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Abstract

Conformational analysis is the problem of �nding all

minimal energy three-dimensional con�gurations of

molecules. Cyclic structures are of particular inter-

est. An e�cient algorithm based on a purely geo-

metric approach that generates feasible con�gurations

very e�ciently is presented thus making full confor-

mational analysis possible even for fairly large cyclic

structures.

1 Introduction

The design of a new drug is a complex and extremely expen-

sive task. The design process has been based on a trial-and-
error procedure: given certain properties of the drug to be

developed, several thousands of compounds are generated and

tested for activity and for side e�ects. This results in a devel-
opment process that may take as long as ten years.

Recently, new ways of approaching the problem (rational

drug design) have been proposed that make use of a fairly rig-

orous top-down methodology somewhat similar to the method-
ology used for VLSI design. As in the case of the early days

of VLSI design, most of the design steps are now carried out

mostly in a heuristic way and with little help from the com-
puter. In our opinion, an extensive use of computer aids will

soon take place. There are many interesting computational

problems to be solved. The algorithms and methodology used

in other design �elds such as electronic system design could

be of great help. In this paper we address an interesting

geometrical problem arising from the desire to determine a

molecule such that its three-dimensional con�guration matches

the structure of a given receptor molecule. The solution to

this problem is, for example, of key importance in synthe-
sizing anti-rejection drugs. Note that the three-dimensional

con�guration of a molecule depends on the force �eld (molec-

ular energy model) in which the molecule is immersed. In fact,
three-dimensional con�gurations that minimize energy are the

actual con�gurations of interest.

Three-dimensional con�gurations for molecules have to sat-

isfy a set of constraints, for example the distance between two
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atoms (bond length) and the angle between lines connecting
two consecutive atoms (bond angle) cannot vary by more than

a given small amount. The con�gurations that satisfy all the

constraints on the positions of the atoms of the molecule are
called conformations. Conformers are minimal energy confor-

mations. If the molecules under study have cyclic structure,

then the positions of the atoms are further constrained, and
while the additional constraints allow the exploration of larger

systems than in the acyclic case, the imposition of the con-

straints is complicated. Even �nding con�gurations that sat-
isfy all constraints, let alone the minimal energy ones, is di�-

cult. There is a de�nite interest in an e�cient solution to the

problem of determining conformers for cyclic molecules since
many biologically important molecules, e.g. peptides, have ring

structures.

All conformers are of interest in studying the physical and
chemical properties of a given molecule. Hence, standard op-

timization algorithms that �nd a local minimum are not satis-

factory. To obtain all conformers, the conformation space has
to be searched thoroughly. Most of the algorithms proposed

in the literature follow this scheme: �rst a set of molecular

conformations is generated that populate uniformly the search
space. Then these structures are used as starting points for

an energy minimization routine [10]. The various algorithms

di�er according to the procedure used to generate the initial
conformations and the energy minimization process. Three ap-

proaches have been followed thus far with some success: one

is based on stochastic optimization algorithms such as simu-

lated annealing and its predecessor Monte Carlo analysis (e.g.,

[8, 12, 13, 14]); the second is based on descent algorithms of

several types (e.g., [1, 5, 7, 11]); the third is based on molecu-

lar dynamics, i.e., the initial conformations are used as initial

conditions for di�erential equations that describe the motions

of the molecules under a given force �eld [10]. Conformers
are obtained as equilibrium points. Interesting variations are

presented in [9] and in [4] where some of the conformers are

generated from other conformers directly without performing
a space search. While elegant and e�ective, these approaches

do not guarantee that all conformers of interest are found. In

all cases the computational complexity increases greatly with
the number of atoms in the molecule, and the quality of the

search, i.e., the percentage of conformers that are identi�ed

and the running time, depends on the initial conformations
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chosen. A su�cient number of initial conditions has to be

generated to guarantee that the search space is visited thor-
oughly. According to [10], \surprisingly little e�ort has been

given toward determining optimal dihedral angle increments"

in the systematic space searches.

For the case of cyclic structures, any time a conformation
is needed either as initial conditions or in the inner loops of

the optimization algorithms, most of the proposed algorithms

�rst randomly generate three-dimensional con�gurations and
then discard the ones that do not satisfy the chain closure

condition. This approach is clearly wasteful, and a procedure

that can generate conformations directly is of interest.

This paper deals with e�cient generation of conformations
of cyclic molecules. Being able to generate conformations e�-

ciently allows a brute-force approach to energy minimization|

at least in the case of molecules with fairly small number of
degrees of freedom|by substituting the use of optimization

algorithms with exhaustive enumeration. Even when an ex-

haustive search with �ne grain resolution is not computation-
ally feasible, e�cient generation of conformations allows the

population of the search space with a larger number of ini-
tial conditions, thereby increasing the probability of �nding

all conformers and speeding up the calculation of feasible so-

lutions in the inner loop of optimization algorithms.

The paper by G�o and Scheraga [7] approaches the problem of
�nding conformations of cyclic structures by writing a set of six

equations that determines the position of the atoms in a chain

given the position of the �rst atom and imposes the additional
constraint that the �nal atom of the chain must coincide with

the �rst. In this paper a pure geometrical approach is proposed

that reduces the problem of �nding conformations to one of
�nding the solution to a quadratic equation in one variable

thus yielding an algorithm that is largely insensitive to the

number of atoms in the molecule.

The paper is organized as follows: in Section 2 the problem
is de�ned and the basic terminology introduced. In Section 3

the geometric procedure is derived for chains with six atoms.

It is shown that the problem can be reduced to the problem
of solving one quadratic equation in one unknown. The prop-

erties of the procedure, its correctness and its complexity are

also investigated. Then the procedure is extended to the case
of chains with greater than six atoms by decomposing the prob-

lem into simpler subproblems that reduce the calculations to

the solution of a quadratic equation as in the six atom case.

In Section 4 the implementation of the procedure is described,

and numerical results are presented that demonstrate the capa-

bility of the procedure to �nd all conformations of some fairly

large molecular chains. In Section 5, concluding remarks are

o�ered.

2 Problem Setting

In this section the molecular chain is described in a geometric

setting. Then, on the basis of this mathematical description,

the chain closure problem is formulated.

bond angle

main axis

secondary axis

C1

B2

A1

B1 � A2C

BA

C2

Figure 1: A single \bond" and two connected bonds

Let a molecular chain be a set of ordered bonds. A bond is a
rigid body where two oriented axes are de�ned and referred to

as the main axis and the secondary axis. Let A be the point of

incidence of the two axes, and let B and C be two given points
on the main and secondary axes respectively, in the positive

directions. The distance between A and B is the bond length

and the angle dBAC, i.e. the angle spanned by the rotation of

AC on AB according to the right-hand rule, is the bond angle.
Fig. 1 visualizes a bond.

Two consecutive bonds, denoted by (A1;B1; C1) and

(A2;B2; C2), are said to be connected when (i) the point B1 of

the antecedent bond coincides with the point A2 of the sub-
sequent bond and (ii) the main axis of the antecedent bond

coincides with the secondary axis of the subsequent bond with

opposite directions (see Fig. 1).

Two connected bonds can freely rotate around the common
axis. This rotation, called dihedral rotation, can be arbitrary,

and no distinction is made between rotations which di�er mod-

ulo a full round angle. The set of all rotations, denoted by S,
is di�eomorphic to a circle.

Given a chain with n bonds, numbered from 1 to n, the chain

can be closed, or chain closure can be achieved, if there exist

dihedral angles such that consecutive bonds are connected and
bond n is connected with bond 1. Let Sn = S � S � : : :� S

be n-times the circle S. The subset C of Sn of all dihedral

angles for which chain closure can be achieved is de�ned as
the conformation space of the closed chain. In general, C is

not a connected set [9].

The dihedral angles that close a chain must satisfy a set

of six algebraic equations, de�ned by smooth functions [7].
Hence, there are n�6 degrees of freedom in a closed molecular

chain. More precisely, let r be the rank of the Jacobian of the

six algebraic equations at a given point P of the conformation
space C. Two cases are possible:

1. n > 6. There exists a neighborhood O of P such that

C \O is a smooth manifold of dimension n� r � n� 6.

2. n � 6. If the Jacobian is full rank, P is an isolated point.

Otherwise, there exists a neighborhood O of P such that
C \O is a smooth manifold of dimension n� r.

In the existing literature the current approach to the chain

closure problem consists of searching for solutions to the pre-

viously mentioned six algebraic equations. The main draw-

back of this approach is that, because of the complexity of
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Figure 2: A chain with six bonds

these equations, numerical procedures are considerably time-
consuming. Furthermore, since in general C is not a connected

set [9], there is no guarantee that all the solutions are found.

For rings of size n = 8 and larger, the number of con�gura-
tions is so large that any analysis is usually incomplete [2]. In

the following section the chain closure problem is tackled in a

di�erent way. First, a pure geometric algorithm is given which
guarantees that all possible solutions are found. Then, the al-

gebraic implementation of the algorithm is illustrated. This

reduces to the search for the zeros of one algebraic equation in
one unknown and is much simpler than existing algorithms.

3 Chain Closure

In this section a geometric procedure is proposed for solving

the chain closure problem. First, in Section 3.1, the case of a

chain with six or fewer bonds is solved. Then, in Section 3.2,
the procedure for the six-or-fewer-bonds case is extended to a

generic chain.

3.1 Chains with Six or Fewer Bonds

Consider a chain with six bonds, numbered from 1 to 6,

whose main axes are denoted as m1; : : : ;m6, secondary axes

as s1; : : : ; s6 and bond angles as �1; : : : ; �6.

Procedure 1 (Chain Closure)

1. (a) Connect pairs of consecutive bonds: (1; 2), (3; 4),
and (5; 6). With reference to Fig. 2, let LI, LII
and LIII be the segments which connect point B

of the �rst bond of each pair with point A of the
second bond of the same pair. The lengths of LI,

LII and LIII are uniquely determined since they are

not a�ected by dihedral rotations.

(b) Construct, if possible, the triangle Tint whose edges

are the segments LI, LII and LIII and let VI, VII
and VIII denote its vertices.

2. Let TI, TII and TIII be the triangles formed, respectively,

by (LI;m1;m2), (LII;m3;m4), (LIII;m5;m6). Satisfac-
tion of bond angle constraints at the vertices VI, VII and

VIII is searched for by means of rotation of the triangles

TI, TII and TIII around LI, LII and LIII respectively, and
by means of rotation of the bonds 1, 3 and 5 around the

axes m1, m3 and m5.

(a) Let �I 2 S be a generic rotation of TI around LI.

(b) Find all rotations �II 2 S of TII around LII so that

the angle dA2VIIB3 between m2 and m3 is equal to

the bond angle �3.

(c) For each rotation �II, if any, determined at Step 2b,

�nd all rotations �III 2 S of TIII around LIII so that

the angle dA4VIIIB5 between m4 and m5 is equal to

the bond angle �5.

(d) For each pair (�II; �III), if any, if the angle dA6VIB1

between m6 and m1 is not equal to the bond

angle �1, chain closure cannot be achieved for

(�I; �II; �III). Otherwise, bonds 1, 3 and 5 are ro-
tated around m1,m3 and m5 to make the secondary

axes s1, s3 and s5 coincide with opposite directions

with m6, m2 and m4 respectively, thus achieving
chain closure for (�I; �II; �III).

Theorem 1 A point of Sn belongs to the conformation space

if and only if it is generated by Procedure 1 (Chain Closure).

Proof (By contradiction) Assume that a point of the conforma-
tion space is not generated by Procedure 1. This means that

one of the steps has failed. In Step 1, Procedure 1 fails if the

segments LI, LII and LIII do not de�ne a triangle. However,
the existence of such a triangle is necessary for satisfying con-

dition (i) of the bond connection between bonds (2; 3); (4; 5)

and (6; 1) (the bond angle constraints at the vertices VI, VII
and VIII are not necessarily satis�ed). Hence, if this cannot

be done, chain closure cannot be achieved, yielding a contra-

diction. In Step 2, Procedure 1 fails if one of the steps 2b, 2c
or 2d fails. In this case there is no rotation that makes condi-

tion (ii) of bond connection satis�ed at VI, VII or VIII, and this

again would yield a contradiction. Finally, Procedure 1 does
not generate spurious solutions since, given (�I; �II; �III) that

satisfy the bond connection constraints, a closed chain can be

constructed.

An important question is under which conditions the chain

can be closed, i.e. under which conditions Procedure 1 does

not fail. A trivial necessary and su�cient condition for the

completion of Step 1 is that LI, LII and LIII satisfy the ge-
ometric conditions that allow building the triangle Tint . A

deeper necessary and su�cient condition under which Step 2

can be completed is given in the following theorem whose proof
can be found in [3].



4 of 6

B6

A6

B1

A1

V
I

Figure 3: Cones formed by rotation of triangles

Theorem 2 Consider the cone C1 described by m1 when the

triangle TI is rotated around LI, and the cone C6 described by
m6 when the triangle TIII is rotated around LIII (see Fig. 3).

If the cones C1 and C6 do not intersect, a solution to

Step 2b exists if and only if the angle � belongs to the in-
terval de�ned by the smallest and largest angles of the set

f dA1VIA6; dB1VIB6; dA1VIB6; dB1VIA6g. If the cones C1 and C6

intersect, a solution to Step 2b exists if and only if the angle �

belongs to the interval de�ned by the null angle and dA1VIA6.

Another important question answered in the following the-
orem (proof in [3]) is how many solutions exist.

Theorem 3 The number of solutions n2b of Step 2b is either

0, 1, 2 or in�nitely many, i.e. the whole S (degenerate case).

Remark If (�I; �II) 2 R2 is a pair of rotations which satis�es

the bond constraint at VI, then the pair (��I;��II) 2 R2 also

satis�es the bond constraint.

The case of a chain with less than six bonds can be seen

as a particular case of the one with six bonds. Indeed, it is
su�cient to collapse one or more triangles T in segments.

3.2 Chains with More Than Six Bonds

A chain with more than six bonds can be handled by cutting

it in arbitrary groups, numbered I, II and III, of two or more

connected bonds. With reference to Fig. 4, the internal edge

LI connects point B of the �rst bond of the �rst group with

point A of the last bond of the same group. LII and LIII
are de�ned in a similar way. In this case, as opposed to the

cases analyzed in Section 3.1, the internal edge, the secondary

axis of the �rst bond and the main axis of the last bond of

a group are in general not co-planar. Each group of bonds is
an open chain. The con�guration of a group is de�ned by the

dihedral rotation of the bonds belonging to the group except

the �rst and last ones. Once a con�guration has been chosen,
the distance between point A of the �rst bond of the group

and point B of the last bond of the group is not modi�ed by

the �rst or last dihedral rotations, as it is not in the case of

m
IIB

m
IA

L
I

m
IB

m
IIA

L
II

m
IIIA

L
III

m
IIIB

Figure 4: A generic reduced chain

chains containing six or fewer bonds. On the basis of these

observations, Procedure 1 is modi�ed as follows.

Procedure 2

1. (a) Cut the chain into groups I, II and III of two or

more connected bonds.

(b) For each group, select a con�guration.

2. (a) De�ne LI connecting point B of the �rst bond of

group I with point A of the last bond of group I.

De�ne LII and LIII in a similar way.

(b) Construct, if possible, the triangle of edges LI, LII
and LIII.

3. Consider the triangle in Fig. 4, where mIA denotes the
main axis of the �rst bond and mIB the main axis of the

last bond of the group of bonds backing LI, and so on.

(a) Let �I 2 S be a generic rotation of group I around
LI.

(b) Find all rotations �II 2 S of group II around LII so
that the angle between mIB and mIIA is equal to

their bond angle.

(c) For each rotation �II, if any, determined at Step 3b,

�nd all rotations �III 2 S of group III around LIII
so that the angle between mIIB and mIIIA is equal

to their bond angle.

(d) For each pair (�II; �III), if any, if the angle between

mIIIB and mIA is not equal to their bond angle,

chain closure cannot be achieved for (�I; �II; �III).
Then, change the angle of rotation around LI. Oth-

erwise, �nd rotations around mIA, mIIA and mIIIA,

so that chain closure is achieved for (�I; �II; �III).

The results proven in the previous subsection apply mutatis

mutandis to this new procedure. In particular, it is possible
to prove that the above procedure generates all points of the

conformation space.

4 Implementation and Results

In this section we present some implementation details and

numerical results obtained from some molecular structures in

order to underline the properties of the method.
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4.1 Coordinate System

The algorithm uses internal coordinates, i.e. bond lengths,
bond angles and dihedral angles, for representing the geometric
structure [10]. Using internal coordinates permits all regions
of the conformationally accessible space to be sampled [11].
However, there are steps of the procedure that need external
(Cartesian) coordinates for the atom positions, for instance
when the length of the segment joining two atoms is calculated.
The same transformations as in [7] are used; see Fig. 5 for
notation. For atoms at position ri and ri�1 in the ith and
(i� 1)th coordinate system, respectively, the relation is

ri�1 = Ti�1Riri + pi�1 (1)

Ti�1 =

 
cos�i�1 � sin�i�1 0

sin�i�1 cos�i�1 0
0 0 1

!
(2)

Ri =

 
1 0 0

0 cos �i � sin �i
0 sin �i cos �i

!
(3)

pi�1 =
�
mi�1 0 0

�T
: (4)

4.2 Six-membered Ring

The crucial part of the implementation of the chain closure

procedure is Step 2b through Step 2d of Procedure 1 (p. 3). See
Fig. 6. Given �III; �1; �n; �; �, the set of solutions for �I must

be found. Using the coordinate systems introduced above, the

solution angles �I are obtained from the solution of a quadratic

equation of the form ax2+2bx+ c= 0, where x = cos �I. This

equation may have 0, 1, 2 or in�nitely many solutions in the

degenerate case, in agreement with Theorem 3. The derivation

of this result follows.
Let the x-axis be de�ned by the segment LIII and the y-

axis be in the plane of Tint such that the positive direction is
towards Tint. Then the z-axis is x � y. Let pn be point A
of bond mn, and let p1 be point B of bond m1 (as de�ned
in Fig. 1). A rotation �I = 0 puts triangle TI coplanar and
external to Tint . Positive rotation is de�ned by using the right-
hand rule when traversing the closed chain. The Cartesian
coordinates are then

pn =
�
cos �n � sin �n cos �III � sin �n sin �III

�T
(5)

p1 =

 
cos �1 cos�� sin �1 cos �I sin�
� sin �1 cos �I cos�+ cos �1 sin�
� sin �1 sin �I

!
: (6)

�
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mn

�
III

L
I

p1
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�
I

�
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T
I

T
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III V

I

Figure 6: Angle de�nitions for determining rotations

around segments

The derivation of �I follows:

cos� = 1� jpn � p1j
2=2 (7)

jpn � p1j
2 = 2 cos �n sin �1 sin� cos �I

+ 2 sin �n sin �1 cos� cos �III cos �I

� 2 sin �n sin �1 sin �III sin �I

+ 2 sin �n cos �1 sin� cos �III

� 2 cos �n cos �1 cos�+ 2 (8)

sin �I =
p

1� cos �I
2 (9)

Let A = sin �n sin �1 sin �III (10)

Let B = cos �n sin �1 sin�

+ sin �n sin �1 cos� cos �III (11)

Let C = cos� + sin �n cos �1 sin� cos �III

� cos �n cos �1 cos� (12)

Let x = cos �I: (13)

Substituting and rearranging yields

A
p

1� x2 = Bx+ C (14)

(A2 +B2)x2 + 2BCx+ C2 � A2 = 0: (15)

De�ning a = A2+B2, b = BC and c = C2�A2 yields �nally

ax2 + 2bx+ c = 0.
The algorithm applies the above equations at each vertex of

the internal triangle and hence divides the problem into three

more easily solved subproblems.
There is a number of improvements to the basic algorithms

that can make the computation faster and more robust. A few

have been implemented, for example

� in Step 2a, �I is selected arbitrarily. A bisection root-

�nding loop robustly re�nes �I when a change of sign is

detected indicating the presence of a root of the equation;

� �I is stepped through only 180 degrees to exploit the sym-

metry arising from cos �I = cos (��I).

The operation of the algorithm has been veri�ed on a num-

ber of molecules whose conformations are known. First the

program implemented in C++ and running on a DEC 3000

Model 400 AXP has been applied to cyclohexane (bond lengths
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of 1:536 angstroms and bond angles of 111:4�), a six-atom

cyclic molecule, yielding a neighborhood of solutions as pre-
dicted by the theory for cases with non-full-rank Jacobian.

The program also locates the chair conformation of cyclohex-

ane, where the computed values for the angles are equal to the
accepted experimental values of 54:6�. The calculation of all

conformations of cyclohexane requires 13 ms. For this case, [7]

reports a running time of 0.1 s on an IBM 360/65, and [1] lists
120 ms on a VAX 11/780.

The program has been applied to the problem of �nding the

conformations of larger molecules: to eight-membered rings; to
cyclodecane, a ten-atom ring; and to a pentapeptide, a �fteen-

membered ring. In all these cases, the solutions are in�nitely

many because of the additional degrees of freedom. Hence,
they de�ne a surface in an n-dimensional space. The proce-

dure samples the surface with a resolution which depends on

the increment given to the independent variables. In most
cases we are interested in locating conformations of minimal

energy; hence the resolution of the sampling procedure must

be such that these conformations are not missed. Increments
of the order of 1 to 5 degrees seem appropriate and compu-

tationally feasible. We have used increments of 5 degrees for

all molecules. Given the e�ciency of our procedure, the eight-
atom chains require 13.7 s and cyclodecane about 23 hours.

The algorithm extends easily to handle chains such as the bio-

logically important peptide chains, which have additional con-
straints. The amide groups (N|C=O) in these chains con-

strain many of the dihedral angles to be planar. For the pen-

tapeptide (Gly-Gly-Gly-Pro-Pro) analyzed in [1, 6], there are
15 intracyclic atoms (and so 15 dihedral angles) but only two

dihedral degrees of freedom because of planar and ring con-

straints. The calculation of all chain-closing angles for the
pentapeptide requires 21 s of CPU time.

For even larger molecules the computational task may be

prohibitive. As pointed out in the introduction, in this case
the resolution has to be made coarser, thus reducing substan-

tially the probability of locating the conformers. In this case

an energy optimizer can be invoked using the conformations
generated by the procedure as starting points to obtain all con-

formers. While there is no theoretical analysis to determine

what is the optimal sampling that allows an optimization al-
gorithm to locate all conformers in minimum time, [11] found

a step size of 60� was adequate for some molecules and even

proposed that 120� may su�ce. Being able to generate the
con�gurations as e�ciently as we can allows the population

of the space with a much �ner resolution and permits the op-

timization algorithm to run faster. The interactions between
energy minimization and conformation generation need to be

explored more carefully to yield an e�cient conformer search

and is the subject of our future work.

5 Conclusions

In this paper a procedure that �nds conformations of a cyclic

molecular structure is presented. The approach is purely geo-

metric and is particularly e�ective for fairly large structures.

An implementation of the algorithm has veri�ed the theory,
and initial results indicate that the new approach achieves an

e�ciency that allows complete conformational analyses of ring

systems which were previously not achievable.
Future work includes the development of acceleration tech-

niques such as the exploitation of symmetry properties of the

con�guration space to eliminate the search of large subsets of
the space. In addition, if particular conformations are sought

such as minimal energy ones (conformers), then the properties

of these conformers can be used to guide the search, thus elim-
inating useless explorations. Another research direction is to

study how best to use the conformation generation procedure

to �nd conformers in conjunction with energy optimizers.
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