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Abstract

System-level partitioning groups processes and vari-
ables in the system speci�cation into modules repre-
senting chips and memories. Communication between
the modules is represented by abstract communication
channels, which are merged and implemented as a bus
to minimize interconnect. Given a set of channels, bus
generation synthesizes the bus structure, by trading o�
the the width of the bus and the performance of the
processes communicating over it. For each channel,
we describe a method to generate protocols that specify
the mechanism of data transfer over the bus. Protocol
generation presented in this paper results in a re�ned
system speci�cation that is simulatable. Both bus-
generation and protocol-generation are demonstrated
on detailed examples.

1 Introduction

A system can be viewed as a set of processes which
communicate with each other over channels. A chan-
nel is an abstract communication medium over which
two processes can transfer data. System partitioning
[1] may group processes and variables in the system
speci�cation into modules. The set of tasks which are
performed to implement communication between the
modules in a system are collectively de�ned as Inter-
face Synthesis. For example, process A in Figure 1 is
mapped to two system modules after system partition-
ing. The variables MEM and STATUS which were
originally declared within process A are now mapped
to processes A1 andA2 respectively in a di�erent mod-
ule. Process A processes reads and writes data to the
variableMEM over channels ch1 and ch2 respectively.
STATUS is accessed over channel ch3. In addition,
to minimize the interconnect cost between the system
modules, system partitioning may group channels to
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variable  STATUS ;.

process  A2

variable MEM : intarray ;.

process  A1

.........
IR <=  MEM(PC);
.........
STATUS <= X"0A";
.........
MEM(AR) <= ACCUM;
..........

process A
variable IR, PC, ACCUM

module 1 module 2

ch1

ch2

ch3

bus B

process A

module 1

module 2

bus B

.........
receive_ch1(PC, IR);
.........
send_ch3("0A");
.........
send_ch2(AR, ACCUM);
..........

process  A2
variable  STATUS;
procedure receive_ch3(...)
      .......

loop
    receive_ch3(STATUS)
end loop;

process  A1
variable MEM : intarray ;
procedure  send_ch1(.....)
     ......
procedure receive_ch2(....)
     .......

....
send_ch1(MEM);
.....
receive_ch2(MEM) ;

8 bits

INTERFACE
SYNTHESIS

variable IR, PC, ACCUM
procedure  receive_ch1(ADDR, DATA)
   .....
procedure send_ch2(...)
   .....
procedure  send_ch3(...)
   .....

ch1 :  A  <− MEM
ch2 :  A  −> MEM
ch3 :  A  −> STATUS

Figure 1: Interface synthesis in overall system design process

be implemented as a single bus. For example, in Fig-
ure 1, channels ch1, ch2 and ch3 have been grouped
into a single bus, B.

A channel is a virtual entity and free of any imple-
mentation details. After interface synthesis, a set of
channels is implemented as a bus consisting of a set of
wires and a protocol de�ning some behavior over the
wires. Given a group of communication channels to be
implemented as a bus, the goal of interface synthesis
is to synthesize the bus structure and protocol with a
view to minimizing the interconnect and maximizing
the performance of the processes communicating over
the bus.

Most previous research e�orts that have exam-
ined interfaces can be classi�ed into two broad cate-



gories. In the �rst category are research e�orts which
have incorporated interface timing constraints into the
scheduling of operations and events within the process
during high-level synthesis. These include ISYN [2],
CONSPEC [3], and Interface Matching [4]. The sec-
ond set of approaches address issues relating to inter-
facing standard components which have incompatible
protocols. Synthesis of transducers was presented in
[5, 6] where, given timing diagrams of two incompati-
ble interfaces, a template matching strategy is used to
assign hardware to behavior. In [7], the two behaviors
being interfaced were speci�ed as Verilog based FSMs
and a cross product of the two FSMs was optimized
to obtain the description of the transducer.

While channels merging was addressed in [4], it was
assumed that all the channels transferred data of iden-
tical bitwidths. In our case, we wish to synthesize
a bus to implement communication between di�erent
processes communicating over abstract channels cre-
ated as a result of system partitioning. In addition, we
seek to examine issues relating to design parameters
external to the process (such as the number of pins
or data transfer rates and their e�ects on performance
of processes). None of the above approaches address
such issues.

In Section 2, we formulate the interface synthesis
problem. Bus and protocol generation are discussed
in Sections 3 and 4. Results of our experiments with
interface synthesis are presented in Section 5. Finally,
we present our conclusions and plans for future work.

2 Problem Formulation

In implementing a group of channels, the goal of in-
terface synthesis should be to synthesize a bus which
has a 100% utilization, i.e., the bus is never idle. Con-
sider two channels A and B which transfer data as
shown in Figure 2. For simplicity, assume that the
4 second time interval shown in the �gure is repre-
sentative of the data transfer over the lifetimes of the
processes which communicate over channels A and B.
The channel average rate, AveRate(C) is de�ned as
the rate at which data is sent over channel C over the
lifetime of the processes communicating over it. Chan-
nels A and B in Figure 2 have average rates of 4 and
12 bits/second respectively. If channels A and B are
merged into a single bus AB, then we can see that the
bus needs to send data at the rate of 16 bits/second to
be able to satisfy the data transfer requirements of the
two original channels A and B. The data items trans-
ferred over the channels have been labeled to make
it easier to associate them with the data transferred
over the shared bus. Consider the data item labeled
B2 transferred at the t=1 second in the original chan-
nel B, which is now transferred on bus AB at t=1.5
seconds. While individual data transfers may be de-
layed due to bus access conicts, the bits transferred
over the individual channels before channel merging
are still sent over the shared bus in the same amount
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Figure 2: Merging channels A and B into bus AB.

of time.

In synthesizing the bus AB in Figure 2, we take
advantage of the fact that the individual channels will
not always be transferring data. We attempt to utilize
the idle time slots of one channel for data transfers of
other channels by synthesizing a bus over which data
is always being transferred at a constant rate.

If the channels before being merged into a bus were
transferring data at a certain average rate, they should
be able to transfer the data over the bus at the same
average rate. This can be achieved if the data transfer
rate BusRate(B), of bus B, is greater than the sum
of the individual channel average rates. Thus,

BusRate(B) �
X

C2B

AveRate(C) (1)

Implementing a group of channels consists of two
tasks: Given a set of channels to be implemented as
a single bus and a set of constraints, interface synthe-
sis consists of two tasks: (1) bus generation which
determines the minimum cost buswidth which will sat-
isfy the data transfer rates of individual channels, and
(2) protocol generation which generates the proto-
cols for data transfer over the bus for each channel.

3 Bus Generation

The bus generation algorithm determines the width
of the bus required to implement a group of channels.
The bus generation algorithm was presented in [8].

Intuitively, the algorithm examines a range of pos-
sible buswidths. For each buswidth, the bus rate and
the channel average rates are computed. If the bus
rate is greater than the sum of the channel average
rates (as explained in Equation 1), then we have a
feasible bus implementation. From the set of feasible
bus implementations, each corresponding to a di�er-
ent buswidth, we select the one which has the least
cost. Briey, the algorithm consists of �ve steps:

(1) Determine buswidth range: The smallest
buswidth examined by the Bus Generation algorithm
is 1 and the largest buswidth examined is equal to the
largest size of message sent by any channel.



For each bitwidth, CurrBW , in the range deter-
mined above, repeat steps 2 and 3.

(2) Compute the bus rate: The bus rate depends
on the delay of the protocol that will be used to im-
plement the data transfer. For a handshake protocol,
we assume that the delay is two clock cycles, thus,

BusRate(B) =
CurrBW

2 � ClockPeriod
(2)

(3) Determine average rates for each channel
For all channels, determine the average rate for the
current buswidth being examined. Estimation of
channel average rates was presented in [8].

If the bus rate, BusRate(B), is greater than the
sum of the average rates of all the channels, then we
have a feasible implementation for the bus. Go to
step 4. If the bus rate, BusRate(B), is less than the
sum of the channel average rates, the bus rate will not
be able to satisfy the performance requirements of the
channels. Go to Step 2 and try with the next buswidth
in the range determined in step 1.

(4)Determine the cost function for CurrBW For
a given set of channels which have been grouped to-
gether to be implemented as a single bus, the designer
can specify constraints and relative weights for the
buswidth, the minimum/maximumvalues of the chan-
nel average and peak rates. The cost of a bus imple-
mentation is calculated as the sum of the squares of
violations of each of the constraints, weighted by the
relative weights speci�ed for them.

(5) Select the buswidth If there were one or more
feasible solutions that were determined at the end of
Step 3, select the buswidth corresponding to the one
with the least cost determined in Step 4. If there were
no feasible solutions at the end of step 3 for all the
buswidths examined, then an implementation for the
group of channels is not possible. Any implementa-
tion for such a group of channels would progressively
delay the processes communicating over the bus. Such
a situation can arise when several channels that have
very high average rate requirements are grouped to-
gether to be implemented as a bus. One solution to
this problem would be to split the group of channels
further to be implemented by more than one bus.

4 Protocol Generation

Once an appropriate buswidth has been selected
to implement the channel group, protocol generation
de�nes the exact mechanism of data transfer over the
bus. A bus consists of three sets of wires.

(1) Data lines are used to send data over the bus.
The number of data lines (i.e., the buswidth) required
can be determined by the bus-generation algorithm or
they can be speci�ed by the system designer. (2)Con-
trol lines are required for synchronization between the

bus B

CH0

CH1

CH2

CH3

behavior  P
     variable AD;
begin 
     .....
     X <= 32 ;
     .....
     MEM(AD) :=  X +  7;
     .....
end ;

behavior  Q
     variable  COUNT;
begin 
     .....
     MEM(60) := COUNT ;
     .....
end ;

variable X :  
     bit_vector(15 downto 0) ;  

variable MEM :  bit_vector
    (63 downto 0, 15 downto 0); 

"00"

"10"

"11"

"01"

Figure 3: Behaviors accessing variables over channels.

behaviors that communicate over the bus. For exam-
ple, a standard handshake protocol requires two con-
trol signals START and DONE. (3) Identi�cation or
mode lines are required to uniquely identify the chan-
nel that is transferring data over the bus at any point
of time. Since the bus control signals are shared by
all channels, such identi�cation (ID) lines are essential
to enable behaviors to recognize when the control sig-
nals over the bus are meant for them. Each channel
in the bus is assigned a unique ID which serves as the
address of the channel.

We shall illustrate protocol generation through a
simple example shown in Figure 3. Variables X and
MEM are accessed by behaviors P and Q. The
dashed lines indicate the assignment of the behaviors
and variables to system components. Channels CH0,
CH1, CH2 and CH3 are grouped into a single bus B
whose width has been determined to be 8 bits. Pro-
tocol generation consists of �ve steps.

1. Protocol selection: Di�erent communication
protocols may be selected for a bus implementation,
such as a full-handshake, half-handshake, �xed-delay
and even hardwired ports. Each of the protocols re-
quire a di�erent number of control lines. For bus B in
Figure 3, a full handshake protocol is selected. Two
control signals, START and DONE, are used to im-
plement the handshaking.

2. ID assignment: If there are N channels imple-
mented on the same bus, log2(N ) lines will be required
to encode the channel ID. Unique IDs are assigned to
each channel. The four channels in Figure 3 require 2
ID lines. Channel CH0 is assigned the ID \00", CH1
is assigned the ID \01" and so on.

3. Bus structure and procedure de�nition: The
structure determined for the bus (i.e. the data, control
and ID lines) is de�ned in the speci�cation. For each
channel mapped to the bus, appropriate send/receive
procedures are generated, encapsulating the sequence
of assignments to the bus control, data and ID lines
to execute the data transfer. Figure 4 shows the dec-
laration of an 8 bit bus, with 2 control lines and 2 ID
lines. The bus, B, is declared to be a global variable
(a signal in the case of VHDL) so that all behaviors
can access it. Behavior P writes to the 16-bit variable



procedure  ReceiveCH0( rxdata : out bit_vector)  is
begin
     for J in 1 to 2 loop
          wait  until  (B.START = ’1’) and (B.ID = "00") ;
          rxdata (8*J−1  downto 8*(J−1)) <= B.DATA ;
          B.DONE <= ’1’ ;
          wait until  (B.START = ’0’) ;
          B.DONE <= ’0’ ;
     end loop;
end ReceiveCH0;

procedure  SendCH0( txdata : in bit_vector)  is
     bus B.ID <= "00" ;
     for J in 1 to 2 loop
          B.data <=  txdata(8*J−1  downto  8*(J−1)) ;
          B.START <= ’1’ ;
          wait until  (B.DONE = ’1’) ;
          B.START <= ’0’ ;
          wait until  (B.DONE = ’0’) ;
     end loop;
end SendCH0;

type  HandShakeBus is record
         START, DONE : bit ;
         ID : bit_vector(1 downto 0) ;
         DATA  : bit_vector(7 downto 0) ;
end record ;

signal  B : HandShakeBus ;

Figure 4: De�ning bus B and send/receive protocols for chan-

nel CH0.

X over channel CH0. Since the buswidth in only 8
bits, procedures SendCH0 and ReceiveCH0 in Fig-
ure 4(b) transfer the 16-bit message associated with
channel CH0 over the bus in two transfers of 8-bits
each.

4. Update variable-references: References to a
variable that has been assigned to another system
component by system partitioning must be updated in
behaviors that were originally referencing it directly.
Accesses to variables are replaced by the correspond-
ing send and receive procedure calls corresponding to
the channel over which the variable is accessed. For ex-
ample, in Figure 3, behavior P writes the value \32" to
variableX directly. ChannelCH0 represents the write
to variableX. The statement ``X <= 32'' is replaced
by the send procedure call ``sendCH0(32)'' as shown
in Figure 5. The statement ``MEM(60) := COUNT'' in
behavior Q is updated to ``sendCH3(60, COUNT)'',
indicating that the value in COUNT is to be written
to address 60 of array MEM .

5. Generate variable processes: In order to obtain
a simulatable system speci�cation, a separate behavior
is created for each group of variables accessed over
a channel. Appropriate send and receive procedure
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process  Q
     variable  COUNT;
begin 
     .....
     SendCH3(60, COUNT);
     .....
end ;

bus B

process   Xproc
     variable  X ; 
begin
     wait  on B.ID;
      if (B.ID="00") then
           receiveCH0(X);
      elsif (B.ID="01" ) then
           sendCH1(X);
      end if;
end;

process   MEMproc
  variable MEM: array(0 to 63); 
begin
     wait  on B.ID;
      if (B.ID="10") then
           receiveCH2(MEM);
      elsif (B.ID="11" ) then
           receiveCH3(MEM);
      end if;
end;

process  P
      variable  AD Xtemp;
begin 
     .....
     SendCH0(32) ;
     .....
     ReceiveCH1(Xtemp);
     SendCH2(AD, Xtemp+7);
     .....
end ;

Figure 5: Re�ned speci�cation after protocol generation.

calls are included in the behavior to respond to access
requests to the variable over the bus. In Figure 3,
the variables X and MEM were assigned to di�erent
system components as shown by the dashed lines. In
Figure 5, behaviors Xproc and MEMproc have been
created for these two variables.

5 Experiments and Results

Interface synthesis presented in this paper has been
been implemented and integrated with the system-
level partitioner presented in [1]. The partitioner
groups the variables, behaviors and channels in a sys-
tem speci�cation into memories, modules, and buses
respectively. We performed several experiments in-
volving the application of the bus generation algo-
rithm to synthesize module interfaces in an answering
machine, an Ethernet network coprocessor and a fuzzy
logic controller [9]. We will present the results for the
fuzzy logic controller (FLC) in greater detail.

EVAL_R0 EVAL_R1 EVAL_R2 EVAL_R3

CONV_R0 CONV_R1 CONV_R2 CONV_R3

CENTROID

CONVERT_FACTS

CONVERT_CTRLINITIALIZE

CHIP 2

CHIP 1

variable  InitMemberFunct : 
        array(1919 downto 0) of integer;
variable  trRu0, trRu1, trRu2, trRu3 : 
        array(127 downto 0 ) of integer;
variable  rule1, rule3 : 
        array(2 downto 0) of integer;

ch1

ch2

channel  ch2 :  process CONV_R2   reading   variable trRu2

channel  ch1 : process EVAL_R3    writing    variable trRu0

bus B

Figure 6: Processes and variables in the FLC partitioned into

two chips

We shall illustrate the Bus Generation algorithm
with the example of interface synthesis in the Fuzzy
Logic Controller [9] of Figure 6. The Fuzzy Logic
Controller consists of two inputs which sense the tem-
perature and the humidity in a room. Depending on
these two inputs, the FLC has 4 rules which are eval-
uated to compute the output signal which determines
the operation of the air conditioning system. System
partitioning mapped the memories (array variables in
the description) which store the membership functions
and fuzzy logic rules in the FLC to a separate chip.
Processes EVAL R3 and CONV R2 of the fuzzy logic
controller (FLC) access the array variables trRu0 and
trRu2 respectively over communication channels ch1
and ch2 that have been merged to be implemented as
a single bus.

Figure 7 shows how the performance of the two pro-
cesses transferring data over bus B is a�ected by the
various bus widths that can be used to implement the
bus. For each bus width, the protocol required for
each channel in the bus was generated. A performance
estimator [10] was then used to obtain the execution
times of the processes. Clearly, as the bus width in-
creases, the execution time for the processes decreases.
Since the two channels each transfer 16 bits of data
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Figure 7: E�ect of bus width on the execution time of processes

EVAL R3 and CONV R2

and 7 bits of address, bus widths greater than 23 pins
do not yield any further improvements in the per-
formance as the data transfer cannot be parallelized
any further. If any performance constraints exist for
these processes, the designer can select an appropriate
buswidth for implementing the bus. For example, by
examining Figure 7, if process CONV R2 has a max-
imum execution time constraint of 2000 clocks, then
only buswidths greater than 4 bits will be considered
by the designer during interface synthesis for imple-
menting the bus.

Min PeakRate (ch2) = 10 bits/clock  (10) 2010

9 18

168

A

B

C

Min PeakRate (ch2) = 10 bits/clock  (2)
Min BusWidth (B) = 14 bits  (1)
Max BusWidth (B) = 16 bits (1)

Min PeakRate (ch2) = 10 bits/clock  (1)
Min BusWidth (B) = 16 bits  (5)
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Bus Constraints (relative weight)
 Selected
 Bus  Rate
(bits/clock)

      Design
Implementation

46

46

46

 Total Bitwidth
 of the channels
       (pins) 

Interconnect
  reduction
       (%)

56 %

61 %

66 %

Selected 
Buswidth
   (pins)

Figure 8: Bus constraints, selected bus width and correspond-

ing bus rates of three implementations of bus comprising ch1

and ch2

To demonstrate how the designer can exercise con-
trol over interface synthesis by specifying appropriate
constraints and weighing them accordingly, the Bus
Generation algorithm was applied with three di�er-
ent sets of constraints. Figure 8 shows the bus con-
straints, selected bus widths, corresponding bus rates
for the three bus designs A, B and C. In each case,
specifying and weighing the constraints appropriately,
the designer can implement the channel group with a
di�erent buswidth For example, in design A of Fig-
ure 8, the designer has speci�ed a minimumpeak rate
for channel ch2 of 10 bits/clock. The minimum cost
function corresponds to a bus width of 20 which is
then used to implement the bus. The reduction in the
number of data lines compared to the case when the
two channels would have been implemented separately
is 56%. In all the three examples, this reduction has
been achieved without sacri�cing any performance of
the processes.

6 Conclusions and Future Work

Communication channels in system-level synthesis
are often grouped together to reduce the interconnect
cost at the module boundaries in a system. In this pa-
per we have presented a method to generate protocols
for implementing a group of communication channels
as a single bus.

Protocol generation presented in this section has
several advantages. First, the re�ned speci�cation
is simulatable and the design functionality after in-
sertion of buses and communication protocols can be
veri�ed. Second, by encapsulating data transfer over
the bus in terms of send and receive procedures, the
description of the behavior remains relatively unclut-
tered as compared to the situation that would arise if
we were to insert the assignments for the control and
data lines at each communication point in the behav-
ior. Finally, if at a later stage another communication
protocol is selected for communication over the bus,
only the bus declaration and send and receive proce-
dures need be changed. The descriptions of the be-
haviors in the system, including the send and receive
procedure calls, remain unchanged.

The work presented in this paper can be extended
in several ways. We plan to study ways in which two or
more channels may transfer data simultaneously over
the same bus by utilizing di�erent sets of data and con-
trol lines. This would be useful in cases when no fea-
sible solution can be found in the range of buswidths
examined. Incorporating protocols other than a full
handshake needs to be studied. In addition, further
work is needed to examine the e�ect of bus arbitration
delays on the performance of processes.
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