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Abstract — In this paper, a tool to aid pipelined processor instruction
set implementation is described. The purpose of the tool is to choose
from among design alternatives a design that minimizes overall processor
cost. In the proposed cost model processor cost has two components,
the cost of hardware necessary to realize the processor and the cost of
degraded performance due to pipeline hazards as compared to an ideal
pipelined processor. The tool user provides several alternate hardware
implementations of each instruction, the cost of hardware operators
used, a trade-off factor representing the relative importance of hardware
cost versus degraded performance cost, and a straight line benchmark
program which is used by the tool to determine frequency of occurrence
of pairs of instructions. Using a linear programming approach, the tool
selects an implementation for each instruction which gives an overall
cost which is optimal.

1. INTRODUCTION

A major hurdle in pipeline design of programmable processors is
pipeline hazards [1]. A hazard must be handled either by a com-
piler or the processor hardware to avoid incorrect processor opera-
tion. The compiler deals with hazards by inserting NOPs into the
code which results in increased code size and compiler complexity.
The hardware deals with hazards by using pipeline interlocks. A
pipeline interlock detects a hazard and stalls the pipeline until the
hazard producing condition is no longer present. An interlock pro-
duces the same effect as a NOP in the code and causes increased
hardware complexity. Hazards increaseclock cycles per instruction
(CPI) resulting in reduced pipeline speedup. Generally speaking
pipeline hazards can be avoided by a combination of careful design
and increased hardware cost. There are some hazards which are un-
avoidable, such as the load hazard in RISC processors and control
hazards due to branch instructions.

Structural hazards are caused by contention for resources by two
or more instructions executing simultaneously in the pipeline. If
resources are increased appropriately, contention can be eliminated.
Data hazards are caused by data dependences between instructions.
They fall into three categories RAW, WAR and WAW [1]. Of
these the most troublesome in most designs are the RAW hazards.
They can be avoided by proper register assignment by the compiler
and/or data forwarding. Data forwarding involves the addition of
multiplexing on the inputs of hardware operators which require
a result generated by an earlier instruction that has not reached
the execution stage that writes the result to memory. The added
multiplexers select either the normal path from a register file or the
memory data register or the data forwarding path.

Integer instructions in RISC processors have very few hazards,
due in large part to equal length implementations of those instruc-
tions. The same cannot be said of floating–point instructions. In
single chip microprocessors, inexpensive general purpose coproces-
sor designs, and special purpose designs these instructions have dif-
ferent lengths and generally there are several hazards present, as in
the R4000 design [2]. Non-RISC designs, such as those typically
used in supercomputers, where instructions lengths are variable and
pipelines are deep also have many potential hazards.

This paper describes a tool to aid pipelined processor instruction
set implementation. The tool should properly be viewed as a design

aid because it does not synthesize the hardware, rather it selects from
alternate designs that the tool user has provided. Alternatives can be
generated automatically using shell scripts from a relatively small
number of design templates. If there aren alternatives per instruc-
tion and i instructions to be implemented there areni combinations
of implementations. Enumeration of combinations is practical only
for small numbers of instructions having few implementation pos-
sibilities. Also it may be necessary to do the optimization several
times. The tool described in this paper uses linear programming to
avoid looking at the entire exponential solution search space. The
purpose of the tool is to choose from among user-provided design
alternatives a design that minimizes overall processor cost. Cost
has two components: the cost of hardware necessary to realize the
processor and any hazard prevention hardware, and the cost of de-
graded performance due to uncorrected hazards as compared to an
ideal pipelined processor. In addition to alternate designs, the tool
user provides a trade-off factor representing the relative importance
of hardware cost versus degraded performance cost, and a bench-
mark program which is used to extract instruction frequencies.

Previous work in this general area has concentrated on synthesis
[3][4][5][6] rather than analysis. In the “snapshot method” [6], snap-
shots of instructions from a benchmark are ordered by frequency of
occurrence and hardware in a pipelined processor is incrementally
added to satisfy the hardware needs of each snapshot. Difficult
to schedule and/or unimportant snapshots are allowed to generate
stalls in the pipeline. The most significant limitation of this tool
is that all instructions are forced to be of equal length, which does
not correspond to reality in the floating-point units of most com-
mercial microprocessors. The underlying optimization algorithm is
a greedy heuristic and despite its simplicity takes about 30 CPU
days to synthesize the pipeline for the IBM ROMP processor and
requires significant user interaction. Another drawback to a purely
synthesis approach is that the number of design tricks in typical mi-
croprocessor datapaths seems to preclude using automatic datapath
synthesis in a high volume general purpose application. In the recent
past each succeeding microprocessor generation has had innovations
in architecture and basic implementation. This designer innovation
takes place in parallel with instruction implementation. Thus fre-
quent modifications to the algorithms in the tool would be needed
as the design progressed. Using the approach described in this pa-
per, the tool user has complete control over the datapath design
options, the tool helps him/her by efficiently searching the design
space (independent of design methodology) for good combinations
of implementations which minimize overall cost of the processor.

2. PROCESSOR MODEL

The most basic differentiation among pipeline architectures is
order of instruction issue and completion. The possibilities are:

1. In-order issue and in-order completion.
2. In-order issue and out-of-order completion.
3. Out-of-order issue and out-of-order completion.



The first two categories are supported by the tool. The third
category requires the use of dynamic scheduling, either using a
“scoreboard” approach, the Tomosulo algorithm [7], or some vari-
ation/combination of the two. The optimization approach used by
this tool is incompatible with any architecture where decisions con-
cerning ordering of instructions issued is dependent on the particular
hardware implementation of instructions and detailed hardware de-
lays. An exception to “no dynamic scheduling” is a hybrid approach
where only loads and stores are dynamically scheduled.

Another major differentiation concerns how the architecture han-
dles instruction level parallelism. The tool is compatible with su-
perscalar, VLIW and superpipelined designs. Currently, only single
instruction issue per clock in a “standard” pipeline configuration is
fully supported.

3. REQUIRED TOOL INPUTS

The required design information which must be provided to MIST
can be summarized as:

1. The number of instructions.
2. The number of implementations of each instruction.
3. The number of execution stages in each implementation.
4. Functional units used and their cost. Functional units with

different speeds are considered distinct.
5. Stage residencyof the functional units, i.e. the stage of execu-

tion of the instruction where a functional unit is used.
6. Functional unit sharing options.

Hazards between instructions which occur frequently in programs
intended to be run on the processor (as determined from a bench-
mark provided to the tool) are be given higher weight than haz-
ards between infrequently occurring instructions. Hazards may have
varying severity from a one clock cycle stall to several clock cycle
stalls. The overall affect on CPI, i.e. thecost of hazards(CH), is
thus directly proportional to frequency of stall (FOS) multiplied by
stall severity (SS). FOS is determined for all possible spacings of
instruction introductions into the pipeline.

The cost model used by the tool defines overall processor cost
as the sum of hardware cost and the cost of degraded performance.
The hardware cost (HC) is the sum of all functional unit costs. The
cost of additional multiplexing required when hardware is shared is
not considered.

The trade-off factor (TF) indicates how much silicon area (in
units of area / stall) the designer is willing to trade-off to prevent
one stall involving the most frequent instruction pair. Thus overall
cost is: HC + TF � FOS � SS in units of area. The designer
may use the trade-off factor to balance hardware cost and acceptable
performance degradation.

4. STALL STRATEGY

Stall strategyis the method of insertion of stalls in the pipeline.
The selection of a strategy is influenced primarily by control com-
plexity. In general, but not always, it is desirable to stall following
instructions in as early a stage of execution as possible. It is also
sometimes desirable to avoid stalls when a loop is in progress in
one of the instructions involved to avoid complex control problems.
It is possible that while avoiding one stall involving an instruction
pair, other stalls will be caused in later stages of execution of the
instruction pair. It may be best to insert a stall from the first oc-
currence of a hazard lasting until past the end of the last occurrence

of a hazard to avoid complex control involved in stalling more than
once on the same instruction pair.

Stall strategy is easily modified in the software implementation of
MIST, and is independent of the core optimization. Two strategies
were chosen for the examples in Section 7. The first of these is good
from the point of view of control complexity, but tends to generate
many hazards:

1. Stall on structural hazards.
2. When multiple hazards are involved, stall once to clear the last

hazard.
3. When an instruction has a loop, stall the following instructions

until after the loop.
4. When a following instruction has a loop, stall the following

instruction until the loop is not executing simultaneously with
previous instructions.

The second strategy is relatively bad from the control point of
view, but tends to generate fewer hazards than the first strategy:

1. Stall on structural hazards.
2. Stall only when necessary, allowing multiple stalls on the same

instruction pair.
3. Unwind all loops to look for structural hazards and stall only

when there is a conflict involving structural resources.

Currently the tool handles only structural hazards. Extension to
data hazards is straightforward given register assignments.

5. NODE PACKING FORMULATION

The pipelined processor cost minimization problem described
above can be formulated as anode packingproblem. This prob-
lem has also been called the vertex packing or stable set problem
and except for some special cases is NP-hard [8]. Among categories
of integer programming problems, node packing and knapsack prob-
lems are those displaying the most computational success. Solutions
of general unstructured integer programs remains very difficult. The
relative success in node packing can be traced to theoretical work to
find classes of facets of the convex polyhedron associated with the
node packing integer program. One such category, maximal cliques
[9] is extensively exploited in MIST. Further information on node
packing and applications in high level synthesis can be found in
[8][10][11]. The clique formulation of the node packing problem
is: MAX

P

v2V

wvxv;
P

c2C

xv � 1 for all cliques C; xv 2

f0; 1g for all v 2 V:

For the problem at hand, there are two categories of nodes,haz-
ard nodes andfunctional unitnodes. Hazard node variables are one
if the corresponding hazard is active and zero otherwise. Hazards
are inactive when either or both of the implementations causing the
hazard is not chosen in the final solution. Functional unit variables
are zero if the functional unit is active (used by any implementation
in the final solution) and one otherwise. The weight of a hazard node
is the cost of lost performance due to the associated stall(s). The
weight of a functional unit node is the cost of the functional unit. The
objective function is algebraically manipulated to support 1–active
(hazard) and 0–active (functional unit) costs. For each instruction
pair, abankof hazard nodes is formed. Each hazard between a pair
of implementations of the pair of instructions associated with a bank
is represented by only one node in a bank (although one node may
represent many such hazards). Hence, exactly one node in a bank
can be active in the final solution and the hazard nodes in a bank



form an equality clique constraint. Some banks are further special-
ized assuperbanks; there is one superbank corresponding to each
instruction. From all the instructions pairs containing a particular
instruction, one of them is distinguished as a superbank. Super-
banks are similar to normal banks except that there are restrictions
on collapsing of nodes, as described below.

Edges fall into two categories,hazard-to-hazard(HTH) and
hazard-to-functional-unit(HTF). For each hazard, define ani in-
struction and aj instruction which form the pair causing the hazard.
A HTH edge is placed between two hazard nodes which correspond
to different implementations in either thei or j dimension, thereby
allowing only one of those hazard nodes to be active. In superbanks
only, A HTF edge is placed between a hazard node and a functional
unit node which is used in either thei or j instruction implementa-
tions associated with a hazard node. Thus, any use of a functional
unit in any implementation associated with an active hazard node
will cause the functional unit to be 0–active and its cost will be in-
cluded in the cost of hardware. Note that this cost is charged only
once, regardless of the number of times the functional unit is used.

The category of bank determines what type of nodecollapsingis
permitted. Since each node becomes a linear programming variable,
it is very beneficial to reduce the number of nodes as much as
possible. In “normal” banks, collapsing is permitted when the
costs of the nodes are the same (or close when there is a non-
zero error tolerance, as discussed below) for all combinations of
implementations which are represented by the collapsed node. HTH
edges are adjusted accordingly. Since there are many possible sets of
compatible combinations possible, a heuristic set covering algorithm
is used to maximize collapsing. In superbanks, collapsing is more
restrictive, since not only costs must be the same but functional unit
use must be the same to permit collapsing. Also, in superbanks
the i dimension must have only one implementation represented per
node. Permitting multiple implementations in thei direction will
allow infeasible choices of implementations in some cases.

6. CONSTRAINT GENERATION

Constraints are generated by inserting arcs among nodes in banks.
For each constraint adriving bank is chosen. A particular node
in that bank is chosen (thedriving node) and following a clique
generation strategy, a maximal clique constraint is generated. It is
not guaranteed to be a maximum clique. Given a driving bank, there
are three possibledriving modes. Arcs are created inij mode if nodes
in the i dimension of the driving bank are connected by arcs to the
j dimension of the driven bank. Theji , ii , and jj driving modes
are defined similarly. In concert with the node-packing paradigm,
a driving node connects to a driven node if they areincompatible
i.e. they cannot be simultaneously chosen as part of the solution.
A valid solution to the problem will have one node chosen (linear
programming variable equal to 1) for each bank.

Constraint generation proceeds by connecting all possible nodes
in the driven bank to the original node in the driving bank. In this
sense, constraint generation is greedy. Other constraints may be
possible by adding fewer than the maximum nodes in the driven
bank to the constraint, so constraint generation is not exhaustive.
Note that for each driving bank, there are two possible driven banks
using different driving modes. For example, if one driven bank is
driven in ij mode by the driving bank, then another driven bank
can be driven injj mode. The two driven banks can then interact

in ii mode. Figure 1 shows this interaction. Additional arcs are
shown for cliques generated among the nodes in a bank. Note that
for a given driving bank, constraints are generated independently for
each driven bank. A different constraintmaybe generated, because
interaction between driven banks favors a different dominant driven
bank on each of the two constraint generations involving the same
three banks. Each node of the driving bank becomes a driving node
for forming constraints. Conflicts between the two driven banks, i.e.
inconsistent node choices with respect to the common instruction in
both driven banks are resolved in favor of the dominant driven bank
for that constraint. After conflict resolution, areflectionoperation on
the driving bank is performed. This operation adds more nodes in
the driving bank in an attempt to maximize nodes in the constraint.
Of course, all nodes added must be consistent with nodes already
in the constraint. In the example of Figure 1, there are no nodes
added. In the event that a driven bank is not active, i.e. there are
no arcs connecting it to the driving bank, there is a possibility of
an alternate third bank. A fourth instruction which does not appear
in the active driven bank or driving bank may be either ani or j
dimension of a alternate third bank.

The constraint generation algorithm given above is repeated for
constraints involving functional units. For each functional unit,
nodes are added to a constraint when they DO use the function unit,
in keeping with the notion that functional units are active when their
corresponding node variables are zero. Thus constraints will include
the functional unit node and hazard nodes compatible with each
other and the functional unit. Unfortunately, constraint generation
of this type does not guarantee that functional unit use is properly
constrained. If all the uses of each functional unit in each superbank
do not appear in other constraints, then additional constraints are
added.

The number of banks is approximatelyi2, wherei is the number
of instructions. For each bank, each node in the bank can be a
driving node for a constraint. Checking for the presence of arcs
between driving and driven bank and checking compatibility between
driven banks areOn2 operations wheren is the maximum number of
implementations of any instruction andn2 is the maximum number
of nodes in a bank. When an alternate third bank is called for, there
are i – 1 possibilities for this bank. Constraint generation is done,
in the worst case, for each functional unit,f. Hence, the number of
constraint generation cycles isOi2n2f and each constraint generation
cycle takesOn2i, giving an overall complexity ofOn4i3f. There is
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a significant constant multiplier needed for the overhead associated
with performing these operations.

7. EXAMPLE GENERATION AND
COMPUTATIONAL EXPERIENCE

The following types of implementation variability are present in
the examples described below:

1. Algorithmic.
2. Hardware sharing, both intra-instruction and inter-instruction.
3. Hardware speed.
4. Hardware stage residency.

Algorithmic variation refers to the implementation algorithms for
instructions e.g. for a multiplier, booth, radix 4 and radix 8, one pass
to three passes, or the odd/even method [12] [13], radix 4 and radix
8, one pass to two passes, or modified Wallace tree [12] [14], radix
4, one pass. Inter-instruction hardware sharing is used to save total
hardware, but possibly at the cost of increased stalls due to structural
hazards e.g. thefp-add and fp-mult instructions use/don’t use the
same carry propagate adder. Thefp-adduses the adder for adding,
rounding or both.Fp-mult uses the adder as a final carry propagate
add after partial products have been computed by carry save adders.
Intra-instruction hardware sharing is also used to save hardware, but
effectively breaks the pipeline at the point where sharing occurs
e.g. the partial product adder and rounding adder (required for
compliance with the IEEE floating-point standard) use/don’t use the
same adder. Hardware speed variation and hardware stage residency
often go hand-in-hand. Moving hardware between stages may allow
the use of slower (less expensive) components e.g. final exponent
addition may be performed in the same pipeline stage as the rounding
addition (requiring fast, expensive adders because both adds are
on the critical path) or in different stages (requiring slower, less
expensive adders).

An example based on a 4 instruction floating point unit was
constructed. Thefp-add-subinstruction exhibits 4 different add
algorithms, taking advantage of techniques given in [13] and [15].
Also shown in this instruction is both inter and intra-instruction
sharing of the exponent add and mantissa add hardware and different
stage residencies, giving a total of 36 implementations. Thefp-mult
uses 5 basic algorithms in both radix 4 and radix 8. The amount
of sharing of carry-save adders is varied yielding different numbers
of iterations through the carry-save stage of multiplication. There is
also inter and intra-instruction sharing of the exponent add and final
carry propagate add of the partial products, exploiting techniques
given in [16] and different stage residencies, giving a total of 300
implementations.Fp-div andfp-sqrtare implemented quite similarly
and follow closely techniques given in [17] and [18]. Radix 2
and radix 4 implementations of SRT division, with intra-instruction
sharing of hardware in the basic loop give variation from 3 passes for
one of the radix 8 implementations to 24 passes for one of the radix
2 implementations. The final carry propagate add is possibly shared
with fp-add-suband/orfp-mult. The number of implementations for
both fp-div and fp-sqrt is 80.

Overall operation of the tool is as follows:

1. All potential hazards among all possible implementations of
all possible instruction pairs are generated. Nodes representing
the hazards are placed in banks and collapsing is performed.

2. Constraints are generated.

3. Optimization is performed using CPLEXTM, a commercial lin-
ear programming code from CPLEX Optimization, Inc.

Tables 1 and 2 give the computational results associated with both
the example discussed above (indicated by “lg”) and an abbreviated
example having 22, 36, 40 and 40 implementations respectively for
fp-add-sub, fp-mult, fp-div,and fp-sqrt (indicated by “sm”). Two
stall strategies were used as described in Section 4 and indicated
by “ld” for low or “hd” for high density of hazards. Two trade-
off factors are represented, “lw” for low weight, indicating that one
hazard between the two most frequently occurring instruction pairs
can be traded off for one tenth of an adder, and “hw” for high
weight, indicating the trade-off is for ten adders. Two quantities
of constraints were generated, “f” for full constraint generation i.e.
all constraints which constraint generation can produce, and “a” for
abbreviated, a minimum set guaranteed to give correct results. The
last number gives the error tolerance as 0, 5, or 10 percent. Error
tolerances greater than zero have the effect of increasing the amount
of collapsing possible by allowing nodes to collapse into one node
when their costs fall within the error tolerance. The overall effect is
to intentionally cause errors in the input data, with a benefit of fewer
variables in the linear programming formulation of the problem.
The worst case number of hazardsis calculated assuming that every
possible pair of implementations of each pair of instructions will
generate a hazard. Thenumber of raw hazardsis the actual number
of hazards which were detected using the specified stall strategy.
The number of variablesis the number of variables in the resulting
linear program and reflects the results of node collapsing and the
error tolerance on the original number of hazards.

Table 2 show the results of constraint generation and linear pro-
gramming optimization. Thenumber of matrix entriesis the total
number of non-zeros in the constraint matrix and is a good indica-
tion of overall size of the problem. The optimization time is given
as two entries, the first is the time used by CPLEXTM to solve the
linear programming program with all data loaded into its data struc-
tures. The other entry is the time to read data from files, perform
other miscellaneous reporting, etc. during optimization and solve the
linear program. The time shown for constraint generation includes
that for hazard generation. Themeasured erroris the error of the
result compared with the optimal choice as determined by enumer-
ation. When there is a non-zero error tolerance, costs of nodes are
determined as the center of a band of costs.

It should be re-emphasized that MIST does not guarantee finding
an integer solution and indeed, of 100 randomly generated problems
tested, 7 yielded fractional answers.

8. EXTENSIONS AND CONCLUSION
An instruction pair isenclosedby another instruction pair if

the first instruction of the enclosing pair is introduced prior to the
first instruction of the enclosed pair and the last instruction of the
enclosing pair is introduced after the last instruction of the enclosed
pair. Enclosed pairs which generate hazards can cause errors in the
analysis using the current formulation. Extension of MIST to handle
this enclosed pairs is currently under investigation.
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