Automatic Synthesis of Pipeline Structures with Variable
Data Initiation Intervals

Hong Shin Jun, Sun Young Hwang
CAD & Computer Systems Lab., Sogang University,
C.P.O. Box 1142, Seoul, Korea

Abstract - In this paper, we propose a novel algorithm for supported in those systems is confineth® pipeline structures with
synthesizing the pipeline structures with variable data initiation fixed DII (Data Initiation Interval).
intervals (DlIs). Compared to previous researches where the Pipeline structures with fixeDll have been widelgmployed for
pipeline synthesis is confined to those with fixed Dlls, the their simplicity of control and design. Pipeline structures with
proposed algorithmtries to optimize the pipeline latency by fully variableDlls are the generalizedrm. It is well knownthat thehigh
utilizing hardware resources to which abstract operations in throughput can be obtained with variabl#ls. However, the
high-level design descriptions are assigned. complexity of the synthesis algorithm and pipeline control prevent the
Determining time-overlapping of pipeline stages, thproposed pipeline structures with variablBlls from beingutilized in digital
algorithm performs scheduling and module allocation using the system design. By automatitige design of pipeline structures with
time-overlapping information for the proper control of pipelines variable Dlls, we can obtain hardware designs with higher-
with variable DlIs. Experimental results on benchmarksshow performance in throughput. Irthis paper, we propose novel
that significant improvement can be achieved both in speed and algorithms for synthesizintdpe pipeline structures with varialdhls.
in area. In Section 2, pipelining concepése described. Schedulingpdule
i allocation forpipeline structures with variabBlls are presented in
1. Introduction Section 3. Section 4 presents the experimental refsunltenchmarks
High level synthesis is a design automation prottestsgenerates and conclusions are drawn in Section 5.
RTL (Register Transfer Level) hardwardrom behavioral . ..
descriptions. The process consists of two major steps: scheduling and 2. Plpellnlng
module allocation. In the scheduling process, a specific time step i

determined for each dhe operations in input descriptions such that %lpellnlng takes theapproach of spllttlngthe function to be
the design constraints (area, delay, powensumption, etc.) are performed into smaller pieces and allocating separate hardware to

satisfied while the othefactors are optimized. In thenodule each piece, termedsdage Pipelining provides avay tostart a new

allocation process, operations and variables are assigned to E before an old one has been cor.nple.ted. Hence the compétion
(Functional Units) and memory units, respectively, and is not a function of the total processing time, but rathémeaf soon a

interconnections among those modube® constructed by buses ggwlproc$sshcgn be. |ntroducs:%b, data E}Uatmnlnter\:a{:[S][1Of]
and/or multiplexors. ipeline technique is essentidbr repetitive computations for

The higher is the abstraction level of design automation, the widgnsecutive data as in digital signal processing.

is the design space to explofé] It is verydifficult to devise an Tasky () o1 &2 <3 s4
efficient high-level synthesis algoriththat allows exhaustive search 1o
possibilities in the design space. Tavercome this problem, ‘
application area of a high-level synthesisstem is specified to a 12 EEREL
certain target architecture so that thgstem can synthesize the
datapath optimized in the frame of the target architecture.[1][2] 3
Pipeline structures have begmopularly employed for high- 13 FO Fi| F? F? F]“
performance system designs. Pipelining is a powerful technique used 0 1,2 3 4 5 6 7 8 Time(ClockCycles)
for achieving high throughput idigital system.[5] The synthesis of | o |
pipelined datapaths has been addressed in a numbsysms; Fig. 1. Space-time diagram of pipeline with DIl = 2.

Sehwa[7], PISYN[3],HAL[9]. each systenhas itsown scheduling
and module allocation algorithm. Sehwa &8YN system&mploy DIl
a list scheduling algorithm using the priorifyanctions based on
urgencyand freedom, respectiveldAL systemuses dorce directed i
scheduling algorithm, which constructs a schedule for one operati%
in each iteration to make equi-distribution of operati@mong

control stepsfor maximal hardware utilization. Target architectur(g

Fig. 1 showshe space time-diagrafor five-stagepipeline with

= 2, where |j represents the j-th task input and Fi represents the
function executed in stadg®i. At time 0, task I1 is entered into the
eline and functions FO and Rte performed at stages SO and S1
I1 in two clock cycles. Aime 2, while functions F2 and F3 are
erformed on 11, a newask 12 is initiated andunctions FO and F1

re performed on 12. Atime 4, another task is entered into the

pipeline, while 11 and 12 are served fanctional units F3/F4 and For example, IS = (1,2,1,2) is not &iS, because there exists an

F1/F2, respectively. integer t = 2, which makes the same sequence. Given initiation
In Fig. 1, we can findhat functions FO, F2, F4 performed at thesequence can be written IS = (1,2), which is acyclic.

same time, as arfeinctions F1 and F3. We camoupthe functions Definition 3. (Initiation Time sequence, IT)

into two clusters; {FO, F2, F4 } and { F1, F3 }JAny functions For a given initiation sequence IS 3, (I, ..., | ,), the initiation time

belonging tothe same clusterannot be performed #lhe same FU, sequence IT is defined as equation (1).

while functions belonging to different clusters che. Pipeline _ _ e .

partitions are defined to represent the settiroe-overlapping stages T=(4D 5=01 _JZO i G

that are executedoncurrently on consecutivdata. In Fig. 1, sets

{S0, S2, S4} and {S1, S3} are two pipeline partitions. It is noticeable

that the number of pipeline partitions is equalbih value. It is

impossible for operations in pipeline partition to share hardware

resources, while operations in different pipeline partitions are

allowed to do so. Most of pipeline synthesis systeensploy ‘

scheduling and module allocation algorithms exploiting this fact.

3. Pipeline Structures with Variable Dlls

A. Background ‘
Fig. 2 showshe hardware usader pipeline structures supporting
fixed and variable Dlls. For the 6-stage pipelvieoseDlIl is 2, three
adders and three subtractors are requireshewn in Fig. 2a). For
efficient utilization of hardware, delay insertion method has been ‘
proposed and used popularly[7]. A pipeline cannot sustain initiations [+]-[+][o]-[+]-]
at the maximum possible rate due to the collisions within the pipeline ‘ ‘

21) @

that prevent new operatiorisom beinginitiated at certain crucial
instants of time. By adding delays withihe pipeline, it islways
possible to attain maximum performancélthough the delays
lengthen the total transit tinteroughthe pipelinethey increase the
rate atwhich operations terminate ihey remove collisionthat
restricts the initiation rate.[10] By insertingdelay element in the

pipeline of Fig. 2 (a)efficient hardware sharing can be obtained as

shown in Fig. ZAb). This pipeline structure requiréso adders and
two subtractors. Fig. 2 (c) shovike pipeline structure witblls
alternating between 1 and 2. In the pipelingp adders and two
subtractors are required, each which is fully utilized at all
partitions. It is an efficient structure both in area angdrformance.
The throughput is increased from 1/2 to 1/1.5 withmuth hardware
overhead.

B. Definitions

In the pipeline structures with fixddll, the concept ofpipeline
partition is important for understanding hardware sharing sche
and for the design of synthesis algorithms. Several ternferanally
defined, whichare needed to describe thposed algorithm for
synthesizing the pipeline structures with variable Dlls.
Definition 1. (Initiation interval Sequence, IS)
Initiation interval sequence is a sequence which represanying
Dlls. In the pipeline structure with variabldls represented by
initiation interval sequence IS =1, ..., |), the i-th task is

initiated at |, time unit after the (i-1)st task has been initiated. The

size of IS is represented bis [J In the sequence of IS =,(1,, ..
), OSis L.

Definition 2. (Acyclic IS, AIS)

Initiation interval sequence IS =(Il,, ..., |) is an acyclic IS, if and
only if there exists no integer t satisfying

(g 1y oo

L

J I|_1) = (It%L’ I(t+l)%L’ e I(t+L-l)%L)’ O<t<L.

‘

o 7(07) i
Fig. 2. Pipeline structures and hardware utilization. (a) Pipeline
structure with a fixedDIl. (b) After delay insertion. (c) Pipeline
structure with variable Dlls.

Data initiations in the pipelinehose IS 51, 2) and IT = (0, 1, 3)
n?éeshown in Fig. 3. The number beldive absolute time k (in the
second row) represents the total number of data initiations by time k.
The number of data initiations during the time intex@responding

to a horizontaline segment is equal to the sizel®f Asthe number

of horizontal line segments by time k, excluding the segment to which
k belongs, isk/t,[] the number of data initiations amounts to

(k/t,[32. In the horizontal line segment to which time k belongs, two

0 k-2 k-1 k k+1
1 [[] []
F
1

time

T T T T T T T T T
number of

NL NI, N, data initiations
¢;1)+t0 +t, +1t,

¢§2)+t0+t1 +t,

€5 k/+t)+t +t,

Fig. 3. Data initiations in the pipeline whose IS = (1,2).

data initiationsoccur. This number is obtaineflom j + 1,where j is
an integer satisfyinq £ kmodt < t,-In the Figure, we can find
that t < k mod t, < t, is satisfied and determine j to Erom this

argument, the number of data initiations can be generalized as

follows.

For a given initiation sequence IS 3,{,, ..., | ,), and/or initiation

time sequence IT = (tt, ..., {), the number of data initiations by

time k is obtained by equation (2).
NI = L* Ok/t O+ (j+1)
where j is an integer satisfyingstk mod { <t,,.

)

NI, =j+1, st ts k<t,
Snink = k - E s.t. Jt < k< E+1

> = { stages whose index is s

S.t. r§: Sn-l + I(j-n) mod L % = %nin,k’ 1< Sn s Nslage} (7)

For k1, k2 suchhat 0< ki< k2 <, if there exists | satisfyinq £
k1, k2 < }+1, P, is different from B,. It is due to thdact that their
minimum stage indicesmﬁkl and Sinke are different. If notwhich
means j1# j2, there is no samsequence startinffom different |.
Hence P, is different from P,. By this argument, it isoncludedhat
there are Ndifferent pipeline partitions

(®)
(6)

We can represent the stages activated at time k by using the=ig. 4 also shows the stage overlapping in the 6-stage pipeline with

minimum stage index and the incremental indices. The space-tinge= (|,

diagram for the pipeline of Fig. 3 is shown in Fig. 4. Fibe figure,
the stages activated at time k are sl1, s2, s4, sbmifismum stage
index is 1 and the incremental indices are 1, 2, 1.

Tasks

sO| sl| s? 313 s|4 5*5 |
EEEEEX:
[s0 1 s3 sp < ¢5
[s0] sy s% sp s $5
[so[s7 <3 sp 45

k-1 k k+1 Time
Fig. 4. Space-time diagram for the pipeline in Fig. 3.

(NI
(NI

The minimum stage index is determined by the tdifference

l) = (1,2). The initiation time sequendd, is (0, 1, 3) by
equation (1). The number of partitions isvihich is equal to,t by
Theorem 1. The minimum stage indéor eachpartition can be
calculated by equation (6);5,=0-0=0,§,,=1-1=0,§,,=
2 -1=1. The indices of the stagesdonging tahe pipeline partition
P, are determined by equation (7).=ss,;,,,=0,§ =% + lo-1ymod 2=
O+| =2, 5= S‘1""(02 mod 2™ 2+l) 3, %_SZ+I(03)mod2 3+h_
5. Thus B becomes {s0, s2, s3, s5 }. In the samay, pipeline
partitions P and B are calculated, resulting in P { s0, s1, s3, s4 }
and B = { sl, s2, s4, s5}.

C. Synthesis of pipeline structures with variable Dlls

1) Pipeline Scheduling

Synthesis of the pipeline structures with varidblis consists of
pipeline scheduling, module allocation, and control generation. In the
pipeline scheduling process, the stage is determifted each
operation so that maximal sharing of E&h be achieved. To support

between the current time and the last data initiation time. TR@riableDlls in pipeline scheduling, the pipeline partitiéormally

minimum indexamongthe stages activated at timdoécomes k - {t
* [k/t,0+ t), because the last data initiation occurs AtKft,(0+ t,).
This argument can be generalized as follows:

For a given initiation sequence IS 5 (1 . L,), and/or initiation
time sequence IT = O(tt
activated at time k, s . is glven by equation (3).

Snink = K- (1* kit O+ 1)

where j is an integer satisfyir]gztk mod f< t-

The other stages activated at time k are also deterrfioradthe
minimum stage index. Forgiven initiation sequence IS =(Il,, ...,
I_,), there exists an execution time overlap between stabese
time difference equals to an initiation interval The set of stages
activated at time k (pipeline partition) is recursively defined as

R, = { stages whose index ig, s

S.t. r$: Sn-l + I(j-n) mod I’ % = %nin,k’ 1< Sn < Nslage} (4)

where j is an integer satisfyir]ggtk mod { < toy and I\Lageis the
number of stages
Theorem 1. (Number of pipeline partitions)

In a pipeline structure with the acyclic IS 3, (I, ...
|, different pipeline partitions.

Proof> Fromequation (1), T is equal toX I. The minimum stage
index at time k+t, Shinrt, is equal to Sni S follows.

Shink+, = (k+t) - (4" W+t O+ 'j)
=k- (P KO+) =S
where j is an integer satisfyir]gztk mod {<t,
Thus, the set of stages activated at time, kﬁ}gt, is equal to P By

®3)

. |.,), there ar&

defined in section 3.B is derived and utiliziedt possible resource
sharing. Throughouthe scheduling process, the time frame interval
for each abstract operation is calculatadd maintained as a
scheduling stateAt an intermediate state of the pipeliseheduling

., 1), the minimum index of the stages process, each operation higs timeframe interval, [B,+&,d- The

objective function ofthe pipeline scheduling is defined as the
measure of equi-distribution of operations to pipeline partitions and
can be calculated by the time frame intervals. The probability that
operations of typéOP' belong to stage ip,4(i), is the normalized
form of the distributiongraph[9] and is given by equati¢8), where

Ngp is the number of operations tyfpoe OPand Prob(opn, i) is the
probability that an operation 'opn' is scheduled at stage i.

Rop(i) = Z Prob(opn,i) / N, i=1,..,max_stage (8)
opnJOP

O 1/(% - b, +1) for% <|<b
where Prob(opn,i) =0
O 0 otherwise

The probability that operations of type OP belong to pipeline partition
P, is given in equatioK9), where the sum is takawerall thestages
in the pipeline partition.

Poe (K) = Poe (i) k=0, ..., I\J -1 9)

g.iml'e

For efficient hardware utilization, a measure of equi-distribution for
each type of operations is defined by an entropy function and given by
equation (10).

Np-L

H(OP)=-3 B, (9I0gB, (o) (10)

restricting k to & k < t, equations (2), (3), (4) can be simplified and

given by equations (5), (6), (7).

The value of H(OP) lies between 0 andWhen all the pipeline in Fig. 6 (b). From the graph, a pipeline structure requiring two
partitions have the same probability, H(OBgcomes 1. If the adders can be designed. One adder performs the virtual operations
probability that operations of given type belong to @ipeline (+3,, +2, +2,) and the other one performs (+11., +3,).

partition is 1, i.e.whenall theoperations are concentrated on a

certain pipeline partition, the H(OP)ecomes 0. The objective @
function for a schedulingtate S is théorm of weighted sum of the

entropy functions fomll operation types and is given by equation

(11), where the weight w(OP) for operation type OP is defined by the

area and the number of appearances of théyf@doperations in the @ @
behavioral description. The maximal sharing of a functional unit can
be achieved by maximizing the objective function. (a)
OKS) = Z H(OP)wW(OP) (11) Fig. 6. Compatibility graphs. (a) When an operation is executed on an

Neighbor states are new stateghich are introducedrom present operator. (b) When virtual operations are used.

state byreducing the time frame interval of an operation by 1. The .

gain for a neighboistate is proportional to the derivative of the 4, Experlmental Results

objective function. The priority function dhe proposed iterative/ . . o .
constructive algorithm is the linear approximation of the derivative of 719 7 showshe synthesized hardwafiar the pipelined execution
the objectivefunction in time frame interval and is given by equatior?! the tasksshown in Fig. 2 (c). The datapath is presented in Fig. 7

(12). (a) and the controller description in TT format is shown in Fig. 7 (b).
PF(opn) = altOF(Sh) - OF(Se))/ (e, - b) (12) Allocation results for the virtual operations are presented in Table 1.
where,[bopn,eopn] is the time frame i(rﬁrérvgi) of operation opn, and -

Sbopn, Sg,,, are neighbor statefor operation opn whodéne frame 7

interval is changed to lpn+1,eopn] and [bopn,eopn-l], respectively. AT .

N
Theproposed scheduling algorithm generates a schéldatleuses — 010

the minimum number of FUs while meetigiyen constraints of the J—E b2

number of stages arl®. The algorithm is of iterative/constructive L p3

nature in that ittonstructs schedule incrementally. Fréme initial

state inwhich the time frame interval iset byASAP and ALAP W 11 0111111110

schedules, a neighbatate with the highespriority function is 01 0011111001

selected in each iteration. The scheduling process under the time o 00 1111110011

constraint in DIl and stage number is summarized in Fig. 5. e e

Step 1: Set the initial scheduling state where the time frame interval of each
operation is determined by ASAP and ALAP schedulings.
Step 2: Calculate the priority function for each neighbor state.

For each unfixed operation opn do ort
Calculate objective function for 2 neighbor states, QEI8nd OF(Sg). (a) (b)
Calculate priority function PF(opn). Fig. 7. Synthesized hardware fte pipelined execution of tasks

Step 3: Make transition to the neighbor state with the highest priority function.

Step 4- If there remain unfixed nodes, o to Step 2. shown in Fig. 2 (c). (a) Datapath (b) Controller description.

Fig. 5. Pipeline scheduling algorithm. Table 1. Results of functional unit allocation.
2) Module Allocation of Virtual Operation FU__|Function| Operations
Module allocation process generates datapaths after assigning a FU ALUL + +3, +1, +1
for each operatiorand providing interconnectiomsnong FUs using ALU2 - -1, -1, -2,
multiplexors and/or latches. In the procesfiortsare made tallow ALU3 + +2,, +2, +3,
maximal sharing of FUs. Sharing of a FU is not possioi®ng the ALU4 - -3, -2, -3,

operations belonging to the same pipeline partition. The possibility of . . .

sharing can be modeled in compatibility graph, where vertices denotd " €XPeriments, Syr?the.SIS. has been perforimethe high-level

operations and edges represent the possibility the possibility of ,gf?_/pthess benchmark circuits; 16-poFiR filter, Sth order elliptic

sharing. filter, and AR filter. Table 2 showthe synthesis resulfer a 16-
The graph of Fig. §a) showsthe compatibility grapfior the point FIR filter. These results are obtained with the design

pipeline of Fig. 2 (c). No edges are drawn in the gréain. pipeline constraints of .6-stage pipeline. When.fi?(iﬁljl to 5,synthesized

implementation, three adders would be requiklvever this could datapath consists of 4 adders, 2 multipliers, 23 two-input MUXes,

be improved as follows. Fahe design of a pipeline with minimal 21d 46 latches. The gate count itf controller amounts to 32.
hardware, virtual operations are introduced. In pipelineypeTation Pipelined datapath with initiation sequence of (4,5) needs the same

is multiply instantiated as a virtual operatian eachdata initiation. NUMPer of FUs; 4 adders and 2 multipliers. Total gatethas been

An operation for eachlata initiation is distinguished by attaching'ncreaﬁeOI by 4.6 % due t(; thn/erhead. In flntezcotr;‘r:c.tloq. and
subscripts for each operation instance. In Figc) the virtual add controller area. However, performance gain of 10 % thepipeline

operations in each pipeline partition are (+8L), (+3, +2), (+2 with fixed DIl is obtained. The 5th order elliptizwave filter is
+1). The compatibility graph for these virtual operations is presentééfmhes'zed in pipeline structure with 9 stages. Table 3 shows the

synthesis resultfor the pipelines with various initiation sequencesf, 25000
together with the pipelines with fixedll values. The pipeline with |00 27000
initiation sequence of4, 6) requires less area than that of theaznoo | |

. 35000
pipeline with fixedDIl of 5. Results in the other rows demonstrate {40000 ;f;’“}:"' 25000 ;f;ﬁ:d
. Cl
the throughput enhancement with small amounts of hardwargso BMUX 1000 EMUX
overhead. Synthesis resuits the AR filter[4] are presented in table |3°% mru 29000 mFU
34000

4. New points in design spatieat could not be obtained with fixed

32000 27000
Dlls aresynthesized in the pipeline structures with varidbles. In 30000 25000
the pipelines with IS = (1, 3) and (3, 5), 14.4 % and 22.7 % of areja e w3 @ @5
could be saved without throughput loss, respectively. When IS = (5, (@) (b)
6),hperf(:jrmance improvement both in throughput anchiea was Fig. 8. Comparison of gate counts for the AR filter.
achieved.

: . L)) (a) Area efficient design. (b) Higher throughput design.
Fig. 8 showshe areabverhead irthe pipelines with variablBlls.

This figure comparethe area of the pipelines in the first asatond Of pipeline stages and pipeline partitions, the algoritenforms
rows of table 4. In Fig. §a), the total number of gatdésr FUs is scheduling and allocatiolor maximal sharing of hardware modules.
significantly reduced fothe pipeline with variabl®lIs (from 42964 Comparingthe synthesis results with the pipelines with fixat,

to 33904). On thecontrary,the number of gatdsr control and significant improvement can be achieved both in speed and in area.
interconnection is increasedom 1317 to 4009. Even though the Research is being continued for finding a method of selecting the
percentage of control and interconnection is incredsed 3 % to initiation interval sequence that generates the pipeline structure with
10.5 %, the total area mignificantly reduced irthe pipeline with the best performance.

variableDlls. In Fig. 8 (b), theaverageDll for the pipeline structure

with 1S =(2,5) is 3.&lock cyclesthus 12.5 % operformance gain is References

obtained. The number of gates for FUs is reduitech 33904 to [1] J. Allen, F. Catthoor, "Architecture drivesynthesis technique for VLSI
33320 (2 adders), while the total number of gdtes control and implementation of DSP algorithmdEEE ProceedingsVol. 78, No. 2, pp.319-

; L 335, Feb. 1990.

mterco.nr,]ecnon is increasémm 3260 to 4283. The total number of 2] B. S. Haroun, M. |. Elmasry, "Architecturalynthesis for DSP silicon
gates is increased by 1.2 % (37164 to 37603), because the amOUf&[Bﬁ% ilers, IEEE Trans. CADVol. 8, No. 4, pp. 431-447, April 1989.

overhead in control and interconnectiarea is greater than that of [3] K. Hwang, A. E. Casavant, "Scheduling and hardware sharing in pipelined
benefits obtained in FUs. 12.5 % of throughput improvement @sta paths," ifProc. ICCAD pp. 24-27, Nov. 1989.

achieved withonly 1.2 % of aremverhead inthe pipeline with [4]R.Jain, A. C. ParkefPredicting area-ime tradeoffs for pipelined design,” in
variable Dlls Proc. 24th DACpp. 35-40. June 1987.

. [5] P. M. Kogge;The Architecture of Pipelined computekécGraw-Hill, 1982.
5. Conclusions [6] M. C. McFarland, A. C. Parker, "Ttiégh level synthesis dfigital systems,"
IEEE ProceedingsVol. 78, No. 2, pp. 301-318, Feb. 1990.
Design of a synthesis systefor the pipeline structures with [7] N. Park, A. C. Parket'Sehwa: A software packadger synthesis of pipelines
variable Dlls has been presented. By automatic synthesis of them behavioral specification)EEE Trans. CADVol. 7, No. 3, pp356-370,

pipelines with variable Dlls, a larger design space can be explored March 1988.

) - : : oAl [8] N. Park,Synthesis of High-Speed Digital SysteRisD thesis, University of
this paper, aovel algorithm for automatic synthesistbé pipelines Southern California, Oct. 1985.

with variable Dlls is proposed. After determining time-overlappingg) p. paulinForce directed scheduling for the behavioral synthesis of ASIC's,"

Table 2. Synthesis results for the 16-point FIR filter.
DI |+ * MUX Latch Cont.| Tot. AIS | + * MUX Latch Cont.| Tot. | AS(%) | AA(%)
5 4 2 23 46 32 14244 (45 4 2 29 49 59 14859 10 416

Table 3. Synthesis results for the 5th order elliptic filter.
DI |+ * MUX Latch Cont.| Tot. AIS | + * MUX Latch Cont| Tot. | AS(%) | AA(%)
5 |8 4 29 52 25 | 24161 (4.6)7 3 43 54 106 | 21060 0 -12.8
(36)| 6 8 42 57 60 | 25458 10 5.2
29 46 49 | 15229 (6,7) 6 2 36 48 99 15887 7.
8 |6 2 29 46 50 | 152300 (6,9 5 2 35 48 61 15499 6.

Table 4. Synthesis results for the AR filter.
DI |+ * MUX Latch Cont.| Tot. AIS | + * MUX Latch Cont| Tot. | AS(%) | AA(%)

~
D
N
=

4.
18

W

(%)

2 [1210 8 10 5 | 44281 (1,3) 8 8 20 34 9 379938 0© -14]4
4 |8 8 17 27 12| 37164 (25)6 8 30 29 43 | 37603| 125 | 1.2
354 6 30 24 41 |28725| o0 | -227

6 |4 4 28 2 25 | 21089 (56) 4 4 28 23 42 20635 8.8 -2)2

IEEE Trans. CADVol. 8, No. 6, pp. 661-679, June 1989.
[10] H. S. Stone,High-Performance Computer Architecturaddison-Wesley:
Reading, Mass., 1987.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

