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Abstract

This paper presents an e�cient approach to path delay fault

simulation. We accelerate fault simulation by more than

one order of magnitude with a new speed up technique called

path hashing. An intelligent path identi�cation method al-

lows to deal with circuits containing two orders of mag-

nitude more paths than state-of-the-art tools. Using these

techniques larger circuits can be handled with a reasonable

amount of time and memory.

1 Introduction

To ensure the correct behavior of an integrated circuit,

not only its static, but also its dynamic, operation has to

be guaranteed. Physical defects, as well as parameter vari-

ations during the manufacturing process may a�ect the dy-

namic behavior of a circuit. The dynamic characteristics of

a module under test are examined with the help of delay

testing. It is a key design task to verify correct dynamic

operation for given gate delay tolerance ranges.

Two fault models have been proposed to represent delay

faults. The gate delay fault model [1] models at one gate a

delay fault that causes violations of the circuit speci�cation.

A weakness of the gate delay fault model is the assump-

tion that process variations a�ect only individual gates. In

practice, uctuations during the manufacturing process in-

uence entire parts of a chip or wafer. Therefore, the path

delay fault model [2] has been introduced. It assumes delay

faults on entire paths in a circuit. The major worry when

using this fault model is the size of its fault dictionary, that

may grow exponentially with the circuit depth. In this pa-

per, we consider the path delay fault model and show how

to deal with huge path sets.

Fault simulation is an important research topic, because

its application is manifold. Smith [2] addressed the problem

of path delay fault simulation �rst. He introduced a six-

valued logic tailored for the robust detection of path delay

faults. Fink et al. [3] developed an accelerated delay fault

simulator that exploits the concept of parallel processing of

patterns [4, 5] at all stages of the simulation. Furthermore,

they extended the approach to non-robust detection of path

delay faults and they proposed a data structure to store the

tested paths. Based on these two approaches various fault

simulators for combinational [6, 7] and sequential [8, 9, 10,

11] circuits have been proposed.

After the basic de�nitions in Section 2, the algorithm

for path delay fault simulation is explained in Section 3.

An improved encoding and the path hashing are presented

in Sections 4 and 5. The experimental results shown in

Section 6 illustrate the improvements. Section 7 concludes

the paper.

2 Basic De�nitions

A combinational circuit C can be represented by a di-

rected, acyclic graph G = (V;E) with nodes V and edges

E. V denotes the set of signals in C. A directed edge

(x; y) 2 E of G means that x is an input signal and y is

an output signal of a distinct gate. It is useful for further

considerations to de�ne the set of primary inputs PI and

the set of primary outputs PO.

A structural path Ps in G is de�ned as an (n+1)-tuple

Ps = (x0; : : : ; xn), whereby the nodes on the path are the

components of the tuple. A path starts at a primary input

and ends at a primary output. The set of all structural

paths in C is called PS. By choosing the transitions (either

rising (r) or falling (f)) at the primary input and at all

outputs of XOR/XNOR gates on a structural path Ps, a

functional path Pf = ((x0; : : : ; xn); (t0; : : : ; tm)) is de�ned.

t0 is related to the transition at the primary input and ti
(1 � i � m) is related to the ith of the m XOR/XNOR

gates on the path counted from the primary input. PF

denotes the set of all functional paths in a circuit.

Smith [2] has introduced the hardware model for delay

testing. The combinational circuit under test is embedded

between a block of input latches and a block of output

latches. All latches are assumed to be glitchless. At time T1
the �rst vector V1 is loaded into the input latches. After all

signals in the circuit have taken stable values, the second

vector V2 is applied at time T2. The logic values of the

primary outputs are sampled into the output latches at

time TS = T2 + TC , where TC is the desired clock rate.

A path Pf has a nominal delay d(Pf) and may have a



delay fault called �(Pf ). Pf is said to be faulty if the de-

lay fault causes the wrong value of its primary output at

time TC , e.g. d(Pf ) + �(Pf ) > TC . A path delay fault is

called robust detected, if and only if, its detection is inde-

pendent of all other delay faults in the circuit. Otherwise it

is nonrobust detected. Of course, robust detection implies

nonrobust detection.

Considering Path Identi�cation an e�cient method has

been proposed for structural paths [10] and has been ex-

tended to functional paths [12]. Its main idea is to avoid

storing a set of nodes to represent a path by using a unique

number, the Path Identi�er (PID), instead. For every gate

input a branch identi�er is calculated in a preprocessing

step. By traversing a path and summing up all branch

identi�ers on a path, the unique PID is found. Detailed

information about this identi�cation method can be found

in [12].

3 Path Delay Fault Simulation

The improvements and new techniques described in this

paper are based on the robust path delay fault simulation

of Smith [2] and its extension to nonrobust simulation in-

troduced by Schulz et al. [6].

Smith proposed a six valued simulation logic with the

values 0s; 0p; 0�; 1s; 1p; and 1�. Each value consists of

the �nal boolean value f0; 1g and the detectability status

fs; p;�g. A detectability status s indicates that a signal

remains stable at its �nal value, p shows that there is at

least one path from a primary input that is path delay fault

testable, and � indicates that the detectability status of a

signal is neither s nor p. The value propagation table for

an OR gate and an inverter are shown in Table 1. Analo-

gous propagation tables can be derived for AND and XOR

gates [2, 6].

_ 0s 1s 0p 1p 0� 1�

0s 0s 1s 0p 1p 0� 1�
1s 1s 1s 1s 1s 1s 1s

0p 0p 1s 0p 1� 0p 1�
1p 1p 1s 1� 1� 1� 1�
0� 0� 1s 0p 1� 0� 1�
1� 1� 1s 1� 1� 1� 1�

:

0s 1s

1s 0s

0p 1p

1p 0p

0� 1�
1� 0�

Table 1: Robust propagation table for OR- and NOT-gates

Schulz et al. [6] showed that it is possible to collapse the

six values to four values, if only nonrobust fault detection

is required. The detectability stati s and � are merged to

the new status p. The corresponding tables for propagating

these values through an OR gate or an inverter are given

in Table 2.

Based on the propagation tables, the path delay fault

simulation can be performed. It consists of four major

steps.

First, the primary inputs must be initialized. The second

_ 0p 1p 0p 1p

0p 0p 1p 0p 1p

1p 1p 1p 1p 1p

0p 0p 1p 0p 1p

1p 1p 1p 1p 1p

:

0p 1p

1p 0p

0p 1p

1p 0p

Table 2: Nonrobust propagation table for OR- and NOT-

gates

test vector V2 determines the �nal value; and the �rst test

vector V1 the detectability status of an input signal. It is

either p if initial and �nal value are di�erent, or s(or p,

respectively) if initial and �nal value are identical in the

robust (or nonrobust, respectively) case.

Second, the true value simulation of the circuit is per-

formed from the primary inputs to the primary outputs.

The values of all signals in the circuit are computed ac-

cording to the propagation tables.

Third, all robust (nonrobust) detected path delay faults

are determined. The paths where all nodes on the path

show a detectability status p are searched in a depth �rst

manner from the primary outputs to the primary inputs.

Of course, the search starts only at primary outputs with

detectability status p.

Last, the tested paths have to be stored. The path tree

introduced in [6] has turned out to be time and space ex-

pensive for large path sets. We use the method of [12] to

guarantee e�cient path handling.

4 Encoding of Logic Values

In order to guarantee e�cient propagation of logic values

introduced in Section 3, the calculation of the output value

of a gate with given input values has to be executed as

fast as possible. Each input value can be encoded in 3 bits

as there are six logic values. We considered two ways of

managing the calculation:

� All three bits are integrated in a single word. To de-

termine the output value of a gate, a table-look-up

method can be used. This method has the advantage

that the implementation is simple.

� The three bits are in three words. To determine the

output value of a gate, the words have to be combined

by logic equations. This approach enables treatment

of several patterns in parallel, because only one bit of

a word is needed per pattern and the equations depend

on the gate and not on the pattern.

We decided to use the second approach as it turned out

to be faster [3, 5]. By using an intelligent encoding, it mini-

mizes the number of boolean operations needed to compute

the output of a gate. Table 3 shows the encoding that we

have chosen to represent the logic values of a signal x; and

Table 4 displays the resulting minimized logic equations for

an arbitrary gate with the output y and two inputs a and b.



x0 x1 x2
0s 0 0 1

1s 1 0 1

0p 0 1 0

1p 1 1 0

0� 0 1 1

1� 1 1 1

Table 3: Encoding of the logic values

AND y0 = a0 ^ b0
y1 = ((a0 _ a1) ^ b1) _ (a1 ^ b0)

y2 = (:a0 ^ b1) _ (a1 ^ :b0) _ (a2 ^ b2)

OR y0 = a0 _ b0
y1 = ((:a0 _ a1) ^ b1) _ (a1 ^ :b0)
y2 = (a0 ^ b1) _ (a1 ^ b0) _ (a2 ^ b2)

XOR y0 = a0 � b0
y1 = a1 _ b1
y2 = (a1 ^ b1) _ (a2 ^ b2)

NOT y0 = :a0
y1 = a1
y2 = a2

Table 4: Logic equations

To get an impression of the quality of our logic equations

we compare them with those of the fault simulator [3] in-

cluded in DYNAMITE [13]. Table 5 displays the frequency

gate fequency in operations per gate

type benchmarks DYNAMITE TIP

AND 22.9 % 23 12

NAND 14.1 % 24 13

OR 9.0 % 25 12

NOR 6.3 % 26 13

BUF 0.9 % 0 0

NOT 46.7 % 1 1

XOR 0.1 % 5 5

XNOR 0.0 % 6 6

av. operations 13.01 6.95

Table 5: Number of boolean operations

of all gates in the benchmark circuits [14, 15, 16], the num-

ber of boolean operations needed by DYNAMITE, and the

number of boolean operations needed by our test prepa-

ration tool TIP. The bottom line compares the weighted

average number of operations required by both tools. It

shows that we can save about 50 % of the boolean opera-

tions.

5 Path Hashing

Practice shows that in most cases a single pattern is able

to detect faults on multiple paths and that many detected

paths have common parts. By exploiting this fact it is

possible to save computation time during path delay fault
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Figure 1: Idea of path hashing

detection.

To demonstrate the algorithm, Figure 1 shows a circuit

after the simulation of a six-(four-)-valued test pattern.

Any path represented by a dashed line from an input ix
via the signal s to the outputs oy is detected by the pat-

tern. Recalling the algorithm explained in Section 3, it is

necessary to traverse every path from s to the inputs, if a

path from the outputs to s is found. Assuming that there

are a paths from the inputs to s and there are b paths

from s to the outputs, it is necessary to handle all a � b
paths. Remember that every path is identi�ed by a num-

ber that results from the sum of the branch identi�ers at

every signal. Hence, the sums for the a paths segments are

calculated b times. To avoid this repetition we propose to

modify the path detection algorithm as follows:

1. After performing the simulation for a pattern, an

empty list is set up at all fanouts.

2. Every sum of branch identi�ers of a path segment from

a fanout to an input whose corresponding path delay

fault is detected by the pattern is inserted into the list

of the fanout.

3. A path segment from an output to a fanout with a

nonempty list is identi�ed. The identi�ers of all paths

containing this segment can be determined by adding

the sum of branch identi�ers of the segment to all items

of the list of the fanout.

Using this extension PIDs are computed only a+b times,

instead of (a+ 1) � b times. If we assume reasonable values

of a = 30 and b = 20, the computation is (30+1)�20=(30+
20) = 12:4 times as e�cient.

Example

To illustrate the algorithmwe have prepared the example

presented in Figure 2 and Figure 3. To perform robust fault

simulation, the four major steps of Section 3 have to be

executed.

In the �rst two steps we propagate the test pattern

T = (a; b; c; d) = (1p; 0p; 0p; 1p) and we get the logic values
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Figure 3: Path identi�cation and path hashing

that are presented in Figure 2. Path delay faults that occur

on paths that are drawn in bold are detected by the test

pattern. Figure 3 shows the branch identi�ers. In the third

step all faults are identi�ed. Starting at the output x with

the sum 0 we branch to signal s and add the branch iden-

ti�er 1 to the sum. Since s is a fanout we store the sum.

Then we branch to a via p and add the branch identi�er 6 to

the sum. Since a is an input the fault number 7 can be de-

tected by this pattern. Now we mark this fault as detected

and get the �rst element of the list at signal s. The value

of the element is the sum of all branch identi�ers on the

path between the fanout and the input. In the example we

subtract the stored value 1 from the total sum of the path

7. Hence, we get 6 as the �rst element. Continuing with the

signal q we get the entry 4 at the input b and the entry 2 at

c. Now all faults that can be detected on paths starting at

output x are identi�ed and we have to derive the numbers

of the paths beginning at the other output y. The sum is

cleared; we step from y to s and add the branch identi�er 0

to the sum. Here we �nd a not empty list. Hence we get all

path identi�ers without further analysis. The faults with

the identi�ers 0 + 2, 0 + 4 and 0 + 6 are detected, too. We

can return to signal y.

Using this procedure we are able to obtain all identi�ers

of paths that are detected by a pattern handling each signal

only once.

6 Experimental Results

The path delay fault simulator was implemented in "C",

integrated in our test preparation tool TIP, and tested with

the help of well-known benchmark circuits [14, 15, 16].

When sequential circuits are processed, only the combi-

national part is considered. Several experiments were per-

formed to get an impression of the improvements of the new

techniques. As a reference the fault simulator [3] and path

tree of DYNAMITE were chosen. All experimental results

we present were measured on a DECstation 3000/500.

In our main experiment 10,000 randomly generated test

patterns have been robust and nonrobust simulated. The

results are summarized in Table 6.

Circuit robust tested nonrobust tested total

Name paths time paths time time

s1512 1508 0.68 s 2569 1.73 s 2.41 s

s3330 4103 1.87 s 7733 4.29 s 6.16 s

s1269 1303 0.47 s 20414 4.76 s 5.23 s

s9234 2998 4.00 s 23423 15.99 s 19.99 s

c499 12 0.11 s 121264 3.96 s 4.07 s

c1908 704 0.42 s 40703 4.61 s 5.03 s

s38584 30645 30.62 s 87417 70.56 s 101.18 s

s13207.1 4936 8.76 s 49533 21.73 s 30.49 s

s15850.1 8108 11.84 s 277541 64.75 s 76.59 s

s4863 1748 1.98 s 1220832 101.10 s 103.08 s

s66691 6142 34.24 s | | 34.25 s

c62881 70 0.98 s | | 0.98 s

Table 6: Robust and nonrobust path delay fault simulation

Table 6 shows that we are able to simulate large test pat-

tern sequences in a reasonable amount of time. The second

and third columns of Table 6 represent the number of ro-

bust tested paths and the CPU-time required. Columns

four and �ve contain the same information for nonrobust

simulation. The last column displays the total time of ro-

bust and nonrobust fault simulation. The largest circuit we

are able to handle is s4863
1
with 2.6 billion paths. It takes

about one hundred seconds to simulate the 10,000 patterns.

The number of all functional paths is given in Table 8.

Next, we compared our simulation approach to the fault

simulation included in DYNAMITE and computed the

speed up we got. The results are given in Table 7. The

second and third columns of Table 7 contain the simula-

tion times of TIP and DYNAMITE. The last column, the

speed up, shows that we are on the average ten times faster

than DYNAMITE, whereby the greatest speed up is 49 for

circuit s38584. Of course, for the two largest circuits we

can give no speed up, because the path tree cannot handle

circuits of this size.

With our �nal experiment we compared the overall sim-

ulation time (simulation plus preprocessing time). We have

collected these times in Table 8. They show impressively

that the overall simulation time of TIP is dominated by the

1results for s6669 and c6288 are obtained by storing the PID in a

fault list



Circuit TIP DYN. Speed up

s1512 2.41 s 20.33 s 8.4

s3330 6.16 s 43.37 s 7.0

s1269 5.23 s 25.13 s 4.8

s9234 19.99 s 113.52 s 5.7

c499 4.07 s 17.14 s 4.2

c1908 5.03 s 16.09 s 3.2

s38584 101.18 s 4963.97 s 49.1

s13207.1 30.49 s 434.02 s 14.2

Table 7: Simulation times

Circuit all paths TIP DYN.

s1512 6,936 2.42 s 21.24 s

s3330 9,530 6.22 s 44.80 s

s1269 79,138 5.24 s 33.17 s

s9234 489,708 20.06 s 190.01 s

c499 795,776 4.08 s 76.89 s

c1908 1,458,114 5.05 s 107.93 s

s38584 2,161,138 102.23 s 10568.07 s

s13207.1 2,690,738 30.99 s 1395.12 s

s15850.1 329,476,064 77.73 s |

s4863 2,636,114,122 107.27 s |

s66691 431,685,738,673,270 34.31 s |

c62881 1.97886883477�1020 1.06 s |

Table 8: Overall simulation time

simulation time, while the preprocessing time of DYNA-

MITE is signi�cant compared to simulation time. Hence,

in view of the user-time, TIP clearly performs better.

7 Conclusion

In this paper, we presented a new encoding for the six-

valued logic and path hashing. Experimental results show

that both techniques impressively accelerate the robust and

nonrobust fault simulation for path delay faults. It was

demonstrated that it is possible to perform a fault simula-

tion for path delay faults for circuits with up to three billion

paths.

Our future work in this area is to further optimize the

simulation algorithm. Moreover, we want to extend it so

that circuits with single scan path and sequential circuits

can be processed.
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