
Automatic Synthesis of Pipeline Structures with Variable
Data Initiation Intervals

Hong Shin Jun, Sun Young Hwang

CAD & Computer Systems Lab., Sogang University,

C.P.O. Box 1142, Seoul, Korea

Abstract - In this paper, we propose a novel algorithm for
synthesizing the pipeline structures with variable data initiation
intervals (DIIs). Compared to previous researches where the
pipeline synthesis is confined to those with fixed DIIs, the
proposed algorithm tries to optimize the pipeline latency by fully
utilizing hardware resources to which abstract operations in
high-level design descriptions are assigned.

supported in those systems is confined to the pipeline structures with
fixed DII (Data Initiation Interval).
 Pipeline structures with fixed DII have been widely employed for
their simplicity of control and design. Pipeline structures with
variable DIIs are the generalized form. It is well known that the high
throughput can be obtained with variable DIIs. However, the
complexity of the synthesis algorithm and pipeline control prevent the
pipeline structures with variable DIIs from being utilized in digital
system design. By automating the design of pipeline structures with
variable DIIs, we can obtain hardware designs with higher-
performance in throughput. In this paper, we propose novel
algorithms for synthesizing the pipeline structures with variable DIIs.
In Section 2, pipelining concepts are described. Scheduling, module
allocation for pipeline structures with variable DIIs are presented in
Section 3. Section 4 presents the experimental results for benchmarks
and conclusions are drawn in Section 5.

 Determining time-overlapping of pipeline stages, the proposed
algorithm performs scheduling and module allocation using the
time-overlapping information for the proper control of pipelines
with variable DIIs. Experimental results on benchmarks show
that significant improvement can be achieved both in speed and
in area.

1. Introduction
 High level synthesis is a design automation process that generates
RTL (Register Transfer Level) hardware from behavioral
descriptions. The process consists of two major steps: scheduling and
module allocation. In the scheduling process, a specific time step is
determined for each of the operations in input descriptions such that
the design constraints (area, delay, power consumption, etc.) are
satisfied while the other factors are optimized. In the module
allocation process, operations and variables are assigned to FUs
(Functional Units) and memory units, respectively, and
interconnections among those modules are constructed by buses
and/or multiplexors.

2. Pipelining
 Pipelining takes the approach of splitting the function to be
performed into smaller pieces and allocating separate hardware to
each piece, termed a stage. Pipelining provides a way to start a new
task before an old one has been completed. Hence the completion rate
is not a function of the total processing time, but rather of how soon a
new process can be introduced, i.e., data initiation interval.[5][10]
Pipeline technique is essential for repetitive computations for
consecutive data as in digital signal processing. The higher is the abstraction level of design automation, the wider

is the design space to explore. [6] It is very difficult to devise an
efficient high-level synthesis algorithm that allows exhaustive search
possibilities in the design space. To overcome this problem,
application area of a high-level synthesis system is specified to a
certain target architecture so that the system can synthesize the
datapath optimized in the frame of the target architecture.[1][2]

Tasks

I1

I2

I3

I3

DII

Time (Clock Cycles)

F0 F1 F2 F3 F4

F0 F1 F2 F3 F4

F0 F1 F2 F3 F4

F0 F1 F2 F3 F4

s2 s3 s4s1s0

0 1 32 4 5 6 7 8
 Pipeline structures have been popularly employed for high-
performance system designs. Pipelining is a powerful technique used
for achieving high throughput in digital system.[5] The synthesis of
pipelined datapaths has been addressed in a number of systems;
Sehwa[7], PISYN[3], HAL[9]. each system has its own scheduling
and module allocation algorithm. Sehwa and PISYN systems employ
a list scheduling algorithm using the priority functions based on
urgency and freedom, respectively. HAL system uses a force directed
scheduling algorithm, which constructs a schedule for one operation
in each iteration to make equi-distribution of operations among
control steps for maximal hardware utilization. Target architecture

Fig. 1. Space-time diagram of pipeline with DII = 2.

 Fig. 1 shows the space time-diagram for five-stage pipeline with
DII = 2, where Ij represents the j-th task input and Fi represents the
function executed in stage Si. At time 0, task I1 is entered into the
pipeline and functions F0 and F1 are performed at stages S0 and S1
on I1 in two clock cycles. At time 2, while functions F2 and F3 are
performed on I1, a new task I2 is initiated and functions F0 and F1
are performed on I2. At time 4, another task is entered into the

pipeline, while I1 and I2 are served in functional units F3/F4 and
F1/F2, respectively.

For example, IS = (1,2,1,2) is not an AIS, because there exists an
integer t = 2, which makes the same sequence. Given initiation
sequence can be written IS = (1,2), which is acyclic. In Fig. 1, we can find that functions F0, F2, F4 performed at the

same time, as are functions F1 and F3. We can group the functions
into two clusters; { F0, F2, F4 } and { F1, F3 }. Any functions
belonging to the same cluster cannot be performed at the same FU,
while functions belonging to different clusters can be. Pipeline
partitions are defined to represent the sets of time-overlapping stages
that are executed concurrently on consecutive data. In Fig. 1, sets
{S0, S2, S4} and {S1, S3} are two pipeline partitions. It is noticeable
that the number of pipeline partitions is equal to DII value. It is
impossible for operations in a pipeline partition to share hardware
resources, while operations in different pipeline partitions are
allowed to do so. Most of pipeline synthesis systems employ
scheduling and module allocation algorithms exploiting this fact.

Definition 3. (Initiation Time sequence, IT)
For a given initiation sequence IS = (I0, I1, ..., IL-1), the initiation time
sequence IT is defined as equation (1).

 IT = (t0, t1, ..., tL), t0 = 0, t = Ii j
j=0

i-1

∑ (i ≥ 1) (1)

+ - + - + --

+ - + - + --

+ - + - + --

3. Pipeline Structures with Variable DIIs (a)

+ - + - + --D

+ - + - + --D

+ - + - + --D

+ - + - + --D

A. Background
 Fig. 2 shows the hardware usage for pipeline structures supporting
fixed and variable DIIs. For the 6-stage pipeline whose DII is 2, three
adders and three subtractors are required as shown in Fig. 2 (a). For
efficient utilization of hardware, delay insertion method has been
proposed and used popularly[7]. A pipeline cannot sustain initiations
at the maximum possible rate due to the collisions within the pipeline
that prevent new operations from being initiated at certain crucial
instants of time. By adding delays within the pipeline, it is always
possible to attain maximum performance. Although the delays
lengthen the total transit time through the pipeline, they increase the
rate at which operations terminate if they remove collision that
restricts the initiation rate.[10] By inserting a delay element in the
pipeline of Fig. 2 (a), efficient hardware sharing can be obtained as
shown in Fig. 2 (b). This pipeline structure requires two adders and
two subtractors. Fig. 2 (c) shows the pipeline structure with DIIs
alternating between 1 and 2. In the pipeline, two adders and two
subtractors are required, each of which is fully utilized at all
partitions. It is an efficient structure both in area and in performance.
The throughput is increased from 1/2 to 1/1.5 without much hardware
overhead.

(b)

+1 -1 +2 -2 +3 --3

+1 -1 +2 -2 +3 --3

+1 -1 +2 -2 +3 --3

+1 -1 +2 -2 +3 --3

+1 -1 +2 -2 +3 --3

(c)
Fig. 2. Pipeline structures and hardware utilization. (a) Pipeline
structure with a fixed DII. (b) After delay insertion. (c) Pipeline
structure with variable DIIs.

B. Definitions
Data initiations in the pipeline whose IS = (1, 2) and IT = (0, 1, 3)
are shown in Fig. 3. The number below the absolute time k (in the
second row) represents the total number of data initiations by time k.
The number of data initiations during the time interval corresponding
to a horizontal line segment is equal to the size of IS. As the number
of horizontal line segments by time k, excluding the segment to which
k belongs, is k/t2, the number of data initiations amounts to
k/t2*2. In the horizontal line segment to which time k belongs, two

 In the pipeline structures with fixed DII, the concept of pipeline
partition is important for understanding hardware sharing scheme
and for the design of synthesis algorithms. Several terms are formally
defined, which are needed to describe the proposed algorithm for
synthesizing the pipeline structures with variable DIIs.
Definition 1. (Initiation interval Sequence, IS)
Initiation interval sequence is a sequence which represents varying
DIIs. In the pipeline structure with variable DIIs represented by
initiation interval sequence IS = (I0, I1, ..., IL-1), the i-th task is
initiated at Ii-1 time unit after the (i-1)st task has been initiated. The
size of IS is represented by IS . In the sequence of IS = (I0, I1, ..., IL-

1), IS  is L.

 0

 1

 t 0 1 2

 t *12

 t *22

 t *2  k/t 2

number of

time

0 1 2

0 1 2

0 1 2

k-1 k k+1

2 3 4 5 6 7 8 9 k-2 k-1 k k+11

2 3 4 5 6 7 NI NI NI

 t t

 t t t

 t t t

 t t t

+++

+++

+++

data initiations

(

)(

)

()

Definition 2. (Acyclic IS, AIS)
Initiation interval sequence IS = (I0, I1, ..., IL-1) is an acyclic IS, if and
only if there exists no integer t satisfying

 (I0, I1, ..., IL-1) = (It%L, I(t+1)%L, ..., I(t+L-1)%L), 0 < t < L.

Fig. 3. Data initiations in the pipeline whose IS = (1,2).

data initiations occur. This number is obtained from j + 1, where j is
an integer satisfying tj ≤ k mod t2 < tj+1. In the Figure, we can find
that t1 ≤ k mod t2 < t2 is satisfied and determine j to 1. From this
argument, the number of data initiations can be generalized as
follows.

 NIk = j + 1, s.t. tj ≤ k < tj+1 (5)
 smin,k = k - tj, s.t. tj ≤ k < tj+1 (6)
 Pk = { stages whose index is sn,
 s.t. sn = sn-1 + I(j-n) mod L, s0 = smin,k, 1 ≤ sn ≤ Nstage } (7)

For k1, k2 such that 0 ≤ k1< k2 < tL, if there exists j satisfying tj ≤
k1, k2 < tj+1, Pk1 is different from Pk2. It is due to the fact that their
minimum stage indices smin,k1 and smin,k2 are different. If not, which
means j1 ≠ j2, there is no same sequence starting from different Ii.
Hence Pk1 is different from Pk2. By this argument, it is concluded that
there are Np different pipeline partitions•

For a given initiation sequence IS = (I0, I1, ..., IL-1), and/or initiation
time sequence IT = (t0, t1, ..., tL), the number of data initiations by
time k is obtained by equation (2).
 NIk = L* k/tL + (j +1) (2)
 where j is an integer satisfying tj ≤ k mod tL < tj+1.

 We can represent the stages activated at time k by using the
minimum stage index and the incremental indices. The space-time
diagram for the pipeline of Fig. 3 is shown in Fig. 4. From the figure,
the stages activated at time k are s1, s2, s4, s5. The minimum stage
index is 1 and the incremental indices are 1, 2, 1.

 Fig. 4 also shows the stage overlapping in the 6-stage pipeline with
IS = (I0, I1) = (1,2). The initiation time sequence, IT, is (0, 1, 3) by
equation (1). The number of partitions is 3, which is equal to tL by
Theorem 1. The minimum stage index for each partition can be
calculated by equation (6); smin,0 = 0 - 0 = 0, smin,1 = 1 - 1 = 0, smin,2 =
2 - 1 = 1. The indices of the stages belonging to the pipeline partition
P0 are determined by equation (7). s0 = smin,0 = 0, s1 = s0 + I(0-1) mod 2 =
0 + I1 = 2, s2 = s1 + I(0-2) mod 2 = 2 + I0 = 3, s3 = s2 + I(0-3) mod 2 = 3 + I1 =
5. Thus, P0 becomes { s0, s2, s3, s5 }. In the same way, pipeline
partitions P1 and P2 are calculated, resulting in P1 = { s0, s1, s3, s4 }
and P2 = { s1, s2, s4, s5 }.

Tasks

I(NI

I(NI

Time

s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5

k-1 k k+1

k-1

k

s0 s1 s2 s3 s4 s5

)

) C. Synthesis of pipeline structures with variable DIIs

1) Pipeline Scheduling
 Synthesis of the pipeline structures with variable DIIs consists of
pipeline scheduling, module allocation, and control generation. In the
pipeline scheduling process, the stage is determined for each
operation so that maximal sharing of FU can be achieved. To support
variable DIIs in pipeline scheduling, the pipeline partition formally
defined in section 3.B is derived and utilized for possible resource
sharing. Throughout the scheduling process, the time frame interval
for each abstract operation is calculated and maintained as a
scheduling state. At an intermediate state of the pipeline scheduling
process, each operation has its time frame interval, [bopn,eopn]. The
objective function of the pipeline scheduling is defined as the
measure of equi-distribution of operations to pipeline partitions and
can be calculated by the time frame intervals. The probability that
operations of type 'OP' belong to stage i, pOP(i), is the normalized
form of the distribution graph[9] and is given by equation (8), where
NOP is the number of operations of type OP and Prob(opn, i) is the
probability that an operation 'opn' is scheduled at stage i.

 Fig. 4. Space-time diagram for the pipeline in Fig. 3.

 The minimum stage index is determined by the time difference
between the current time and the last data initiation time. The
minimum index among the stages activated at time k becomes k - (t2
* k/t2 + t1), because the last data initiation occurs at (t2*k/t2 + t1).
This argument can be generalized as follows:
 For a given initiation sequence IS = (I0, I1, ..., IL-1), and/or initiation
time sequence IT = (t0, t1,..., tL), the minimum index of the stages
activated at time k, smin,k, is given by equation (3).
 smin,k = k - (tL* k/tL + tj) (3)
 where j is an integer satisfying tj ≤ k mod tL< tj+1.
 The other stages activated at time k are also determined from the
minimum stage index. For a given initiation sequence IS = (I0, I1, ...,
IL-1), there exists an execution time overlap between stages whose
time difference equals to an initiation interval Ii. The set of stages
activated at time k (pipeline partition) is recursively defined as pOP(i) =

opn OP∈
∑ Prob(opn,i) / NOP , i = 1,...,max_stage (8)

 Pk = { stages whose index is sn,
  1 / (eopn- bopn+1) for eopn ≤ i ≤ bopn s.t. sn = sn-1 + I(j-n) mod L, s0 = smin,k, 1 ≤ sn ≤ Nstage } (4)
 where Prob(opn,i) =  where j is an integer satisfying tj ≤ k mod tL < tj+1, and Nstage is the

number of stages
  0 otherwise
The probability that operations of type OP belong to pipeline partition
Pk is given in equation (9), where the sum is taken over all the stages
in the pipeline partition.

Theorem 1. (Number of pipeline partitions)
In a pipeline structure with the acyclic IS = (I0, I1, ..., IL-1), there are Σ
Ii different pipeline partitions.

P (k) p (i) k = 0, ..., N -1OP OP , p

for all i,
s.t. s Pi k

=
∈

∑ (9)
Proof> From equation (1), TL is equal to Σ Ii. The minimum stage
index at time k+tL, smin,k+tL

 is equal to smin,k as follows. For efficient hardware utilization, a measure of equi-distribution for
each type of operations is defined by an entropy function and given by
equation (10).

 smin,k+tL
 = (k+tL) - (tL* (k+tL)/tL + tj)

 = k - (tL* k/tL + tj) = smin,k

H(OP) = - P (k)logP (k)/logNOP OP p

k=0

N -1p

∑

(10) where j is an integer satisfying tj ≤ k mod tL< tj+1.
Thus, the set of stages activated at time k+tL, Pk+tL

, is equal to Pk. By
restricting k to 0 ≤ k < tL, equations (2), (3), (4) can be simplified and
given by equations (5), (6), (7).

The value of H(OP) lies between 0 and 1. When all the pipeline
partitions have the same probability, H(OP) becomes 1. If the
probability that operations of a given type belong to a pipeline
partition is 1, i.e., when all the operations are concentrated on a
certain pipeline partition, the H(OP) becomes 0. The objective
function for a scheduling state S is the form of weighted sum of the
entropy functions for all operation types and is given by equation
(11), where the weight w(OP) for operation type OP is defined by the
area and the number of appearances of the OP type operations in the
behavioral description. The maximal sharing of a functional unit can
be achieved by maximizing the objective function.

in Fig. 6 (b). From the graph, a pipeline structure requiring two
adders can be designed. One adder performs the virtual operations
(+31, +23, +24) and the other one performs (+14, +15, +32).

+1

+2 +3

+3

+3 +2

+1

+2 +1

1

2

4

4

3

5

(a) (b)

 OF(S) = H(OP)w(OP)∑ (11) Fig. 6. Compatibility graphs. (a) When an operation is executed on an
operator. (b) When virtual operations are used.Neighbor states are new states which are introduced from present

state by reducing the time frame interval of an operation by 1. The
gain for a neighbor state is proportional to the derivative of the
objective function. The priority function of the proposed iterative/
constructive algorithm is the linear approximation of the derivative of
the objective function in time frame interval and is given by equation
(12).

4. Experimental Results
 Fig. 7 shows the synthesized hardware for the pipelined execution
of the tasks shown in Fig. 2 (c). The datapath is presented in Fig. 7
(a) and the controller description in TT format is shown in Fig. 7 (b).
Allocation results for the virtual operations are presented in Table 1. PF(opn) = abs(OF(Sb

opn
) - OF(Se

opn
)) / (eopn - bopn) (12)

.i 2

.o 10

.fb 2

.p 3

11 0111111110
01 0011111001
00 1111110011
.e

 where, [bopn,eopn] is the time frame interval of operation opn, and
Sbopn, Seopn are neighbor states for operation opn whose time frame
interval is changed to [bopn+1,eopn] and [bopn,eopn-1], respectively.

 The proposed scheduling algorithm generates a schedule that uses
the minimum number of FUs while meeting given constraints of the
number of stages and IS. The algorithm is of iterative/constructive
nature in that it constructs schedule incrementally. From the initial
state in which the time frame interval is set by ASAP and ALAP
schedules, a neighbor state with the highest priority function is
selected in each iteration. The scheduling process under the time
constraint in DII and stage number is summarized in Fig. 5.

Step 1: Set the initial scheduling state where the time frame interval of each
 operation is determined by ASAP and ALAP schedulings.
Step 2: Calculate the priority function for each neighbor state.
 For each unfixed operation opn do

(a) (b) Calculate objective function for 2 neighbor states, OF(Sb
opn

) and OF(Se
opn

).
 Calculate priority function PF(opn). Fig. 7. Synthesized hardware for the pipelined execution of tasks

shown in Fig. 2 (c). (a) Datapath (b) Controller description.Step 3: Make transition to the neighbor state with the highest priority function.
Step 4: If there remain unfixed nodes, go to Step 2.

Table 1. Results of functional unit allocation.Fig. 5. Pipeline scheduling algorithm.
FU Function Operations2) Module Allocation of Virtual Operation

ALU1 + +32, +14, +15 Module allocation process generates datapaths after assigning a FU
for each operation, and providing interconnections among FUs using
multiplexors and/or latches. In the process, efforts are made to allow
maximal sharing of FUs. Sharing of a FU is not possible among the
operations belonging to the same pipeline partition. The possibility of
sharing can be modeled in compatibility graph, where vertices denote
operations and edges represent the possibility the possibility of FU
sharing.

ALU2 - -13, -14, -23

ALU3 + +24, +23, +31

ALU4 - -32, -22, -31

 For experiments, synthesis has been performed for the high-level
synthesis benchmark circuits; 16-point FIR filter, 5th order elliptic
filter, and AR filter. Table 2 shows the synthesis results for a 16-
point FIR filter. These results are obtained with the design
constraints of 6-stage pipeline. When fixing DII to 5, synthesized
datapath consists of 4 adders, 2 multipliers, 23 two-input MUXes,
and 46 latches. The gate count of its controller amounts to 32.
Pipelined datapath with initiation sequence of (4,5) needs the same
number of FUs; 4 adders and 2 multipliers. Total gate count has been
increased by 4.6 % due to the overhead in interconnection and
controller area. However, performance gain of 10 % over the pipeline
with fixed DII is obtained. The 5th order elliptic wave filter is
synthesized in pipeline structure with 9 stages. Table 3 shows the

 The graph of Fig. 6 (a) shows the compatibility graph for the
pipeline of Fig. 2 (c). No edges are drawn in the graph. For pipeline
implementation, three adders would be required. However, this could
be improved as follows. For the design of a pipeline with minimal
hardware, virtual operations are introduced. In pipeline, an operation
is multiply instantiated as a virtual operation for each data initiation.
An operation for each data initiation is distinguished by attaching
subscripts for each operation instance. In Fig. 2 (c), the virtual add
operations in each pipeline partition are (+31, +14), (+32, +23), (+24,
+15). The compatibility graph for these virtual operations is presented

synthesis results for the pipelines with various initiation sequences
together with the pipelines with fixed DII values. The pipeline with
initiation sequence of (4, 6) requires less area than that of the
pipeline with fixed DII of 5. Results in the other rows demonstrate
the throughput enhancement with small amounts of hardware
overhead. Synthesis results for the AR filter[4] are presented in table
4. New points in design space that could not be obtained with fixed
DIIs are synthesized in the pipeline structures with variable DIIs. In
the pipelines with IS = (1, 3) and (3, 5), 14.4 % and 22.7 % of area
could be saved without throughput loss, respectively. When IS = (5,
6), performance improvement both in throughput and in area was
achieved.

AAAAAAA

AAAAAAA

30000

32000

34000

36000

38000

40000

42000

44000

46000

'(2) (1,3)

AA
AAControl

Latch

MUX

FU

AAAAAA
AAAAAAA

25000

27000

29000

31000

33000

35000

37000

39000

'(4) (2,5)

AA
AAControl

Latch

MUX

FU

(a) (b)
Fig. 8. Comparison of gate counts for the AR filter.

 (a) Area efficient design. (b) Higher throughput design.
 Fig. 8 shows the area overhead in the pipelines with variable DIIs.
This figure compares the area of the pipelines in the first and second
rows of table 4. In Fig. 8 (a), the total number of gates for FUs is
significantly reduced for the pipeline with variable DIIs (from 42964
to 33904). On the contrary, the number of gates for control and
interconnection is increased from 1317 to 4009. Even though the
percentage of control and interconnection is increased from 3 % to
10.5 %, the total area is significantly reduced in the pipeline with
variable DIIs. In Fig. 8 (b), the average DII for the pipeline structure
with IS =(2,5) is 3.5 clock cycles, thus 12.5 % of performance gain is
obtained. The number of gates for FUs is reduced from 33904 to
33320 (2 adders), while the total number of gates for control and
interconnection is increased from 3260 to 4283. The total number of
gates is increased by 1.2 % (37164 to 37603), because the amount of
overhead in control and interconnection area is greater than that of
benefits obtained in FUs. 12.5 % of throughput improvement is
achieved with only 1.2 % of area overhead in the pipeline with
variable DIIs.

of pipeline stages and pipeline partitions, the algorithm performs
scheduling and allocation for maximal sharing of hardware modules.
Comparing the synthesis results with the pipelines with fixed DIIs,
significant improvement can be achieved both in speed and in area.
Research is being continued for finding a method of selecting the
initiation interval sequence that generates the pipeline structure with
the best performance.

References
 [1] J. Allen, F. Catthoor, "Architecture driven synthesis technique for VLSI
implementation of DSP algorithms," IEEE Proceedings, Vol. 78, No. 2, pp. 319-
335, Feb. 1990.
 [2] B. S. Haroun, M. I. Elmasry, "Architectural synthesis for DSP silicon
compilers," IEEE Trans. CAD, Vol. 8, No. 4, pp. 431-447, April 1989.
[3] K. Hwang, A. E. Casavant, "Scheduling and hardware sharing in pipelined
data paths," in Proc. ICCAD, pp. 24-27, Nov. 1989.
[4] R. Jain, A. C. Parker, "Predicting area-time tradeoffs for pipelined design," in
Proc. 24th DAC, pp. 35-40. June 1987.
[5] P. M. Kogge, The Architecture of Pipelined computers, McGraw-Hill, 1982.

5. Conclusions [6] M. C. McFarland, A. C. Parker, "The high level synthesis of digital systems,"
IEEE Proceedings, Vol. 78, No. 2, pp. 301-318, Feb. 1990.

 Design of a synthesis system for the pipeline structures with
variable DIIs has been presented. By automatic synthesis of the
pipelines with variable DIIs, a larger design space can be explored. In
this paper, a novel algorithm for automatic synthesis of the pipelines
with variable DIIs is proposed. After determining time-overlapping

[7] N. Park, A. C. Parker, "Sehwa: A software package for synthesis of pipelines
from behavioral specification," IEEE Trans. CAD, Vol. 7, No. 3, pp. 356-370,
March 1988.
[8] N. Park, Synthesis of High-Speed Digital Systems, PhD thesis, University of
Southern California, Oct. 1985.
[9] P. Paulin, "Force directed scheduling for the behavioral synthesis of ASIC's,"

Table 2. Synthesis results for the 16-point FIR filter.
DII + * MUX Latch Cont. Tot. AIS + * MUX Latch Cont. Tot. ∆S(%) ∆A(%)
5 4 2 23 46 32 14244 (4,5) 4 2 29 49 59 14859 10 4.6

Table 3. Synthesis results for the 5th order elliptic filter.
DII + * MUX Latch Cont. Tot. AIS + * MUX Latch Cont. Tot. ∆S(%) ∆A(%)
5 8 4 29 52 25 24161 (4,6)

(3,6)
7
6

3
8

43
42

54
57

106
60

21060
25458

0
10

-12.8
5.2

7 6 2 29 46 49 15229 (6,7) 6 2 36 48 99 15887 7.1 4.3
8 6 2 29 46 50 15230 (6,9) 5 2 35 48 67 15499 6.3 1.8

Table 4. Synthesis results for the AR filter.
DII + * MUX Latch Cont. Tot. AIS + * MUX Latch Cont. Tot. ∆S(%) ∆A(%)
2 12 10 8 10 5 44281 (1,3) 8 8 20 34 9 37913 0 -14.4
4 8 8 17 27 12 37164 (2,5)

(3,5)
6
4

8
6

30
30

29
24

43
41

37603
28725

12.5
0

1.2
-22.7

6 4 4 28 2 25 21089 (5,6) 4 4 28 23 42 20625 8.3 -2.2

IEEE Trans. CAD, Vol. 8, No. 6, pp. 661-679, June 1989.
[10] H. S. Stone, High-Performance Computer Architecture, Addison-Wesley:
Reading, Mass., 1987.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

