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Abstract - This paper describes a symbolic formulation that tions to a given scheduling problem are typically represent-
allows incorporation of speculative operation execution (pre- able in a relatively small space. This has the advantage that if
execution) in an exact control-dependent scheduling of arbitrary || solutions are so encapsulated, the exact effect of inclusion
forward branching control/data paths. The technique provides a o aqditional constraints derived during subsequent synthesis
closed form s_olutnon set in which all satisfying schedult_as are steps igdncrementallycomputable. Furthermore, the process
encapsulated in a compressed OBDD-based representation. Tois exact in that if no schedules are found after some step in
extract parallelism implicit in the input specification Boolean

‘quard’ functions are used to identify paths where operations the synthesis process, the designer is assured that no sched-

have to be scheduled and the execution order of the conditionalsU/® €Xists which satisfies all of the constraints. An elegant
is dynamically resolved. An efficient and systematic iterative alternative formulation is currently under development at
construction method is presented along with benchmark results. Stanford!®! using finite automata to represent resource and
timing constraints.
I. INTRODUCTION In this paper, we extend the symbolic scheduling tech-
Heuristic scheduling (path-baé%ld liste], force-directed " a-€ FO mcorporat_especulatlv_e operation executm_(pre-
' executiol. Speculative execution allows the operations from

[12] . .
) a_ccommodates a wide vfanety_of contr_ol de_pendeg}anch arcs to be executkdforethe branching condition is
behaviors. However, it can fail to find solutions in ver

tightly constrained problems even when such solutions exise’ﬁ'.smved.' This is a very |mpqrtant problem n pragt|ce, since
Exact ILP-based schedul 59! finds such solutions, but Speculative execution can improve execution times when

there are sufficient resource. It does this by exploiting a
current methods are unable to handle complex control-depen- loiting the global parallelism implicit in the problem for-

dent behavior. To reduce the number of variables and CI%P

times, an ILP-based heuridficand a mixed ILP/BDD for- mulation. The pro_blem IS d|ff|c_ult since 't. can potentially
. 119 lead to an explosion of operation execution instances. We
mulatior'®! were proposed.

Recently, there has been substantial work on heuris'tri]émduce a restricted model that allows the problem’s treat-

. . ment in a systematic fashion. Several forms of code motion
scheduling of control dominated systems. Huangises a . o
: : re supported and the resolution of toeaditionals(opera-
representation of the execution paths as a tree to enable a

) . ipns that generate control signals) is performed dynamically.
movement of operations. Transformation of a data-flow gra ) )
) o . : s e are able to solve this model exactly and obtain bench-
with conditional branches into one without conditiona

. . . .~ _“mark results which are equal to or superior to the current
branches is performed A To identify mutually exclusive ublished results. In fact. we preserve éigire set of feasi-
operationscondition vectorsare introduced ihtelIL7 This P ) ’ P

technique allows for systematic operation node duplicati brI]e solutions thus allowing application of incremental syn-

. g ) . esis constraints as before. To our knowledge, this is the
and pre-execution leading to high quality results. Most cu(ghly exact technique published for this problem
rent research is restricted to nested conditional brancbies ( ’
ditional tree control structures). Scheduling of multiple]], FORMULATION
conditional trees is described ], but the trees are sched- . . :
uled sequentially using a priority scheme. Furthermore, theln. this formulation we represent all of .the scheduling con-
current scheduling techniques typically produce a single r raints as Boolean equations and build an OBDD corre-

resentative solution, forcing the scheduling task to be re-r PP”O,"”Q to the!r lntersectlop. Each vgrlable In the OB[,)D
if constraints found in subsequent synthesis tasks conf scribes a particular operation occurring at a particular time
with the current solution step, over a finite set of time steps. A variable is true if the

To address these issues, the scheduling problem was ?&rgsponding operati'on Is scheduled during the correspond-
mulated using a compressed OBDD (Ordered Binary-DeJ:ri'-g time step in a particular solution. . ,
To allow control-dependent scheduling, a setgofard

sion Diagrarﬁl]) representatidﬁ3][14]. Using this technique, , e :
the complex Boolean functions representifighossible solu- "a“?b!es 1S introduced. Each gua(r?d labels a particular
fork/join pair, where the guard is true for one branch and

* This work has been supported in part by fellowship donation fromfalse ,for Fhe other. I_Ev,ery qom‘:ml path. throth an arbltrary
Mentor Graphics Corp. and UC-MICRO under project No. 92-019. combination of fork/join pairs is described by a product of



Guards: G2 G1

XxX=e+7;
y=d+2;
if (a+b>c)
y=y-¢€
else
y=y+e+6;
y=y-8
=M =M3=M=Ig=1
I ,=Guard
Ix y Is=Ig=Guard

Fig. 1. Kim’s example Fig. 3. Speculative operation execution

the corresponding guard variables. A Boolean funcfipn resources are available, the operations from both ‘true’ and
(defined on the guard variables) conditions the execution ‘fdlse’ branch paths may be scheduled for executia- (
operationj in a control/data flow graph (CDFG) and encodesxecutell before the conditional value is actually evaluated.
directly all the control paths on whighmustbe scheduled. Fig. 3 shows an example in which speculative execution
Using this techniqueall schedules forll forward control allows faster execution using the same set of single-cycle
paths are simultaneously constructed and are representetepurces (one adder, one subtracter and one comparator).
a compressed OBDD form. In general, the solutiondsla Since they use different resources, operations 4 and 5 can be
lection of product termseach term including both the vari- executed in parallel with a conditional 3. As indicated by the
ables corresponding to the operations and guard variabldgshed lines, operations 7 and 8 can be scheduled earlier on
Each term represents a possible execution instance for a plae-‘true’ path in order to allow execution in three cycles as
ticular control path. We call these product tetrases opposed to four cycles required by the ‘false’ path. It is not

Shown in Fig. 1 iKim's examplé&! in which two guards necessarily beneficial to discard ‘non-minimal’ solutions
fully describe the conditional behavior. Indicated blocks coearly: notice that the schedule where operations 7 and 8 are
respond to operations that share the same guard furictiorexecuted on the fourth cycle in both paths leads to a simpler
Operations belonging to a control-independent portion ebntrol structure. Directed arcs in Fig. 3 represent the control
CDFG are not guarded and thus belong to all executislependency between the conditional and fork/join nodes. No
paths. Consequently, they are scheduled in parallel undersgieculative operation execution is possible if the depen-
control combinations. dency between the conditional and the fork is enforced. In

The proposed formulation is not limited to CDFGs whiclgeneral, the dependency between the conditional and the join
have a conditional tree control structure. Shown in Fig. 2 isn@ed not be enforced as well. In this case, (given sufficient
problem instance with a control correlation between twtesources) the execution time is bounded solely by data
control fork-join structures running in parallel. Note that thelependencies. This can lead to an exponential explosion of
complexity of the formulation grows only with the numbeioperator instances for nested complex control.
of guard variables, not the (possibly exponentially larger) To incorporate the pre-execution mechanism in our sym-
number of traces or control paths. The example in Fig. 2 hlglic scheduling techniqué)e control dependency between
18 possible control paths, but only 5 guard variables needtkie conditional and the fork node is removed, and the depen-
be defined. dency between the conditional and the join node is enforced
instead CDFG operations can be scheduled at different time
steps on distinct control paths, but cannot be scheduled more

Very often it is beneficial to determine the control valughan once per path. Using OBDD techniques this model can
simultaneously with branch execution. If necessarye solved exactly. The experimental results show that this
technique successfully exploits parallelism not explicit in the
input specification.

Application of the technique to tHdahd!] example is
shown in Fig. 4 (directed arcs represent control dependen-
cies and undirected lines correspond to data dependencies).
Notice that a great deal of freedom is added to the schedule:
e.g. operations A8 and S8 can be executed during an arbi-
trary time step subject only to resource constraints. Given
sufficient resources, a critical path length of 8 in the original
graph can be reduced to just 4 (operations: S6, A6, S7, A7).
Fig. 2. CDFG with correlated control This formulation does not allow for operations following the

A. Speculative execution model




B. Derivation of constraints

For brevity, we make the simplifying assumption of sim-
ple non-pipelined unit time delay for the Of)erations (this
restriction is easily removed as reporteéIlﬁ]\[14 ).

Eq.1 and Eg.2 describe the scheduling problem when no
resource constraints are specified. ASAP (as soon as possi-
ble) and ALAP (as late as possible) bounds are constructed
to limit the time spans over which an operation can be sched-
uled. These bounds are not required for correctness, but
improve the efficiency of the algorithm by eliminating vari-
ables which cannot be true in any feasible schedule.

1. UniquenessEqg. 1 enforces that each operatiois
scheduled once and only once on all the paths coverggd by
and not scheduled more than once on other paiys.
denotes operatiofs instance at time step If (ASAP) < s<
(ALAP):

S( Cyj |‘L cijg+ Sﬂ cijg: 1 (1.a)
0 sj (i £K) st sj

whereR; = [(ASAP) 5. If s = (ALAP):

dependency
to
fork

(1] _ _
Fig. 4. CDFG transformation for Maha example S(ER Cyi . Cingf S C”EFj =1 (1.b)
" (| F3 ) . "

join to be executed in a speculative fashion before the corre- ) sl s)
;pondlng conditional is resolved (e.g. S7 cannot be sched_uleg. Precedence relationgn case of the speculative execu-
in the second cycle due to a dependency from A2). Notice,

o ; %lon, care must be taken when to enforce precedence
however, that there is still a lot of freedom to exploit paralleb— . . T
Lo ) tween the operations. If operatioprecedes operatign
ism: since there are no dependencies left among the condi- : P

andFiDFj (e.g. operations 2 and 4, or 5 and 6, in Fig. 3) then

tlpnals, all 12 control - paths can st:?\rt execut_ln]%r every time steg in the range(ASAP),(ALAP)] the fol-
simultaneouslyFurthermore, therder of execution of condi- " . . P
lowing constraint must be satisfied:

tionals is not restricted to the one prescribed in the input for-
mulation It can happen that a top-level conditional cannot be Tom o-
. . L + c.l=1 (2.a)

resolved prior to some other nested conditional in input spec- 0 sl ASAZ<I s I

ification. A very simple example of such a behavior is shown -

in Fig. 5. Assuming that two adders (‘white’ operation), one ) o ) )

subtracter and one single-cycle comparator are available, thi) other cases, when there is a join betweendj (e.g.

schedule executes in three steps with the topmost conditid?Rrations 6 and 8, in Fig. 3), the precedence relation is

left unresolved until the end of the very last cycle. THforced only on the paths coveredrby

knowledge that the innermost conditional is resolved during _

the first cycle, however, is essential in order to complete the Bc_sﬁ Z C|iD+ =1 (2.b)

AsAPxl<s U
schedule. [
3. Termination:A specialsink variable is used in the for-

mulation indicate that a particular trace has concluded. Eq. 3
is used as a terminating condition for all traces. The sink
variable is initialized to ‘0’, and is set to ‘1’ when the termi-
nating condition is met. The scheduling process can be ter-
minated whersink assumes the value ‘1’ on all paths. This
adds one Boolean variable to the entire formulation. In these
equations, operationg, (..j,) are operations that are immedi-
ate predecessors of the sink node in the CDFG.

Fig. 5. Reversed conditional resolution



n — step: j
|_| (R, +F. ) =1 i
AR Sh step: j+1

s (3)
Ry 2 %
k= (ASAR)

. . Fig. 6. Trace matchin
4. Resource constraint#: k; resources of a certain type 9 9

(e.g. multipliers, adders, ALUs, registers, busses) are avdll- @ ‘white’ operation requires prior knowledge of which

able, we formulate @esource-constraintEq. 4: path is being executed). Compatible traces corresponding to
guard value$s, andG, must agree before the conditiowgl
Z EET =1 (4) s resolved. Theo_mpletenesmquirement states th_at a valid
1= (1,#T <ng 172 (WL trace must exist in each solution for every possible control
combination.
Fq is a Boolean function describing that resourcés Trace validation ensures that each validated trace is part of

needed during time stepEq. 4 is applied for each time stepSOMe executable ensemble schedule. The validation is effi-
sand each resourcgbounded by It indicates that at least Ciently preformed by aiterative algorithm shown in Fig. 7.
(ngrk;) resources (amon potential operations in time step The following notation is used - set of all traces that exe-
s) cannot be scheduled. By suitable choicEgffunctional ~Cute ink time steps, S(0) - initial set of non-validated traces,
unit, bus and register constraints can be generated. S(i) - set of traces at iterationC = [c;,C, ... G| - set of all

5. Removal of redundantly scheduled operatidie set conditionalsG = [Gy, G, ... Gyl - set of guards correspond-
of traces obtained in this fashion may include traces whefg to the conditionalsk(j) = [Ry(j), Ro(j) ... Ry(i)] - resolu-
some operations are scheduled in a redundant fashion. (AHER vector (a set of Boolean functions indicating that a
the conditional is resolved, some operations from paths rigtnditional ¢, was scheduled prior to time stej):
taken may still be scheduled if there are available resource8) (i) = ) Cy for (I<j), Gres - set of guards corresponding
Although this is not a fundamental problem in the schedultd the resolved conditionals Rj), V - set of all variables
these redundant operations should still be removed to rediig¥ including guard variable$’(j) - subset o correspond-
potential power consumption, interconnect and storadfed to time steps=j, S’ - set of traces from which all vari-
requirements. It is relatively straightforward to eliminat@bles representing operation instances after stegre
such traces from the result which is in OBDD form. Assum@moved:s = O, _ )y S [Lf = f+f5 - existential abstrac-
that a conditionat, is resolved prior to time stgpand that tion, Dyf = fifx - universal abstractionWith respect t&(j)
the guard corresponding to it @. Then all the variables the functionS’can be mapped into a disjoint set of (possibly
that correspond to operatidia instances scheduled for time2") families, corresponding to the subset of guards that are

steps> j in paths wher, is true have to assume value ‘0'"esolved prior to time step The guards fromG-Geeg are
if: dont careswithin the family since at time stgghere is no

rG,=0 (5.a) knowledge about how the schedule will look at the succes-
' sive steps with regard to the future potential values of the
unresolved guards. Thus, traces must o#tch and exist
for all possible combinations fronG(G,cJ).
The algorithm checks for partial matching up to $téy

Similarly, in paths wher&, is false, all the variables that
correspond to operatioiis instances scheduled for time
steps> j have to assume value ‘0’ if:

rG,=0 (5.b)
C. Trace validation id= ??
0
A trace which satisfies all of the constraints may still not i+
be part of a valid execution instance in the sense that it me S(i) = S(i-1);
not be compatible with any set of traces forming an execut for each time step{
able schedule. A valid schedule must be bmahsal and S = D(V_V, .))S(i)
completefor all control paths. Theausality requirement for each conéflt[onatk{ _
dictates that the schedule cannot use knowledge of the val S = SR(i) +Hg, (SRc(1))
of a conditional prior to the time step in which it is executed ) if (S'==0) { S(i)=0; exit; }

Fig. 6 illustrates a situation in which two traces correspond
ing to alternative values of the guagg (corresponding to
the conditionaky) are not compatible unless conditiogl

is evaluated prior to stgp(The decision to execute a ‘black’

S(i) = S(i)S’;

} while (S(i)!=S(i-1));
Fig. 7. Trace validation (TV) algorithm



built on a time-step by time-step basis: only those constraints
relevant to a particular time stgjare generated and applied
to the OBDD representing a valid partial solution for the pre-
vious {-1) steps. In this way, only partial time sequences of
constraints need to be added at each step. This prevents the
construction of large set of spurious solutions before all con-
straints have been applied. We observed that this construc-
tion typically results in smaller intermediate OBDDs and
very moderate that generation of ‘garbage’. It also has the
advantage that one can detect when schedules have com-
pleted, obviating the need to accurately pre-specify the num-
ber of control steps. Lastly, since a valid partial schedule is
available, it is seems possible to formulate simple but effi-
all traces in parallel However, it is possible that a tracecient heuristics that preserve whole sets of candidates. This
which matched up to time stgjis invalidated in subsequent can be useful in cases when the size of OBDD becomes too
steps, thus its set of matching traces may no longer be cdarge.
plete. The TV algorithm iterates until a fixed point is
reached. The number of iterations iocannot exceed the IV. EXPERIMENTAL RESULTS
number of conditionals in a temporal (precedence) chain ofTables 1 and 2 show experimental results for several
an?/ trace. A formal discussion of the algorithm is reported imrenchmarksMahd, Kiml® andwakd!®! are conditional
(14], trees,MulT "] has two parallel tree®arker is Maha with
addition A6 becoming a subtraction. Tiiaha solution with
ll. CONSTRUCTION one adder and one subtracter is the same [3E'{4. Allow-
A. OBDD structure and ordering ing more resources (two adders, three subtracters) an

irﬂweprovement of 0.125 (average path length) was made over

The constraints described in Section Il each have a sim > best previous result. Barker the improvement was
and regular structure. This allows OBDD representations%ho P ' ! P

be constructedirectly from the CDF&3! without reference -25. . -
. . . . . In some previous work, it is assumed that the comparators
to an intermediate equation form. This process is fast and

generates no construction garbage (nodes that are not refdr & small delay within a clock cycle and that the opera-

enced in the final solution). Shown in Fig. 8 is the OBDI'_t)'OHS following the branch on ‘true’ and ‘false’ paths are

representation of Eq.4. It is used as a general construct{B:Htua”y exclusive during theamecycle. Note that this

. atment of the conditionals requires increased cycle time,
template for all of the typed resource constraints. Note that . . : . ) S
: additional multiplexing, and restricts pipelining of the con-

the number of product terms in a sum-of-products represer- .

: . rol. Our results reflect this model Maha andParker, but
tation of Eq.4 is {; ). . . S

It is important to notice that although individual e uationthIS assumption completely eliminates the need for specula-

b 9 9 Fve execution in th&im andWakabenchmarks. Note that

have efficient orderings, optimal orderings for differen he dvnamically chanaing values of the auard variables
equations contradict. There can be no polynomial bound on y y ging 9

the size of an arbitrary instance of the scheduling probl encode the control path being taken at a particular time step.

e : .
o any pre Spece crdringsnce s problen < NP-co = e 1Tl asume 2 Sl e compara i
letd 11101 However, experimental results indicate that typi=_ > . . but s only .
plet ; ' . . ° "~ cessive cycle. This assumption is true for those results in
cal instances, including conventional benchmarks, do mde\?v%fich the nurﬁber of comparators is indicated below. Given
have good orderings. A." of thg results.presented. n théfhis assumption, our technique still derives the same result

paper are generated using a simple variable ordering W%o Kim as reported 171, In Waka however, one path is a

non-guard variables ordered by increasing time step and

[
guard variables placed on top (i.e. closest to the root %ﬁde longer than that reported f. In MuIT a one cycle

OBDD). This ordering typically results in small OBDDs and ortersolu_t!on was foun(_j by exploiting dynamic schedul-
. ’ . ing of conditionals belonging to parallel trees.
accommodates iterative construction.

In bothMaha and in the example in Fig. 2, having more
B. Iterative construction process than one unit of each type cannot improve the longest path

Although the final OBDD typlcally has relatively Sma“WithOUt Speculative execution. For Flg 2, an_in_crease to 3
size the size of OBDDs at intermediate stages can be retdders, 2 subtracters, and 2 comparators will improve the
tively large, resulting in slow construction or large memor{P"gest path from 6 to 4 cycles. This example demonstrates

requirements. Using iterative constructlbf the solution is th€ ability of our approach to perform code motion and

Fig. 8. At-most-k-out-of-nconstraint (k=4, n=7)
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