MIST - A Design Aid for Programmable Pipelined Processors

Albert E. Casavant
C&C Research Laboratories, NEC USA, Inc.
4 Independence Way, Princeton, NJ 08540

Abstract — In this paper, a tool to aid pipelined processor instruction aid because it does not synthesize the hardware, rather it selects from

set implementation is described. The purpose of the tool is to choose giternate designs that the tool user has provided. Alternatives can be
from among design alternatives a design that minimizes overall processor

cost. In the proposed cost model processor cost has two components, 9€nerated automatically using shell scripts from a relatively small

the cost of hardware necessary to realize the processor and the cost of number of design templates. If there aralternatives per instruc-
degraded performance due to pipeline hazards as compared to an ideal . i ; ; ; inati
pipelined processor. The tool user provides several alternate hardware tlon andi |nstru.ct|0ns to be |mplemented therg afec_omblna_tlons
implementations of each instruction, the cost of hardware operators Of implementations. Enumeration of combinations is practical only

used, a trade-off factor representing the relative importance of hardware for small numbers of instructions having few implementation pos-
cost versus degraded performance cost, and a straight line benchmark

program which is used by the tool to determine frequency of occurrence SiPilities. “Also it may be necessary to do the optimization several
of pairs of instructions. Using a linear programming approach, the tool times. The tool described in this paper uses linear programming to

selects an implementation for each instruction which gives an overall g,,4iq looking at the entire exponential solution search space. The
cost which is optimal. . - .
purpose of the tool is to choose from among user-provided design
1. INTRODUCTION alternatives a design that minimizes overall processor cost._ Cost
) o) has two components: the cost of hardware necessary to realize the
A major hurdle in pipeline design of programmable processors i§rocessor and any hazard prevention hardware, and the cost of de-
pipeline hazards [1]. A hazard must be handled either by a corgraded performance due to uncorrected hazards as compared to an
piler or the processor hardware to avoid incorrect processor opeigea| pipelined processor. In addition to alternate designs, the tool
tion. The compiler deals with hazards by inserting NOPs into thgser provides a trade-off factor representing the relative importance
code which results in increased code size and compiler complexif hardware cost versus degraded performance cost, and a bench-
The hardware deals with hazards by using pipeline interlocks. fhark program which is used to extract instruction frequencies.

pipeline interlo_ck detec_tg a hazard and stalls the pip_eline until the Previous work in this general area has concentrated on synthesis
hazard producing condition is no longer present. An interlock prolg [4][5][6] rather than analysis. In the “snapshot method” [6], snap-
duces the same effect as a NOP in the code and causes increassr%

hard lexity. H ds | adeck vl .) s of instructions from a benchmark are ordered by frequency of
ardware complexity. Hazards increaseck cycles per instruction .., rrence and hardware in a pipelined processor is incrementally

((_:Pl)_ resulting in reduced Pipe"”e speedu_p. _Generally Speaki_%ded to satisfy the hardware needs of each snapshot. Difficult
plpdel_lne haza(;dhs an be av0|dedhby a comblnatrl]on ofdcarehf_ulhde5|%1 schedule and/or unimportant snapshots are allowed to generate
and increased hardware cost. There are some hazards whic ar®diis in the pipeline. The most significant limitation of this tool

avoidable, such as the load hazard in RISC processors and con{ioly, . o instructions are forced to be of equal length, which does
hazards due to branch instructions. not correspond to reality in the floating-point units of most com-
Structural hazards are caused by contention for resources by twrcial microprocessors. The underlying optimization algorithm is
or more instructions executing simultaneously in the pipeline. If greedy heuristic and despite its simplicity takes about 30 CPU
resources are increased appropriately, contention can be eIiminatggyS to synthesize the pipeline for the IBM ROMP processor and
Data hazards are caused by data dependences between instructipligisires significant user interaction. Another drawback to a purely
They fall into three categories RAW, WAR and WAW [1]. Of gynthesis approach is that the number of design tricks in typical mi-
these the most troublesome in most designs are the RAW hazardgprocessor datapaths seems to preclude using automatic datapath
They can be avoided by proper register assignment by the compilgfnthesis in a high volume general purpose application. In the recent
and/or data forwarding. Data forwarding involves the addition opast each succeeding microprocessor generation has had innovations
multiplexing on the inputs of hardware operators which requirg, architecture and basic implementation. This designer innovation
a result generated by an earlier instruction that has not reachgfles place in parallel with instruction implementation. Thus fre-
the execution stage that writes the result to memory. The addgflent modifications to the algorithms in the tool would be needed
multiplexers select either the normal path from a register file or thgg ine design progressed. Using the approach described in this pa-
memory data register or the data forwarding path. per, the tool user has complete control over the datapath design
Integer instructions in RISC processors have very few hazardgptions, the tool helps him/her by efficiently searching the design
due in large part to equal length implementations of those instrugpace (independent of design methodology) for good combinations

tions. The same cannot be said of floating—point instructions. Igf implementations which minimize overall cost of the processor.
single chip microprocessors, inexpensive general purpose coproces-
sor designs, and special purpose designs these instructions have dif- 2. PROCESSOR MODEL
ferent lengths and generally there are several hazards present, as il:f. L L L . .
. . . he most basic differentiation among pipeline architectures is
the R4000 design [2]. Non-RISC designs, such as those typlcalgl . s : o)
. . : . rgler of instruction issue and completion. The possibilities are:
used in supercomputers, where instructions lengths are variable an) i)
pipelines are deep also have many potential hazards. 1. In-order issue and in-order completion.
This paper describes a tool to aid pipelined processor instructign In-order issue and out-of-order completion.

set implementation. The tool should properly be viewed as a desié’h Out-of-order issue and out-of-order completion.

The first two categories are supported by the tool. The thirdf a hazard to avoid complex control involved in stalling more than
category requires the use of dynamic scheduling, either usingomce on the same instruction pair.

“scoreboard” approach, the Tomosulo algorithm [7], or some vari- stall strategy is easily modified in the software implementation of
ation/combination of the two. The optimization approach used byiIST, and is independent of the core optimization. Two strategies
this tool is incompatible with any architecture where decisions cofyere chosen for the examples in Section 7. The first of these is good

cerning ordering of instructions issued is dependent on the particulgbm the point of view of control complexity, but tends to generate
hardware implementation of instructions and detailed hardware dgyany hazards:

lays. An exception to “no dynamic scheduling” is a hybrid approacl1
where only loads and stores are dynamically scheduled. '

Another major differentiation concerns how the architecture han-
dles instruction level parallelism. The tool is compatible with su-
perscalar, VLIW and superpipelined designs. Currently, only single
instruction issue per clock in a “standard” pipeline configuration ig;
fully supported.

Stall on structural hazards.

When multiple hazards are involved, stall once to clear the last
hazard.

When an instruction has a loop, stall the following instructions
until after the loop.

When a following instruction has a loop, stall the following
instruction until the loop is not executing simultaneously with

3. REQUIRED TOOL INPUTS previous instructions.
The second strategy is relatively bad from the control point of

The required design information which must be provided to MIST;ie\y byt tends to generate fewer hazards than the first strategy:

can be summarized as:
)) 1. Stall on structural hazards.
1. The number of _|nstruct|ons._) . 2. Stall only when necessary, allowing multiple stalls on the same
2. The number of implementations of each instruction. instruction pair
i' lhe n_umbler O_f eXECL(Ijtlon jtar?e_s in eachFlmpIc_emelntatl_on. it Unwind all loops to look for structural hazards and stall only
_unctlona units use an their (?OS_t' unctional units wit when there is a conflict involving structural resources.
different speeds are considered distinct.
5. Stage residencyf the functional units, i.e. the stage of execu-
tion of the instruction where a functional unit is used.

6. Functional unit sharing options. 5 NODE PACKING EORMULATION
Hazards between instructions which occur frequently in programs '

intended to be run on the processor (as determined from a bench-The pipelined processor cost minimization problem described
mark provided to the tool) are be given higher weight than hazbove can be formulated asnade packingproblem. This prob-
ards between infrequently occurring instructions. Hazards may halgm has also been called the vertex packing or stable set problem
varying severity from a one clock cycle stall to several clock cycl@nd except for some special cases is NP-hard [8]. Among categories
stalls. The overall affect on CPI, i.e. tlmst of hazard§CH), is of integer programming problems, node packing and knapsack prob-
thus directly proportional to frequency of stall (FOS) multiplied bylems are those displaying the most computational success. Solutions
stall severity (SS). FOS is determined for all possible spacings of general unstructured integer programs remains very difficult. The
instruction introductions into the pipeline. relative success in node packing can be traced to theoretical work to
The cost model used by the tool defines overall processor cdéid classes of facets of the convex polyhedron associated with the
as the sum of hardware cost and the cost of degraded performang@de packing integer program. One such category, maximal cliques
The hardware cost (HC) is the sum of all functional unit costs. ThE] is extensively exploited in MIST. Further information on node
cost of additional multiplexing required when hardware is shared ®acking and applications in high level synthesis can be found in

Currently the tool handles only structural hazards. Extension to
data hazards is straightforward given register assignments.

not considered. [8][10][11]. The clique formulation of the node packing problem
The trade-off factor (TF) indicates how much silicon area (in 'S MAX %:vam, gpm <1 for all cliqgues C, 1z, €

units of area / stall) the designer is willing to trade-off to preventg 11 for all v € V.
one stall involving the most frequent instruction pair. Thus overall Fqr the problem at hand, there are two categories of ndues,
cost is: HC' + T'F + FOS 55 in units of area. The designer ard nodes andunctional unitnodes. Hazard node variables are one
may use the trade-off factor to balance hardware cost and acceptafpléhe corresponding hazard is active and zero otherwise. Hazards
performance degradation. are inactive when either or both of the implementations causing the
hazard is not chosen in the final solution. Functional unit variables
4. STALL STRATEGY are zero if the functional unit is active (used by any implementation
Stall strategyis the method of insertion of stalls in the pipeline.in the final solution) and one otherwise. The weight of a hazard node
The selection of a strategy is influenced primarily by control comis the cost of lost performance due to the associated stall(s). The
plexity. In general, but not always, it is desirable to stall followingweight of a functional unit node is the cost of the functional unit. The
instructions in as early a stage of execution as possible. It is alsdjective function is algebraically manipulated to support 1-active
sometimes desirable to avoid stalls when a loop is in progress {(hazard) and O-active (functional unit) costs. For each instruction
one of the instructions involved to avoid complex control problemspair, abankof hazard nodes is formed. Each hazard between a pair
It is possible that while avoiding one stall involving an instructionof implementations of the pair of instructions associated with a bank
pair, other stalls will be caused in later stages of execution of the represented by only one node in a bank (although one node may
instruction pair. It may be best to insert a stall from the first ocrepresent many such hazards). Hence, exactly one node in a bank
currence of a hazard lasting until past the end of the last occurrencan be active in the final solution and the hazard nodes in a bank

form an equality clique constraint. Some banks are further speciah ii mode. Figure 1 shows this interaction. Additional arcs are
ized assuperbanksthere is one superbank corresponding to eackhown for cliques generated among the nodes in a bank. Note that
instruction. From all the instructions pairs containing a particulafor a given driving bank, constraints are generated independently for
instruction, one of them is distinguished as a superbank. Supesach driven bank. A different constraimtay be generated, because
banks are similar to normal banks except that there are restrictioimgeraction between driven banks favors a different dominant driven
on collapsing of nodes, as described below. bank on each of the two constraint generations involving the same

Edges fall into two categorieshazard-to-hazard(HTH) and three banks. Each node of the driving bank becomes a driving node
hazard-to-functional-uni{HTF). For each hazard, define arin- for forming constraints. Conflicts between the two driven banks, i.e.
struction and & instruction which form the pair causing the hazard.inconsistent node choices with respect to the common instruction in
A HTH edge is placed between two hazard nodes which correspohdth driven banks are resolved in favor of the dominant driven bank
to different implementations in either theor j dimension, thereby for that constraint. After conflict resolution raflectionoperation on
allowing only one of those hazard nodes to be active. In superbanttee driving bank is performed. This operation adds more nodes in
only, A HTF edge is placed between a hazard node and a functiorthke driving bank in an attempt to maximize nodes in the constraint.
unit node which is used in either theor j instruction implementa- Of course, all nodes added must be consistent with nodes already
tions associated with a hazard node. Thus, any use of a functiorialthe constraint. In the example of Figure 1, there are no nodes
unit in any implementation associated with an active hazard nodgelded. In the event that a driven bank is not active, i.e. there are
will cause the functional unit to be O—active and its cost will be inno arcs connecting it to the driving bank, there is a possibility of
cluded in the cost of hardware. Note that this cost is charged ongn alternate third bank. A fourth instruction which does not appear
once, regardless of the number of times the functional unit is useth the active driven bank or driving bank may be eitheriaor j

The category of bank determines what type of nodiapsingis ~ dimension of a alternate third bank.
permitted. Since each node becomes a linear programming variable,The constraint generation algorithm given above is repeated for
it is very beneficial to reduce the number of nodes as much a®nstraints involving functional units. For each functional unit,
possible. In “normal” banks, collapsing is permitted when theyodes are added to a constraint when they DO use the function unit,
costs of the nodes are the same (or close when there is a n@keeping with the notion that functional units are active when their
zero error tolerance, as discussed below) for all combinations ebrresponding node variables are zero. Thus constraints will include
implementations which are represented by the collapsed node. Hhk functional unit node and hazard nodes compatible with each
edges are adjusted accordingly. Since there are many possible setgtibr and the functional unit. Unfortunately, constraint generation
compatible combinations possible, a heuristic set covering algorithgs this type does not guarantee that functional unit use is properly
is used to maximize collapsing. In superbanks, collapsing is moggnstrained. If all the uses of each functional unit in each superbank

restrictive, since not only costs must be the same but functional urib not appear in other constraints, then additional constraints are
use must be the same to permit collapsing. Also, in superbankgided.

thei dimension must have only one implementation represented per
node. Permitting multiple implementations in thalirection will
allow infeasible choices of implementations in some cases.

The number of banks is approximatefy wherei is the number
of instructions. For each bank, each node in the bank can be a
driving node for a constraint. Checking for the presence of arcs
6. CONSTRAINT GENERATION be_tween driving and driven_ bank and c_hecking co_mpatibility between

driven banks ar©r? operations whera is the maximum number of

Constraints are generated by inserting arcs among nodes in banksplementations of any instruction amd is the maximum number
For each constraint driving bankis chosen. A particular node of nodes in a bank. When an alternate third bank is called for, there
in that bank is chosen (theriving nodg and following a clique arei— 1 possibilities for this bank. Constraint generation is done,
generation strategy, a maximal clique constraint is generated. Itji$ the worst case, for each functional urfit,Hence, the number of
not guaranteed to be a maximum clique. Given a driving bank, theenstraint generation cycles @i’n?f and each constraint generation
are three possibleriving modes Arcs are created i mode if nodes cycle takesOr?i, giving an overall complexity oDri’f. There is
in the i dimension of the driving bank are connected by arcs to the
j dimension of the driven bank. Thg ii, andjj driving modes INSTA INST C INST B INST C
are defined similarly. In concert with the node-packing paradigm
a driving node connects to a driven node if they areompatible
i.e. they cannot be simultaneously chosen as part of the solution2
A valid solution to the problem will have one node chosen (linear ,,
programming variable equal to 1) for each bank.

Constraint generation proceeds by connecting all possible nodes
in the driven bank to the original node in the driving bank. In this
sense, constraint generation is greedy. Other constraints may
possible by adding fewer than the maximum nodes in the drivero + x4 + X5 + X7 1o the right and
bank to the constraint, so constraint generation is not exhaustive. left of nodes are
Note that for each driving bank, there are two possible driven banks X5 implementation
using different driving modes. For example, if one driven bank is INST A INST B numbers.
driven inij mode by the driving bank, then another driven bank
can be driven irjj mode. The two driven banks can then interact Figure 1: Constraint Generation.

’0,1 0,3

DRIVEN
BANKS

24

DRIVING

o BANK
E%nstralnt is:

Note that numbers

a significant constant multiplier needed for the overhead associat8d Optimization is performed using CPLEX, a commercial lin-

with performing these operations. ear programming code from CPLEX Optimization, Inc.
Tables 1 and 2 give the computational results associated with both
7. EXAMPLE GENERATION AND the example discussed above (indicated by “Ig”) and an abbreviated

COMPUTATIONAL EXPERIENCE example having 22, 36, 40 and 40 implementations respectively for
The following types of implementation variability are present infP-add-sub, fp-mult, fp-divand fp-sqrt (indicated by “sm”). Two
the examples described below: stall strategies were used as described in Section 4 and indicated
by “ld” for low or “hd” for high density of hazards. Two trade-

. .) . . __off factors are represented, “Iw” for low weight, indicating that one
both intra-instruction and INter-INSruCtion 5, ard between the two most frequently occurring instruction pairs
can be traded off for one tenth of an adder, and “hw” for high
weight, indicating the trade-off is for ten adders. Two quantities

Algorithmic variation refers to the implementation algorithms forof constraints were generated, “f” for full constraint generation i.e.
instructions e.g. for a multiplier, booth, radix 4 and radix 8, one passll constraints which constraint generation can produce, and “a” for
to three passes, or the odd/even method [12] [13], radix 4 and radibbreviated, a minimum set guaranteed to give correct results. The
8, one pass to two passes, or modified Wallace tree [12] [14], radiast number gives the error tolerance as 0, 5, or 10 percent. Error
4, one pass. Inter-instruction hardware sharing is used to save totalerances greater than zero have the effect of increasing the amount
hardware, but possibly at the cost of increased stalls due to structucdilcollapsing possible by allowing nodes to collapse into one node
hazards e.g. thép-add and fp-mult instructions use/don’t use the when their costs fall within the error tolerance. The overall effect is
same carry propagate adder. Tipeadd uses the adder for adding, to intentionally cause errors in the input data, with a benefit of fewer
rounding or both.Fp-multuses the adder as a final carry propagateariables in the linear programming formulation of the problem.
add after partial products have been computed by carry save addérse worst case number of hazar@scalculated assuming that every
Intra-instruction hardware sharing is also used to save hardware, passible pair of implementations of each pair of instructions will
effectively breaks the pipeline at the point where sharing occugenerate a hazard. Tmeimber of raw hazardis the actual number
e.g. the partial product adder and rounding adder (required foff hazards which were detected using the specified stall strategy.
compliance with the IEEE floating-point standard) use/don’t use thhe number of variabless the number of variables in the resulting
same adder. Hardware speed variation and hardware stage residdigar program and reflects the results of node collapsing and the
often go hand-in-hand. Moving hardware between stages may allggtror tolerance on the original number of hazards.
the use of slower (less expensive) components e.g. final exponentTable 2 show the results of constraint generation and linear pro-
addition may be performed in the same pipeline stage as the roundiggamming optimization. The&umber of matrix entriess the total
addition (requiring fast, expensive adders because both adds amember of non-zeros in the constraint matrix and is a good indica-
on the critical path) or in different stages (requiring slower, lesgon of overall size of the problem. The optimization time is given
expensive adders). as two entries, the first is the time used by CPLEXo solve the

An example based on a 4 instruction floating point unit wadnear programming program with all data loaded into its data struc-
constructed. Thep-add-subinstruction exhibits 4 different add fures. The other entry is the time to read data from files, perform
algorithms, taking advantage of techniques given in [13] and [15 __ther miscellaneous re_portlng, etc. during opt_lmlzatlon a_nd §olve the
Also shown in this instruction is both inter and intra-instruction!"€@r Program. The time shown for constraint generation includes
sharing of the exponent add and mantissa add hardware and differd}ftt for hazard generation. Theeasured erroiis the error of the
stage residencies, giving a total of 36 implementations. fphrault re_sult compared WIFh the optimal choice as determined by enumer-
uses 5 basic algorithms in both radix 4 and radix 8. The amouftion. When there is a non-zero error tolerance, costs of nodes are
of sharing of carry-save adders is varied yielding different numbegetermlned as the center.of a band of costs. o
of iterations through the carry-save stage of multiplication. There is 't Should be re-emphasized that MIST does not guarantee finding
also inter and intra-instruction sharing of the exponent add and fin@l intéger solution and indeed, of 100 randomly generated problems
carry propagate add of the partial products, exploiting techniqud€Sted, 7 yielded fractional answers.
given in [161 and dn‘fgrent stage res@enmes, giving gtot.allof 300 8. EXTENSIONS AND CONCLUSION
implementationsFp-div andfp-sqgrtare implemented quite similarly
and follow closely techniques given in [17] and [18]. Radix 2 An instruction pair isenclosedby another instruction pair if
and radix 4 implementations of SRT division, with intra-instructionthe first instruction of the enclosing pair is introduced prior to the
sharing of hardware in the basic loop give variation from 3 passes féifst instruction of the enclosed pair and the last instruction of the
one of the radix 8 implementations to 24 passes for one of the rad@aclosing pair is introduced after the last instruction of the enclosed
2 implementations. The final carry propagate add is possibly shargair. Enclosed pairs which generate hazards can cause errors in the

with fp-add-suband/orfp-mult The number of implementations for analysis using the current formulation. Extension of MIST to handle
both fp-div and fp-sqrt is 80. this enclosed pairs is currently under investigation.

1. Algorithmic.

2 Hardware sharing,
3. Hardware speed.
4. Hardware stage residency.

Overall operation of the tool is as follows:
1. Al potential hazard I ible imol ati References
. potential hazards among all possible iImplementations L. Hennessy and D. A. PatiersoGomputer Architecture A

all possible instruction pairs are generated. Nodes representing Quantitative ApproachMorgan Kaufmann Publishers, Inc., 1990.

the hazards are placed in banks and collapsing is performedz] . Kane and J. HeinrichMIPS RISC ArchitectutePrentice Hall,
2. Constraints are generated. Englewood Cliffs, NJ, 1992.

PROBLEM NUM NUM RAW WORST NUM ENUM-
NAME VARI- HAZARDS CASE COMBS ERATION
ABLES NUM TIME
HAZARDS

1 rand_20 385 428 10,115 3.2 * 10 NA

2 fp_sm_ld_Iw_f O 644

3 fp_sm_ld_Iw_a 0 644

4 fp_sm_Id_Iw_f 10 621 785

5 fp_sm_hd_hw_f 0 711

6 fp_sm_hd_hw_a_0 711 7170 1,267,200 352

7 fp_sm_hd_hw_f 5 578 6873

8 fp_sm_hd_hw_f_10 565

9 fp_lg_ld_lw_a_10 3846 6906 71,456 69,120,000 19,371

Table 1: Floating point example data — part 1.

PROBLEM NUM NUM GEN OPTIM MEAS'D
CON- MATRIX TIME TIME ERROR
STRAINTS ENTRIES

1 rand_20 1307 21,277 6 53/4 NA

2 fp_sm_ld_Iw_f 0 14,502 1,664,958 788 13.0/174 0%

3 fp_sm_ld_Iw_a_0 5,085 628,612 383 3.9/63 0%

4 fp_sm_ld_Iw_f_10 13,600 1,574,798 712 12.75/ 165 6.53%

5 fp_sm_hd_hw_f 0 9,794 1,183,138 638 9.1/153 0%

6 fp_sm_hd_hw_a_0 3,740 422,988 198 2.7156 0%

7 fp_sm_hd_hw_f 5 7,642 823,640 486 7.0/104 2.50%

8 fp_sm_hd_hw_f_10 7,413 787,652 464 6.9/ 103 5.01%

9 fp_lg_ld_lw_a_10 15,382 3,901,420 36,702 25.6 / 1584 6.51%

Table 2: Floating point example data — part 2.

[3] P.Paulin and J. Knight, “Force-Directed Scheduling in Automatic Datd11] C. H. Gebotys and M. I. EImasryOptimal VLSI Architectural Syn-
Path Synthesis,” iR4th Design Automation Conferengep. 195-202, thesis: Area, Performance, Testabilit{luwer Academic Publishers,
1987. 1992.

[4] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, “Scheduling for Functional [12] V. Peng, S. S., and G. M., “On the Implementation of Shifters,
Pipelining and Loop Winding,” ir28th Design Automation Conference Multipliers, and Dividers in VLS| Floating Point Units,” irBth
pp. 764-769, 1991. Symposium on Computer Arithmetjsp. 95-102, 1987.

[5] M. Nourani and C. Papachristou, “Moving Frame Scheduling angd13] p. Goldberg, Computer Architecture A Quantitative Approach
Mixed thedulmg—AI!ocatlon for' Automated Synthesis of Digital ch. Computer Arithmetic, pp. A1-A66. Morgan Kaufmann Publish-
Systems,” in29th Design Automation Conferenqep. 99-105, 1992. ers, Inc., 1990.

[6] R. J. Cloutier and D. E. Thomas, “Synthesis of Pipelined Instructiorh4] W. M. McAllister and D. Zuras. “An NMOS 64b Floatin . .

e . h .M. . , g-Point Chip
fg;grocessors, iB0th Design Automation Conferenqe. 583-588, Set,” in ISSCC 86 pp. 34-35, 1986.

[7] R. M. Tomosulo, “An Efficient Algorithm for Exploiting Multiple (15] ‘é Gosli_ng, “Socr:ne TricksA(_)tfh th?. (Flgfgng—zgoi?gsgrade," Bth
Arithmetic Units,” IBM Journal of Research and Developmentl. 11, ymposium on Lomputer Arthmetp. s :
no. 1, pp. 25-33, 1967. [16] M. R. Santoro, G. Bewick, and M. Horowitz, “Rounding Algorithms

[8] G. L. Nemhauser and L. A. Wolseyinteger and Combinatorial for IEEE Multipliers,” in 9th Symposium on Computer Arithmetic
Optimization Wiley Interscience, 1988. pp. 176-183, 1989.

[9] M. W. Padberg, “On the Facial Structure of Set Packing Polyhedra,[17] J. Fandrianto, “Algorithm for High Speed Shared Radix 4 Division
Mathematical Programmingvol. 5, pp. 199-215, 1973. and Radix 4 Square Root,” Bth Symposium on Computer Arithmetic

[10] G. L. Nemhauser and G. Sigismondi, “A Strong Cutting Plane/Branch- pp. 73-79, 1987.

and-Bound Algorithm for Node Packing,” tech. rep., School o0f[18]
Industrial and Systems Engineering, Georgia Institute of Technology,
1989.

J. Fandrianto, “Algorithm for High Speed Shared Radix 8 Division
and Radix 8 Square Root,” @th Symposium on Computer Arithmetic
pp. 68-75, 1989.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

