate com-
putation alone, then DG(i; j), the retentive distribu-
tion graph, is given by equation 6.

DG(i; j) = DG2(i; j) +H1(i; j) (6)

Similarly,H1
k(i; j) is the usage of the j

th type of hard-

ware in clock i in the schedule of the kth r�subgraph
in the original computation, and DG2

k(i; j) is the hard-
ware distribution graph of the corresponding dupli-
cate r�subgraph alone, then DGk(i; j), the retentive

r�distribution graph, of the kth r�subgraph is given
by equation 7.

DGk(i; j) = DG2
k(i; j) +H1

k(i; j) (7)

The retention capability is supplemented with discrim-
ination that promotes hardware sharing only if such

sharing does not compromise 100% fault-detection ca-
pability of the resulting microarchitecture. 100% fault-
detection necessitates dedicated hardware for the orig-
inal and the duplicate computations, and can be en-
forced by substituting the per-clock cycle hardware
usage in equation 6 with the peak hardware usage.
However, since straightforward duplication entails sig-
ni�cant hardware overhead, SY NCERE imposes the
inter-copy hardware disjointness only at the granular-
ity of r�subgraphs as given in equation 8.

DGk(i; j) = DG2
k(i; j) + max

8i
H1

k(i; j) (8)

Such a discriminating retention promotes hardware
sharing between the original and the duplicate com-
putations without however compromising on the 100%
fault-detection capability of the resulting microarchi-
tecture.

6 Experimental Results

We will now evaluate the SY NCERE approach to
optimizing the area overhead of hardware redundancy
based detection on three high level synthesis bench-
marks namely, �fth order elliptic �lter, AR Filter, and
16-tap FIR �lter.

The reduction in hardware due to the proposed
fault-detection scheme are summarized in table 1. The
voting overhead reported in column 3 is an artifact of
the checkpoint insertion phase. Reduction in hardware
vis-a-vis straightforward duplication is then computed
in column 6. A schedule for the elliptic �lter, cor-
responding to the second row in table 1, is shown in
�gure 6. The hardware savings were 16.67% for the
adders and 25% for the multipliers. From this experi-
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Figure 6: 16 Clocks; Retry period=14

ment it can be concluded that performance remaining
invariant the savings in hardware varies inversely as



EX # Retry # # of Modules % Red'n

Clk V's Copy 1 Overall in Hardw

Ell 16 16 4 3A/1M 5A/2M 16.67/0

ipt 16 14 4 3A/2M 5A/3M 16.67/25

ic 16 12 5 3A/2M 5A/3M 16.67/25
16 8 5 3A/1M 4A/2M 16.67/00

19 19 4 2A/2M 4A/3M 0.00/25
19 18 3 2A/2M 4A/3M 0.00/25

19 7 6 2A/2M 4A/4M 0.00/00

21 21 5 2A/2M 3A/3M 25.00/25

21 16 5 2A/1M 3A/2M 25.00/00

21 10 5 2A/1M 3A/2M 25.00/00
21 8 5 2A/2M 4A/4M 0.00/00

FIR 10 10 1 2A/2M 4A/4M 00/0.00

10 9 2 2A/2M 4A/3M 00/25.00

10 8 3 2A/2M 4A/3M 00/25.00
10 7 4 2A/2M 4A/3M 0/25.00

9 9 1 2A/2M 4A/4M 0/0

9 8 2 2A/2M 4A/4M 0/0

9 7 4 2A/2M 4A/4M 0/0

AR 10 10 2 2A/3M 4A/5M 0/16.67

10 9 4 2A/4M 4A/8M 0/0

10 8 4 2A/4M 4A/8M 0/0
10 7 4 2A/4M 4A/8M 0/0

Table 1: Area e�cient fault detection

the number of inserted checkpoints. This is because as
more and more checkpoints are inserted, the size of a
checkpoint zone as well as the mobility of the nodes in
the resulting coeval subgraphs decreases.

We will now evaluate the bene�t of 
owgraph re-
structuring. The results of this set of synthesis ex-
periments are summarized in table 2. Reduction in
hardware due to 
owgraph restructuring vis-a-vis area-
e�cient duplication is computed in column 6. Re-
structuring proved extremely bene�cial in synthesizing
area-e�cient designs in the presence of tight perfor-
mance constraints. The bene�ts of restructuring are
however limited by the inserted checkpoints. Specif-
ically, both the clock cycle boundaries where check-
points are inserted as well as the number of check-
points inserted impact the e�ective application and
exploitation of restructuring. Insertion of too many
checkpoints precludes the application of global trans-
formations such as associativity.

7 Conclusion

In SY NCERE the synergies arising out of an area-
e�cient fault-detection technique, e�cient manipula-
tion of algorithmic level design structures, and ag-
gressive area optimization at the microarchitectural
level have been exploited to synthesize area-e�cient

EX # Retry # # of Modules % Red'n

Clks V's no trans trans in Hardw

Ell 14 13 4 6A/4M 6A/4M 0/0

ipt 14 12 4 6A/4M 6A/4M 0/0

ic 14 10 4 6A/4M 6A/3M 0/25.00

FIR 10 9 2 4A/4M 4A/3M 0/25.00

10 8 4 4A/4M 4A/3M 0/25.00

10 3 6 4A/4M 4A/4M 0/00.00

9 9 1 4A/4M 4A/3M 0/25.00
9 8 2 4A/4M 4A/3M 0/25.00

9 7 2 4A/4M 4A/3M 0/0

AR 9 8 6 4A/8M 4A/6M 0/25.00

9 6 6 4A/8M 4A/6M 0/25.00
9 2 6 4A/8M 4A/8M 0/0

Table 2: Impact of Flowgraph Restructuring

self-recovering microarchitectures. Furthermore, since
scheduling is the most important phase in high level
synthesis, aggressive area optimization has been incor-
porated into this phase of fault-tolerant microarchitec-
ture synthesis.
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