
Performance Analysis and Optimization of Schedules
for Conditional and Loop-Intensive Specifications

Subhrajit Bhattacharya � Sujit Dey Franc Brglez y

Dept. of Computer Science C&C Research Labs CBL, Dept. of ECE
Duke University NEC USA North Carolina State Univ

Durham, NC 27706 Princeton, NJ 08540 Raleigh, NC 27695

Abstract - This paper presents a new method,based on Markov
chain analysis, to evaluate the performance of schedules of be-
havioral specifications. The proposed performance measure is
the expected number of clock cycles required by the schedule for
a complete execution of the behavioral specification for any dis-
tribution of inputs. The measure considers both the repetition
of operations (due to loops) and their conditional execution (due
to conditional branches). We propose an efficient technique to
calculate the metric. We introduce a loop-directed scheduling al-
gorithm (LDS). The algorithm produces schedules such that the
expected number of clock cycles, required by the schedule for a
complete execution of the behavioral specification, is minimized.
Experimental results on several conditional and loop-intensive
specifications demonstrate the relevance and effectiveness of both
the performance measure and the scheduling algorithm.

I. INTRODUCTION

Several existing scheduling algorithms specifically target behav-
ioral specifications containing a large number of mutually exclusive
paths due to the presence of conditionals [1, 2, 3, 4, 5, 6]. The fol-
lowing metrics are used to evaluate the performance of the schedules
generated by these algorithms: (1) the number of clock cycles re-
quired to execute the longest and shortest paths (LP/SP), and (2) the
number of clock cycles required, averaged over all paths in the de-
scription. These metrics consider simple paths, that is paths without
repetition of operations. Moreover, it is assumed that the branches of
an if-then-else have equal probability of execution.

In this paper, we focus on behavioral specifications with nested
conditionals and loops. The number of times a loop is executed is
not fixed and in general depends upon the inputs. Also, branch prob-
abilities of conditionals, like if-then-else and case statements, may
be unequal. For such specifications, given a schedule, the number
of clock cycles required by the schedule for a complete execution
of the behavioral specification depends on the inputs. As a metric to
measure the performance of a schedule, we propose the expectednum-
ber of clock cycles required by a schedule to execute the behavioral
specification for any distribution of inputs. We present an efficient
and effective method for calculating this metric based on Markov
chain modeling of schedules [7]. We also introduce a loop-directed
scheduling algorithm (LDS), which produces schedules such that the
expected number of clock cycles required by the schedule to execute

�S. Bhattacharya was supported by a grant from CCRL, NEC USA.
yF. Brglez was supported in part by a grant from SRC.

the behavioral description is minimized.
To evaluate the proposed performance analysis technique and the

new scheduling algorithm, we schedule a number of descriptions
using the path-based scheduling algorithm [2] and the proposed LDS
algorithm. When the performance of the two schedules are compared
using the LP/SP metrics, both perform equally well. However, the
proposed metric of expected number of clock cycles, as well as actual
simulation results, reveal a large variance in the number of clock
cycles required by the two schedules. This demonstrates, (a) the
relevance and accuracy of the proposed performance measure, and
(b) the effectiveness of LDS in scheduling to minimize the expected
number of clock cycles.

In Section II we motivate the need for a new metric to estimate
the performance of schedules for designs with conditional loops and
conditional branches. In Section III, we define the metric and propose
an effective procedure to calculate it. A new loop-directed scheduling
algorithm, LDS, is presented in Section IV, followed by experimental
results in Section V.

II. MOTIVATION

We consider behavioral descriptions in which the control flow
between the sequence of operations is explicitly specified, and derive
a corresponding control flow graph (CFG). An example control flow
graph for the send process, which is part of the X.25 communications
protocol [8], is shown in Figure 1. In the CFG, each operation of the
behavioral description is represented as a node. Arcs between nodes
represent the flow of control specified by the behavioral description.

Two possible schedules for the send process of Figure 1 are shown
in Figure 2(a) and Figure 2(b). We derive the schedule in Figure
2(a) using the path-based scheduling algorithm presented in [2]. The
schedule in Figure 2(b) has been derived using LDS, a new loop-
directed scheduling algorithm explained in Section IV.

Scheduling a CFG consists of clustering the operations of the
CFG into states. The control flow of the operations in a state of the
schedule forms a rooted and acyclic CFG which is a subgraph of the
CFG corresponding to the behavioral description. For example, the
operations in state s4 of the schedule in Figure 2(a) include operations
13, 14, 15, 16, 17, 18, and 19, with operation 13 as the root. For both
the schedules shown, the start state is s0. There is an arc from state si
to state sj if there is an arc, in the CFG of the behavioral description,
from any operation in state si to the root operation in state sj . A
state may have more than one outgoing arc, for example state s4 in
Figure 2(a). However, the arcs themselves are conditional, and only
one of the conditions is TRUE at any time. Given that the state

7t1 > MaxPkt

11i = 1

12data[i] = bufptr[ByteCount + i]

13i < Count

14ByteCount := t2

15ByteCount >= bytes

16credits--

17send := OK

18state := Established

F

T

T F

F

FT

T

bytes := byteinp; MaxPkt := MaxPktInp; credits := creditinp 0

state := sending 1

ByteCount := 0 2

!(ClrReqReceived) & (credits == 0) 3

!(ClrReqReceived) 4

t1 := bytes - ByteCount 5 send := Errclosed 6

count := MaxPkt 8 count := t1 9

t2 := ByteCount + count 10

1.0

1.0

1.0

0.990099

0.009901

0.010.99

1.0

0.030880.96912

1.01.0

1.0

1.0

1.0i++ 19

0.504009
0.495991

1.0F

T 0.03088
0.96912

1.0

1.0 1.0

Figure 1: The CFG for the send process of the X.25 communications
protocol. Branch probabilities are indicated on the branches.

being executed in the current clock cycle has multiple outgoing arcs,
the state at the tail of the arc whose condition evaluates to TRUE is
executed in the next clock cycle. Executing the schedule is equivalent
to executing the behavioral specification. We assume that each state
of a schedule requires one clock cycle for execution.

A path in a CFG is a sequence of CFG operations, such that if opi
and opi+1 are successive operations in the sequence, then there is an
arc from opi to opi+1 in the CFG. Consider execution of one of the
longest paths (LP) in the CFG of Figure 1, h0; 1; 2;3; 4; 5; 7;8; 10;
11;12; 13;14; 15;16; 17;18i. The schedule in Figure 2(a) goes
through the states hs0; s2; s3; s4i to execute this sequence. The sched-
ule in Figure 2(b) goes through states hs0; s1; s4; s6i to execute the
same sequence. Hence both schedules require 4 clock cycles to ex-
ecute the longest path. Similarly, both schedules can execute the
shortest path (SP), h0; 1; 2;3; 4; 6; 18i, in one clock cycle by execut-
ing the state s0. Thus, the SP/LP measure predicts that both schedules
have the same performance.

Note that both the paths, LP and SP, are simple paths, that is,
they do not contain repeated operations. For the CFG of Fig-
ure 1, for inputs (byteinp = 3;MaxPktInp = 2; credits =

START

10, 11

S2

13, 14, 15,
16, 17,
18, 19

S4

0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 18

S0

12

S3

5, 7,
8, 9

S5

0.9802

1.0

1.0

1.00.4960

0.4884

0.9802

3, 4, 5,
6, 7, 8,
 9, 18

S1
0.0099

0.0099

(a) path-based schedule

S4

13

19 14

15

16

17

18

START

16, 17, 18

S6

19 S3

0.9802

1.0

1.0

0.0156

0.4960

5, 7,
8, 9

S5

12, 13,
14, 15

S4

0.4884

1.0

(b) loop-directed (LDS) schedule

0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 18

S0

3, 4, 5,
6, 7, 8,
 9, 18

0.0099

0.0099

10, 11

S2

S1

0.9802

Figure 2: Two possible schedules for the send process. Transition
probabilities are indicated on each state transition arc.

1; ClrReqReceived = 0), the complete execution sequence which
arises from a complete execution of the behavioral description
follows: h0; 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19, 12, 13,
14, 15, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18i. Note
that operations are repeated due to the loops present. To exe-
cute the above specified sequence of operations, the schedule in
Figure 2(a) executes the states hs0; s2; s3; s4; s2; s4; s5; s2; s3; s4i,
requiring 10 clock cycles. The schedule in Figure 2(b) exe-
cutes the states hs0; s1; s4; s3; s4; s5; s1; s4; s6i, requiring 9 clock cy-
cles. For inputs (byteinp = 7;MaxPktInp = 2; credits =

1; ClrReqReceived = 0), it can be shown that the schedule in
Figure 2(a) requires 21 clock cycles while the schedule in Figure 2(b)
requires 18 clock cycles.

Assume that the two input combinations specified above are the
only ones that can occur, and that they occur with probability p = 0:1,
and p = 0:9 respectively. Then the expected number of clock cycles
required by the first schedule to execute the behavioral description is
(10� 0:1 + 21� 0:9) = 18:9. The expected number for the second
schedule is (9� 0:1 + 18� 0:9) = 16:2.

The above example demonstrates the need for considering the exe-
cution of all possible complete execution sequences of the CFG, with
repetition of operations, and not only simple paths where operations
are not repeated. Such cases arise while evaluating the performance
of a schedule of behavioral descriptions that have conditional loops.
Also, we observe that the performance of schedules can vary signifi-
cantly depending upon how loops are scheduled. This motivates us to
propose a loop directed scheduler which produces schedules to min-
imize the number of clock cycles required to execute the behavioral
description.

III. PERFORMANCE ANALYSIS: THE EXPECTED NUMBER OF
CLOCK CYCLES OF A SCHEDULE

This section defines the new metric proposed to measure the per-
formance of a schedule, which is the expected number of clock cycles
required by the schedule to execute the behavioral description. We
propose an effective procedure to evaluate the metric for any schedule.
We use the example of the send process of the X.25 communications
protocol [8] to illustrate the procedure.

A. The Performance Metric and its Computation

Expected Number of Clock Cycles of a Schedule. Let the states
of the schedule be s0 to sn. We assume that each state requires one
clock cycle for execution. Let the random variable Xi, the state
execution count, be the expected number of times the state si is
executed or visited during a execution of the behavioral specification.
The expected number of clock cycles required by the schedule to
execute the behavioral description, denoted by Xsch is:

Xsch =

nX

i=0

Xi (1)

A behavioral description modeled as a finite, discrete-time, homo-
geneous Markov chain [7] allows a simple formulation which can be
used for calculating the state execution counts Xi, and hence Xsch.
The model assumes that the probability of going from operation opi
to operation opj of the behavior is independent of the operations
that have been executed before opi. A schedule can be modeled
as a homogeneous Markov chain under similar assumptions about
transitions between states. The assumption under the homogeneous
Markov chain model is not true in general, but as will be validated by
simulation results, the modelling is very accurate.

Let si and sj be any two states in a schedule such that there is
a state transition arc from state si to state sj . The state transition
probability, pS(i; j), is the probability of executing sj immediately
after si. If s0 is the initial state of the schedule, then the following
relationship holds between the state execution counts and the state
transition probabilities:

X0 = 1 (2)

Xi =
X

(Xj � pS(j; i)) 8j; such that sj (3)

has a transition arc to si

X0 is set equal to one, since for any execution of the behavioral
description, the initial state is executed only once. Also, since state si
can be reached from state sj with probability pS(j; i), the number of
times si is executed immediately after sj is given by (Xj� pS(i; j)).
Such a product term exists for every state that has an arc to si. The
summation of the product terms equals Xi, the expected number of
times si is executed. A solution to the above set of linear equations
exists if the Markov chain model of the schedule is irreducible and
aperiodic [7]. Equivalently, a solution exists if none of the loops in
the behavioral description are executed forever.

The state transition probabilities can be formulated in terms of the
path probabilities of the behavioraldescription. The path probabilities
themselves can be formulated in terms of the branch probabilities.

Calculating the Behavioral Branch Probabilities. The branch
probabilities of a behavioral description, pB(i; j), is the probabil-
ity of executing operation opj immediately after operation opi. In
the control flow graph corresponding to the send process shown
in Figure 1, the branch probability pB(7;8) = 0:96912, while
pB(7;9) = 0:03088. Since the behavioral description can be modeled
as a homogeneous Markov chain [7], the probability of going from
operation opi immediately to operation opj , is independent of the op-
erations that have been executed before opi. We use this assumption
to estimate the branch probabilities by simulating the given behavioral
description with different sets of inputs. The inputs can follow any
specified probability distribution. The range of inputs can vary too.
For example, for the send behavioral description, if the input bytes can
be any positive 7 bit number, then its range is from 0 to (27�1) = 127.

During the simulation of the behavioral description, every time the
program executes some opj after opi, we increment the execution
counts of both the operation opi and the branch (opi ! opj), C[i]

and B[i; j] respectively. Finally, after all the simulation runs have
been completed, pB(i; j) is set equal to B[i; j]=C[i].

Calculating the Schedule’s State Transition Probabilities. Let
P = hopi; opi+1; opi+2; : : : ; opk�1; opki be any path in a behavioral
description. If we assume a homogeneous Markov chain model for
the behavioral description, the probability of executing all the opera-
tions on the path in succession, given that opi is the statement of the
behavior that has been most recently executed, is given by:
Prob(P) = pB(i; i+1)�pB (i+1; i+2)�: : :�pB(k�1; k) (4)

Consider paths where the first operation is the root of state si, the last
operation is the root of state sj , and the remaining operations have
been scheduled in state si. Let the set of paths satisfying the above
property be fPk; Pk+1; : : : ; Pmg. The probability of a state transition
from state si to state sj is:

pS(i; j) = Prob(Pk) + Prob(Pk+1) + : : :+ Prob(Pm) (5)

Equation (5) is valid since all the paths are mutually exclusive, that is,
they will never be executedat the same time. In Figure 2(a) and Figure
2(b), two schedules for the send process are shown along with the state
transition probabilities, calculated using the branch probabilities of the
CFG in Figure 1. For the schedule in Figure 2(a), the state transition
probability pS(4;3) = 0:4960, and pS(4;5) = 0:4884.

B. An Example: The Send Process

In this section we illustrate the procedure for estimating the ex-
pected number of clock cycles required by the path-based schedule
[2] for the send process, using the steps detailed in Section III-A.

The Branch Probabilities. We simulate the behavioral description
of the send process to calculate its branch probabilities. In general,
the input pattern used for simulation could follow any distribution,
and have a user-specified range. For illustration we assume the inputs
MaxPktInp and credits were set to 2 and 1 respectively. The input
byteinp is assumed to follow a uniform distribution in the range 0
to 127 and was generated using the UNIX uniform random number
generator rand(). The input ClrReqReceived was generated to be 0
or 1 with probability 0.99 and 0.01 respectively. A representative set
of branch probabilities from our experiments on the send process is
shown in Figure 1.

Schedule’s State Transition Probabilities. Consider the path-
based schedule of the send process shown in Figure 2(a). We
want to calculate pS(0;2). State s2 can be reached from state
s0 along two possible paths: P1 = h0; 1; 2; 3;4; 5; 7; 8;10i, and
P2 = h0;1; 2; 3; 4;5; 7; 9; 10i. The probability that path P1 is exe-
cuted to reach state s2 from s0, using (4) and the branch probabilities of
Figure 1 is, Prob(P1)= pB(0;1)�pB(1; 2)�: : :�pB(8; 10) = 0:95:
Similarly, Prob(P2) = 0:03. Hence, the probability of reaching
state s2 from state s0 using (5) is, pS(0;2) = Prob(P1) + Prob(P2)
= 0:95 + 0:03 = 0:98. The remaining transition probabilities shown
on the edges of the schedule in Figure 2(a) can be calculated similarly.
Expected number of Clock Cycles. We use the state transition
probabilities of the path-based schedule in Figure 2(a) to illustrate the
process of calculating the expected number of clock cycles required
by the schedule. Using (2) and (4), we get:
X0 = 1
X1 = 0:01X0 + 0:01X1

X2 = 0:98X0 + 0:98X1 + 1:0X5

X3 = 1:0X2 + 0:49X4

X4 = 1:0X3

X5 = 0:49X4

The solution is, fX0;X1; X2;X3;X4;X5g = f 1, 0.01, 31.98, 63.46,
63.46, 30.99 g. The expected number of clock cycles required, by the
schedule, to execute the complete behavioral description, from (1) is,
Xsch =

P5
i=0;Xi = 1 + 0:01 + 31:98 + 63:46 + 63:46 + 30:99=

190:9. The expected number of clock cycles required by the LDS
schedule, based on the branch probabilities of Figure 1, is 159.91.

An alternative method for estimating the proposed performance
measure is to simulate the schedule. For applications which require
repeated use of the performance measure to explore different schedul-
ing alternatives, the method presented above is much faster. Simulat-
ing the schedule every time it changes is a time consuming process.
Using the technique presented, a simulation is performed only once
on the behavioral description. The performance for each alternative
schedule can then be rapidly estimated using the fast probabilistic
method.

IV. SCHEDULING TO MINIMIZE THE EXPECTED NUMBER OF
CLOCK CYCLES

The loop directed scheduling algorithm (LDS) produces sched-
ules such that the expected number of clock cycles required by the
schedule, to execute the behavioral description, is minimal. It is an
extension of the path-based scheduling algorithm [2]. Path-based
scheduling considers only simple paths without repeated operations.
It can be shown that LDS implicitly considers all valid execution se-
quences, which includes sequences with repetition of operations, by
going across loops. The main differences between LDS and path-
based scheduling are explained in the following sections. The com-
plete LDS algorithm is explained in Section IV-C.

A. Going Back Across Loops

In Figure 3(a), we show a fragment of the CFG from the GCD
example [9]. The operations in the CFG of Figure 3 have to be sched-
uled, subject to the constraint that no two data dependent operations
can be in the same state, that is, no data chaining is allowed. Two
operations in a sequence of operations are data dependent when the
output of one of the operations, opi, is an input of the other, opj ,
where opi precedes opj in the sequence.

The path-based algorithm “breaks” all the loops of the CFG by
deleting feedback arcs before scheduling the operations. The resultant
CFG consists of only simple paths, without repetition of operations.
For example, in the case of the CFG in Figure 3(a), the feedback
arc h1;0i is deleted, and the only path considered by the path-based

1,0

S1

0

s0

(c)

0

1

s0

s1

(b) (a)

x = x - y

0

x >= y

1

Figure 3: (a)A fragment of the CFG of the GCD example. Two
schedules, (b) path-based and (c) loop directed, under constraint that
data dependent operations not allowed in same state.

algorithm is h0; 1i. Since operation 1 was using the output x of
operation 0, scheduling them in the same state, with operation 1
executed after operation 0, would violate the constraint of no data
chaining. Hence operation 1 had to be put in a different state than
operation 0. The schedule produced by path-based scheduling is
shown in Figure 3(b).

In our approach, we do not delete feedback arcs, and consider
the repetition of operations. Due to the feedback arc from op1 to
op0 in the CFG of Figure 3, there is another path consisting of the
sequence h1; 0i. In this sequence, operation op0 is not data dependent
on operation op1. Hence, both the operations in the sequence h1;0i
are scheduled in the same state without violating the no data chaining
constraint, giving the loop-directed schedule shown in Figure 3(c).

The schedule in Figure 3(b) requires two clock cycles to execute
the loop. The schedule in Figure 3(c) requires only one clock cycle,
except for the first iteration of the loop when it requires two clock
cycles. Thus, going back across the loop allows producing a schedule
which requires a smaller number of clock cycles to execute the loop,
than the number required if the feedback arc had been deleted.

B. Moving Control Steps Outside Loops

It may be possible to reduce the number of control steps required
to execute loops at the expense of increasing the total number of
states in the schedule. As an illustration, consider the CFG shown in
Figure 4(a). It has been extracted from the CFG of the send process
in Figure 1. It has to be scheduled under resource constraints of
two comparators and one ALU unit which supports the + and �
operations. A path-based schedule and a LDS schedule are given in
Figure 4(b) and Figure 4(c) respectively.

Note that since there is only 1 ALU, a control step has to be intro-
duced between operation 3 and operation 4 of the CFG in Figure 4(a).
Hence, operation 4 starts a new state. Consider the two paths starting
at operation 4 in Figure 4(a), P1 = h4;5; 8i and P2 = h4; 5;6; 7i.
Since in path P1, operations 4 and 8 have to be implemented on the
single available ALU, a control step has to be introduced between
operations 4 and 8. Similarly along P2, a control step needs to be
introduced between operations 4 and 7.

The primary objective of the path-based scheduling algorithm is
to introduce control steps in such a way that executing simple paths
takes a minimum number of control steps. However, if the control
steps can be introduced in more than one place and still satisfy the

7 8

(c)

4, 5, 6

s0

s1

0, 1, 2, 3

s2 s3

(a)

>

:= :=

+

+

<

>=

--

0

1
2

3

4

5

6

7
++

8

4

s0

s1

(b)

5, 6, 7, 8

0, 1, 2, 3

s2

Figure 4: (a)A fragment of the CFG extracted from the send process
in Figure 1. Two schedules, (b) path-based and (c) loop directed,
under resource constraint of 2 comparators and 1 (+=�) ALU.

primary objective, the path-based scheduling algorithm introduces
the control steps so as to minimize the total number of states in the
schedule. To schedule the operations in the paths P1 and P2 with
minimum number of states, the path-based algorithm will introduce
a control step between operations 4 and 5 in both paths, P1 and P2.
Operation 4 is scheduled into state s1 as shown in Figure 4(b). The
remaining operations, operations h5;8i of P1 and h5; 6;7i of P2 can
be scheduled into a single state s2. They can be scheduled into the
same state since both the subsequences h5; 8i and h5;6; 7i satisfy the
resource requirements, they belong to mutually exclusive paths, and
they have the same first operation,operation 5. To execute each simple
path from operation 0 to operations 7 or 8, the path-based schedule
requires the minimum number of clock cycles. Also, the total number
of states in the schedule, which is three, is minimum.

The LDS scheduling algorithm minimizes the number of control
steps required to execute any sequence of repeated operations due to
loops, to minimize the expected number of clock cycles required by
the schedule to execute a behavioral description. Consider scheduling
the CFG shown in Figure 4(a) under the same resource constraint of 1
ALU and 2 comparators. To satisfy the resource constraints, the loop-
directed scheduler introduces a control step between operations 5 and
8 along P1, and a control step between operations 6 and 7 along P2.
The corresponding loop-directed schedule is shown in Figure 4(c).
We show that when paths with repeated operations are considered, as
opposed to simple paths without repeated operations,the loop-directed
schedule requires less clock cycles than the path-based schedule.

Consider execution of the sequence h0, 1, 3, 4, 5, 6, 0, 2, 3, 4,
5, 6i of the CFG of Figure 4(a), where the sequence has repeated
operations. The LDS schedule executes the sequence by executing
the states hs0; s1; s0; s1i, which requires four clock cycles. To exe-
cute the same sequence, the path-based schedule executes the states
hs0; s1; s2; s0; s1; s2i, requiring 6 clock cycles.

The loop-directed schedule of Figure 4(c) has four states as com-
pared to the three states of the path-based schedule in Figure 4(b).
Experimental results reported in Section V show that loop-directed
schedules sometimes have less states than the path-based schedules.
Even when the loop-directed schedules require more states, the area
or delay penalty of designs synthesized using loop-directed schedul-
ing as compared to those synthesized using path-based scheduling is
nominal.

C. The Loop Directed Scheduling Algorithm (LDS)

We briefly describe the loop-directed scheduling algorithm (LDS)
using the pseudo-code given below and the CFG shown in Figure 1.
A detailed description is given in [10]. The CFG has to be scheduled
under the resource constraints of one (+=�) ALU and 2 comparators.
The schedule produced by LDS is shown in Figure 2(b).

The start state of the schedule should have the start operation of the
CFG as the root operation. Hence, root ops is initialized to include
op0, the start operation of the CFG in Figure 1. Procedure create state
uses depth-first search in the CFG, starting at the operationopi selected
in line 2 of the code. The depth-first search along a path is halted either
if (a) a constraint is violated or (b) if an operation is reached which
already belongs to the path. Consider state s0 of the schedule in
Figure 2(b) with operation op0 as the root operation. The operations
along four paths in the CFG of Figure 1 are scheduled into state s0,
where every path started with the root operation op0. The four paths
scheduled into s0 are: P1 = h0; 1; 2;3i, P2 = h0; 1;2; 3; 4; 5;7; 8i,
P3 = h0;1; 2; 3; 4;5; 7; 9i, andP4 = h0; 1;2; 3; 4; 6;18i. Note from

Figure 1 that along P1, operation 3 is a successor of itself because
of the feedback arc present. It can not be included in P1 since it has
already been included once and including it would violate condition
(b) above. Similarly, along P4, operation 0 can not be included since
it already belongs to the path. Including operation 10 along path P1
or P2 is not possible since from condition (a) above, including it
violates the resource constraint of one ALU.

The set of possible new root ops identified as a result of creating
a state are the operations at which the depth-first search terminated.
For s0, they are 0, 3 and 10. Since state s0 has already been created
with operation 0 as the root operation, only operation 3 and operation
10 will be used in subsequent iterations of the loop beginning at line
2 of the code to create new states.

It can be shown that the following pseudo-code, as briefly ex-
plained above, implements the ideas in Section IV-A and Section
IV-B. Detailed pseudo-code of the algorithm can be found in [10].

LDS(CFG, constraints)f
1. root ops fop0 j op0 is start operation of CFGg;
2. while (9opi 2 root ops for which a state

in the schedule has not been created)f
3. (state, new root opns)

create state(CFG, constraints, opi);
4. add state to sched(state);
5. root ops root ops [new root ops;
g

g

V. EXPERIMENTAL RESULTS

To evaluate the proposed performance analysis technique and the
new scheduling algorithm, we schedule a number of descriptions us-
ing the path-based (PB) scheduling algorithm [2] and the proposed
LDS algorithm. We synthesize the following behavioral descriptions:
GCD, Traffic Controller [9], and the send process of the X.25 com-
munications protocol [8]. The synthesis results are reported in Tables
1 and 2. The two schedules derived for each specification are given
under column Sch, and they satisfy the constraints specified under
column Constraints.

The three step process for estimating the performance of a sched-
ule, described in Section III-A, has been incorporated in a program
PERSIS (PERformance analySIS). First,we calculate the branch prob-
abilities for the behavioral description by simulation using a specified
input distribution. For the experiments reported, the inputs for the
description were generated with the UNIX uniform random number
generator rand(). The number of input vectors applied for simulation
is user-specified. We fixed the number of input vectors to be used
by increasing the number till the branch probabilities after simulation
stopped changing in the first two places of the decimal. Simulat-
ing the GCD description required 10,000 input vectors to achieve
the required level of accuracy. However, the send and the Traffic
descriptions required just 100.

The next two steps use numeric methods as detailed in Section III-
A. The set of equations, (4), is solved using the linear equations solver
available in the Mathematica software. Results of our estimation
procedure for the expected number of clock cycles required by the
schedules is given under column PERSIS in Table 1.

We also simulated the schedules using the same set of inputs which
were used to determine the behavioral description branch probabili-
ties. The average number of clock cycles required by the schedule

Clock Cycles
Design Constraints Sch LP/ Expected Std Worst

SP PERSIS Sim Dev Case

No data
dependent PB 4/2 144.3 142.8 3.45 39785

GCD operations
in a state LDS 4/2 78.3 76.6 1.72 19894

X.25 1 alu (+=�) PB 4/1 191.9 190.4 10.67 381
(send 2 comp (>)
proc) LDS 4/1 160.9 159.3 8.89 318

PB 4/4 71.8 69.8 1.67 115
Traffic 1 incr (++)

LDS 4/4 39.4 38.4 0.84 61

Table 1: Comparing performance of path-based and loop-directed
schedules using various metrics.

to execute the description for the set of inputs, as obtained by simu-
lation, is given under the column Sim. This is an exact value of the
expected number of clock cycles required by the schedules to execute
the behavioral description for the given set of inputs. For example,
the expected number of clock cycles required by the LDS schedule for
the GCD example as calculated by our performance analysis program,
PERSIS, is 78.3. The value obtained by simulation is 76.6. Thus our
procedure is within 2% of the simulation result for this example, and
also for all the other examples. The results establish the validity of
our estimation procedure.

The results in Table 1 show that the longest path/shortest path
(LP/SP) metrics predict the performance of the two schedules to be
the same for each of the three benchmarks used. However, the pro-
posed performance metric and also actual simulation of the schedules
revealed a large variance in the expected number of clock cycles re-
quired by the path-based and LDS schedules (column PERSIS/Sim).
For the GCD benchmark, both the schedules require 4 clock cycles
and 2 clock cycles to execute the longest and shortest paths of the spec-
ification. However, the expected number of clock cycles required by
the LDS schedule, as estimated by PERSIS, is 78.3 clock cycles as
opposed to 144.3 clock cycles needed by the path-based schedule.
For the GCD benchmark, the loop-directed schedule requires 87%
less clock cycles than the path-based schedule. For send and Traffic,
LDS requires 20% and 82% less clock cycles than the corresponding
path-based schedule respectively.

The standard deviation (Std Dev) and the Worst Case was ob-
tained by simulation of the schedule. For all three cases, the standard
deviation from the expected number of clock cycles, and the worst
case clock cycles for the LDS schedule is less than the corresponding

Area Exp CP Exp
Design Sch S ST [mm2] CC [ns] SP[ns]

PB 7 14 4.80 142.8 29.44 4204
GCD

LDS 6 12 4.47 76.6 29.38 2251

X.25 PB 6 9 132.7 190.4 34.42 6554
(send
proc) LDS 7 10 133.1 159.3 35.23 5612

PB 8 13 0.693 69.8 19.27 1345
Traffic

LDS 10 22 0.716 38.4 19.50 748

Table 2: Effect of improved performance on area/delay statistics.

figures for the path-based schedule.
Table 2 shows the effect of minimization of the expected number

of clock cycles on some important circuit parameters. The total num-
ber of states of the schedules is reported under column S and state
transitions under column ST. Each RT-level circuit generated from
the schedules is subjected to technology-dependent delay optimiza-
tion, including fanout optimization, using the SIS technology mapper
[11] and the lib2.genlib standard cell SCMOS 2.0 library [12]. Sub-
sequently, OASIS [13] place and route tools are used to obtain the
standard cell layout. Columns CP and Area report the clock period
and area of the final implementations. In all the cases, the minimiza-
tion of the expected number of clock cycles could be achieved without
significantly affecting the area or delay of the circuits, even when the
number of states and state transitions increased. The expected sam-
pling period (Exp SP) is the product of the expected clock cycles (Exp
CC) and clock period. Since the clock period is nominally the same
for the circuits produced from the path-based and loop-directed sched-
ules, the expectedsampling period could be reduced by approximately
the same percentages as the clock cycles for all the benchmarks.

VI. CONCLUSIONS

This paper proposed a new approach to estimate the performance
of a given schedule and a new scheduling algorithm. The perfor-
mance measure calculated is the expected number of clock cycles
required by a schedule to execute any valid sequence of operations in
the specification. The proposed loop-directed scheduling algorithm
(LDS) produces schedules such that the performance of the schedule
is optimized for execution of any valid sequence of operations in the
specification, including sequences that have repeated operations.

Acknowledgments: We thank T. Misawa, K. Watanabe, and A. Mer-
chant for helpful discussions.

REFERENCES

[1] K. Wakabayashi and T. Yoshimura. A Resource Sharing and Control Synthesis
Method for Conditional Branches . In Proc. of the IEEE ICCAD, 1989.

[2] R. Camposano and R. A. Bergamaschi. Synthesis using Path-Based Scheduling:
Algorithms and Exercises. In Proc. of the 27th ACM/IEEE DAC, June 1990.

[3] R. Camposano. Path Based Scheduling for Synthesis. IEEE Trans. on CAD, Jan
1991.

[4] T. Kim, J. W. S. Liu, and C. L. Liu. A Scheduling Algorithm For Conditional
Resource Sharing . In Proc. of the IEEE ICCAD, 1991.

[5] K. Wakabayashi and H. Tanaka. Global Scheduling Independent of Control De-
pendencies Based On ConditionVectors . In Proc. of the 29th ACM/IEEE DAC,
1992.

[6] S.H. Huang, Y.L. Jeang, C.T. Hwang, Y.C. Hsu, and J.F. Wang. A Tree-Based
Scheduling Algorithm For Control-Dominated Circuits. In Proc. of the 30th
ACM/IEEE DAC, 1993.

[7] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. Prentice Hall, Englewood Cliffs, N.J., 1982.

[8] A. S. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs, N.J.,
1989.

[9] 1992 High-Level Synthesis Workshop. Benchmarks available in the HLSW92
directory via anonymous ftp from mcnc.mcnc.org.

[10] S. Bhattacharya, S. Dey, and F. Brglez. Performance Analysis and Optimization
of Schedules for Conditional and Loop-Intensive Specifications. Technical Report
93-C049, C&C Research Labs, NEC USA, November 1993.

[11] E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, and A. Sangiovanni-
Vincentelli. Sequential Circuit Design using Synthesis and Optimization. In Proc.
of the ICCD, October 1992.

[12] S. Yang. Logic Synthesis and Optimization Benchmarks, User Guide 3.0. In Intl.
Workshop on Logic Synthesis, MCNC, Research Triangle Park, NC, May 1991.

[13] K. Kozminski (ed.). OASIS Users Guide. MCNC, MCNC, Research Triangle Park,
N.C. 27709, 1992.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

