
Abstract - This paper describes a symbolic formulation that
allows incorporation of speculative operation execution (pre-
execution) in an exact control-dependent scheduling of arbitrary
forward branching control/data paths. The technique provides a
closed form solution set in which all satisfying schedules are
encapsulated in a compressed OBDD-based representation. To
extract parallelism implicit in the input specification Boolean
‘guard’ functions are used to identify paths where operations
have to be scheduled and the execution order of the conditionals
is dynamically resolved. An efficient and systematic iterative
construction method is presented along with benchmark results.

I. INTRODUCTION

Heuristic scheduling (path-based[2], list[8], force-directed
[12]) accommodates a wide variety of control dependent
behaviors. However, it can fail to find solutions in very
tightly constrained problems even when such solutions exist.
Exact ILP-based scheduling[3][5][9]  finds such solutions, but
current methods are unable to handle complex control-depen-
dent behavior. To reduce the number of variables and CPU
times, an ILP-based heuristic[7] and a mixed ILP/BDD for-
mulation[19] were proposed.

Recently, there has been substantial work on heuristic
scheduling of control dominated systems. Huang[4] uses a
representation of the execution paths as a tree to enable a
movement of operations. Transformation of a data-flow graph
with conditional branches into one without conditional
branches is performed in[6]. To identify mutually exclusive
operations,condition vectors are introduced in[16][17]. This
technique allows for systematic operation node duplication
and pre-execution leading to high quality results. Most cur-
rent research is restricted to nested conditional branches (con-
ditional tree control structures). Scheduling of multiple
conditional trees is described in[17], but the trees are sched-
uled sequentially using a priority scheme. Furthermore, the
current scheduling techniques typically produce a single rep-
resentative solution, forcing the scheduling task to be re-run
if constraints found in subsequent synthesis tasks conflict
with the current solution.

To address these issues, the scheduling problem was for-
mulated using a compressed OBDD (Ordered Binary-Deci-
sion Diagram[1]) representation[13][14]. Using this technique,
the complex Boolean functions representingall possible solu-

tions to a given scheduling problem are typically represent-
able in a relatively small space. This has the advantage that if
all solutions are so encapsulated, the exact effect of inclusion
of additional constraints derived during subsequent synthesis
steps isincrementally computable. Furthermore, the process
is exact in that if no schedules are found after some step in
the synthesis process, the designer is assured that no sched-
ule exists which satisfies all of the constraints. An elegant
alternative formulation is currently under development at
Stanford[18] using finite automata to represent resource and
timing constraints.

In this paper, we extend the symbolic scheduling tech-
nique to incorporatespeculative operation execution (pre-
execution). Speculative execution allows the operations from
branch arcs to be executedbefore the branching condition is
resolved. This is a very important problem in practice, since
speculative execution can improve execution times when
there are sufficient resource. It does this by exploiting a
exploiting the global parallelism implicit in the problem for-
mulation. The problem is difficult since it can potentially
lead to an explosion of operation execution instances. We
introduce a restricted model that allows the problem’s treat-
ment in a systematic fashion. Several forms of code motion
are supported and the resolution of theconditionals (opera-
tions that generate control signals) is performed dynamically.
We are able to solve this model exactly and obtain bench-
mark results which are equal to or superior to the current
published results. In fact, we preserve the entire set of feasi-
ble solutions thus allowing application of incremental syn-
thesis constraints as before. To our knowledge, this is the
only exact technique published for this problem.

II. FORMULATION

In this formulation we represent all of the scheduling con-
straints as Boolean equations and build an OBDD corre-
sponding to their intersection. Each variable in the OBDD
describes a particular operation occurring at a particular time
step, over a finite set of time steps. A variable is true if the
corresponding operation is scheduled during the correspond-
ing time step in a particular solution.

To allow control-dependent scheduling, a set of‘guard’
variables is introduced. Each guardG labels a particular
fork/join pair, where the guard is true for one branch and
false for the other. Every control path through an arbitrary
combination of fork/join pairs is described by a product of
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the corresponding guard variables. A Boolean functionΓj
(defined on the guard variables) conditions the execution of
operationj in a control/data flow graph (CDFG) and encodes
directly all the control paths on whichj must be scheduled.
Using this technique,all schedules forall forward control
paths are simultaneously constructed and are represented in
a compressed OBDD form. In general, the solution is acol-
lection of product terms, each term including both the vari-
ables corresponding to the operations and guard variables.
Each term represents a possible execution instance for a par-
ticular control path. We call these product termstraces.

Shown in Fig. 1 isKim’s example[6] in which two guards
fully describe the conditional behavior. Indicated blocks cor-
respond to operations that share the same guard functionΓ.
Operations belonging to a control-independent portion of
CDFG are not guarded and thus belong to all execution
paths. Consequently, they are scheduled in parallel under all
control combinations.

The proposed formulation is not limited to CDFGs which
have a conditional tree control structure. Shown in Fig. 2 is a
problem instance with a control correlation between two
control fork-join structures running in parallel. Note that the
complexity of the formulation grows only with the number
of guard variables, not the (possibly exponentially larger)
number of traces or control paths. The example in Fig. 2 has
18 possible control paths, but only 5 guard variables need to
be defined.

A. Speculative execution model

Very often it is beneficial to determine the control value
simultaneously with branch execution. If necessary
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resources are available, the operations from both ‘true’ and
‘false’ branch paths may be scheduled for execution (pre-
executed) before the conditional value is actually evaluated.
Fig. 3 shows an example in which speculative execution
allows faster execution using the same set of single-cycle
resources (one adder, one subtracter and one comparator).
Since they use different resources, operations 4 and 5 can be
executed in parallel with a conditional 3. As indicated by the
dashed lines, operations 7 and 8 can be scheduled earlier on
the ‘true’ path in order to allow execution in three cycles as
opposed to four cycles required by the ‘false’ path. It is not
necessarily beneficial to discard ‘non-minimal’ solutions
early: notice that the schedule where operations 7 and 8 are
executed on the fourth cycle in both paths leads to a simpler
control structure. Directed arcs in Fig. 3 represent the control
dependency between the conditional and fork/join nodes. No
speculative operation execution is possible if the depen-
dency between the conditional and the fork is enforced. In
general, the dependency between the conditional and the join
need not be enforced as well. In this case, (given sufficient
resources) the execution time is bounded solely by data
dependencies. This can lead to an exponential explosion of
operator instances for nested complex control.

To incorporate the pre-execution mechanism in our sym-
bolic scheduling technique,the control dependency between
the conditional and the fork node is removed, and the depen-
dency between the conditional and the join node is enforced
instead. CDFG operations can be scheduled at different time
steps on distinct control paths, but cannot be scheduled more
than once per path. Using OBDD techniques this model can
be solved exactly. The experimental results show that this
technique successfully exploits parallelism not explicit in the
input specification.

Application of the technique to theMaha[11] example is
shown in Fig. 4 (directed arcs represent control dependen-
cies and undirected lines correspond to data dependencies).
Notice that a great deal of freedom is added to the schedule:
e.g. operations A8 and S8 can be executed during an arbi-
trary time step subject only to resource constraints. Given
sufficient resources, a critical path length of 8 in the original
graph can be reduced to just 4 (operations: S6, A6, S7, A7).
This formulation does not allow for operations following the
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x = e + 7;
y = d + 2;

if  ( a + b > c )
y = y - e;

else
y =y + e + 6;

y = y - 8;

Fig. 3. Speculative operation execution



B. Derivation of constraints

For brevity, we make the simplifying assumption of sim-
ple non-pipelined unit time delay for the operations (this
restriction is easily removed as reported in[13][14]).

Eq.1 and Eq.2 describe the scheduling problem when no
resource constraints are specified. ASAP (as soon as possi-
ble) and ALAP (as late as possible) bounds are constructed
to limit the time spans over which an operation can be sched-
uled. These bounds are not required for correctness, but
improve the efficiency of the algorithm by eliminating vari-
ables which cannot be true in any feasible schedule.

1. Uniqueness: Eq. 1 enforces that each operationj is
scheduled once and only once on all the paths covered byΓj
and not scheduled more than once on other paths.Csj
denotes operationj’s instance at time steps. If (ASAP)j ≤ s<
(ALAP)j:

 (1.a)

whereRsj = [(ASAP)j ,s]. If s = (ALAP)j:

 (1.b)

2. Precedence relations: In case of the speculative execu-
tion, care must be taken when to enforce precedence
between the operations. If operationi precedes operationj
andΓi⊇Γj (e.g. operations 2 and 4, or 5 and 6, in Fig. 3) then
for every time steps in the range [(ASAP)j ,(ALAP)i] the fol-
lowing constraint must be satisfied:

 (2.a)

In other cases, when there is a join betweeni and j (e.g.
operations 6 and 8, in Fig. 3), the precedence relation is
enforced only on the paths covered byΓi:

 (2.b)

3. Termination: A special sink variable is used in the for-
mulation indicate that a particular trace has concluded. Eq. 3
is used as a terminating condition for all traces. The sink
variable is initialized to ‘0’, and is set to ‘1’ when the termi-
nating condition is met. The scheduling process can be ter-
minated whensink assumes the value ‘1’ on all paths. This
adds one Boolean variable to the entire formulation. In these
equations, operations (j1...jn) are operations that are immedi-
ate predecessors of the sink node in the CDFG.
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join to be executed in a speculative fashion before the corre-
sponding conditional is resolved (e.g. S7 cannot be scheduled
in the second cycle due to a dependency from A2). Notice,
however, that there is still a lot of freedom to exploit parallel-
ism: since there are no dependencies left among the condi-
tionals, all 12 control paths can start executing
simultaneously. Furthermore, theorder of execution of condi-
tionals is not restricted to the one prescribed in the input for-
mulation. It can happen that a top-level conditional cannot be
resolved prior to some other nested conditional in input spec-
ification. A very simple example of such a behavior is shown
in Fig. 5. Assuming that two adders (‘white’ operation), one
subtracter and one single-cycle comparator are available, the
schedule executes in three steps with the topmost conditional
left unresolved until the end of the very last cycle. The
knowledge that the innermost conditional is resolved during
the first cycle, however, is essential in order to complete the
schedule.
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 (3)

4. Resource constraints: If kl resources of a certain typerl
(e.g. multipliers, adders, ALUs, registers, busses) are avail-
able, we formulate a‘resource-constraint’ Eq. 4:

 (4)

Fsl is a Boolean function describing that resourcerl is
needed during time steps. Eq. 4 is applied for each time step
s and each resourcerl bounded bykl. It indicates that at least
(nsl-kl) resources (amongnsl potential operations in time step
s) cannot be scheduled. By suitable choice ofFsl, functional
unit, bus and register constraints can be generated.

5. Removal of redundantly scheduled operations: The set
of traces obtained in this fashion may include traces where
some operations are scheduled in a redundant fashion. (After
the conditional is resolved, some operations from paths not
taken may still be scheduled if there are available resources).
Although this is not a fundamental problem in the schedule,
these redundant operations should still be removed to reduce
potential power consumption, interconnect and storage
requirements. It is relatively straightforward to eliminate
such traces from the result which is in OBDD form. Assume
that a conditionalck is resolved prior to time stepj, and that
the guard corresponding to it isGk. Then all the variables
that correspond to operationi’s instances scheduled for time
steps≥ j in paths where Gk is true have to assume value ‘0’
if:

 (5.a)

Similarly, in paths whereGk is false, all the variables that
correspond to operationi’s instances scheduled for time
steps≥ j have to assume value ‘0’ if:

 (5.b)

C. Trace validation

A trace which satisfies all of the constraints may still not
be part of a valid execution instance in the sense that it may
not be compatible with any set of traces forming an execut-
able schedule. A valid schedule must be bothcausal and
complete for all control paths. The causality requirement
dictates that the schedule cannot use knowledge of the value
of a conditional prior to the time step in which it is executed.
Fig. 6 illustrates a situation in which two traces correspond-
ing to alternative values of the guardGk (corresponding to
the conditionalck) are not compatible unless conditionalck
is evaluated prior to step j. (The decision to execute a ‘black’
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or a ‘white’ operation requires prior knowledge of which
path is being executed). Compatible traces corresponding to
guard valuesGk andGk must agree before the conditionalck
is resolved. The completenessrequirement states that a valid
trace must exist in each solution for every possible control
combination.

Trace validation ensures that each validated trace is part of
some executable ensemble schedule. The validation is effi-
ciently preformed by aniterative algorithm shown in Fig. 7.
The following notation is used: S - set of all traces that exe-
cute ink time steps, S(0) - initial set of non-validated traces,
S(i) - set of traces at iterationi, C = [c1,c2 ... cn] - set of all
conditionals, G = [G1, G2 ... Gn] - set of guards correspond-
ing to the conditionals,R(j) = [R1(j), R2(j) ... Rn(j)] - resolu-
tion vector (a set of Boolean functions indicating that a
conditional ck was scheduled prior to time stepj):

 for (l<j ), Gres - set of guards corresponding
to the resolved conditionals inRk(j), V - set of all variables
not including guard variables, V’(j)  - subset ofV correspond-
ing to time steps<= j , S’ - set of traces from which all vari-
ables representing operation instances after stepj are
removed: , ∃xf = fx+fx - existential abstrac-
tion, ∀xf = fxfx - universal abstraction. With respect toR(j)
the functionS’ can be mapped into a disjoint set of (possibly
2n) families, corresponding to the subset of guards that are
resolved prior to time stepj. The guards from (G-Gres) are
don’t careswithin the family since at time stepj there is no
knowledge about how the schedule will look at the succes-
sive steps with regard to the future potential values of the
unresolved guards. Thus, traces must bothmatch andexist
for all possible combinations from (G-Gres).

The algorithm checks for partial matching up to stepj for
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Fig. 6. Trace matching

i = 0;
do {

i++;
S(i) = S(i-1);
for each time stepj {

for each conditionalck {

if (S’==0) { S(i)=0; exit; }
}
S(i) = S(i)S’;

}
} while (S(i)!=S(i-1));
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Fig. 7. Trace validation (TV) algorithm
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all traces in parallel. However, it is possible that a trace
which matched up to time stepj is invalidated in subsequent
steps, thus its set of matching traces may no longer be com-
plete. The TV algorithm iterates until a fixed point is
reached. The number of iterations oni cannot exceed the
number of conditionals in a temporal (precedence) chain of
any trace. A formal discussion of the algorithm is reported in
[14].

III. CONSTRUCTION

A. OBDD structure and ordering

The constraints described in Section II each have a simple
and regular structure. This allows OBDD representations to
be constructeddirectly from the CDFG[13] without reference
to an intermediate equation form. This process is fast and
generates no construction garbage (nodes that are not refer-
enced in the final solution). Shown in Fig. 8 is the OBDD
representation of Eq.4. It is used as a general construction
template for all of the typed resource constraints. Note that
the number of product terms in a sum-of-products represen-
tation of Eq.4 is (nk ).

It is important to notice that although individual equations
have efficient orderings, optimal orderings for different
equations contradict. There can be no polynomial bound on
the size of an arbitrary instance of the scheduling problem
for any pre-specified ordering since this problem is NP-com-
plete[1][10]. However, experimental results indicate that typi-
cal instances, including conventional benchmarks, do indeed
have good orderings. All of the results presented in this
paper are generated using a simple variable ordering with
non-guard variables ordered by increasing time step and
guard variables placed on top (i.e. closest to the root of
OBDD). This ordering typically results in small OBDDs and
accommodates iterative construction.

B. Iterative construction process

Although the final OBDD typically has relatively small
size the size of OBDDs at intermediate stages can be rela-
tively large, resulting in slow construction or large memory
requirements. Using iterative construction[15] the solution is
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Fig. 8.At-most-k-out-of-n constraint (k=4, n=7)

built on a time-step by time-step basis: only those constraints
relevant to a particular time step j are generated and applied
to the OBDD representing a valid partial solution for the pre-
vious (j-1) steps. In this way, only partial time sequences of
constraints need to be added at each step. This prevents the
construction of large set of spurious solutions before all con-
straints have been applied. We observed that  this construc-
tion typically results in smaller intermediate OBDDs and
very moderate that generation of ‘garbage’. It also has the
advantage that one can detect when schedules have com-
pleted, obviating the need to accurately pre-specify the num-
ber of control steps. Lastly, since a valid partial schedule is
available, it is seems possible to formulate simple but effi-
cient heuristics that preserve whole sets of candidates. This
can be useful in cases when the size of OBDD becomes too
large.

IV. EXPERIMENTAL RESULTS

Tables 1 and 2 show experimental results for several
benchmarks.Maha[11], Kim[6] andWaka[16] are conditional
trees,MulT[17] has two parallel trees.Parker is Maha with
addition A6 becoming a subtraction.TheMaha solution with
one adder and one subtracter is the same as in[4][17]. Allow-
ing more resources (two adders, three subtracters) an
improvement of 0.125 (average path length) was made over
the best previous result. InParker, the improvement was
0.25.

In some previous work, it is assumed that the comparators
incur a small delay within a clock cycle and that the opera-
tions following the branch on ‘true’ and ‘false’ paths are
mutually exclusive during thesame cycle. Note that this
treatment of the conditionals requires increased cycle time,
additional multiplexing, and restricts pipelining of the con-
trol. Our results reflect this model inMaha andParker, but
this assumption completely eliminates the need for specula-
tive execution in theKim andWaka benchmarks. Note that
the dynamically changing values of the guard variables
encode the control path being taken at a particular time step.
Hence, we normally assume a single cycle comparator which
is scheduled and whose output is only available in the suc-
cessive cycle. This assumption is true for those results in
which the number of comparators is indicated below. Given
this assumption, our technique still derives the same result
for Kim as reported in[17]. In Waka, however, one path is a
cycle longer than that reported in[4]. In MulT a one cycle
shorter solution was found by exploiting dynamic schedul-
ing of conditionals belonging to parallel trees.

In bothMaha and in the example in Fig. 2, having more
than one unit of each type cannot improve the longest path
without speculative execution. For Fig. 2, an increase to 3
adders, 2 subtracters, and 2 comparators will improve the
longest path from 6 to 4 cycles. This example demonstrates
the ability of our approach to perform code motion and



dynamically schedule a complex control instance. We
observed that none of the standard benchmarks needed out-
of-order execution of the conditionals in the optimal solu-
tions.

All experiments were run on SPARCstation10 using a cus-
tom C++ OBDD package. Reported CPU times correspond
to the complete procedure: CDFG analysis, constraint con-
struction, and all OBDD manipulations including trace vali-
dation generating the final OBDD results.

V. CONCLUSION

We described a symbolic scheduling formulation that
allows incorporation of speculative operation execution in
exact control-dependent scheduling of arbitrary forward
branching control/data paths. The technique provides a
closed form solution set in which all satisfying schedules are
encapsulated in a compressed OBDD-based representation.
Boolean ‘guard’ functions are used to precisely identify
paths where operations have to be scheduled and the execu-
tion order of the conditionals is dynamically resolved. An
efficient and systematic iterative construction method was
presented along with benchmark results. Several areas of
improvement are the targets for our future work: inclusion of
a constraint to implement operation chaining, incorporation
of control/interconnect costs in the formulation and exten-
sions to restricted forms of backward loops. An efficient
approach to remove the restrictions we assumed in this for-
mulation will be considered as well.

Table 2: Comparison with others: average(longest) paths

Maha Parker Kim Waka MulT

our 3.31 (5) 2.25 (4) 2.13 (4) 5.75 (6) 5 (7) 3 (3)

TS [4] 3.31 (5) - - - 4.75 (7) -

CVLS [17] 3.31 (5) 2.38 (4) 2.38 (4) 5.75 (6) - 2.88 (4)

Kim[6] 4.62 (8) - - 6.25 (7) 4.75 (7) -

Table 1: Experimental results

Maha Kim Waka MulT

#cycles 5 4 6 7 3

#cycles(avg) 3.31 2.25 5.75 5.0 3.0

non_speculative 8 8 7 7 4

#adders 1 2 1 1 2

#subtracters 1 3 2 1 1

#comparators - - 1 2 1

#variables 65 49 71 55 26

#nodes 428 325 543 271 116

#traces 15 43 124 21 15

CPU time [s] 13.80 6.32 7.63 2.84 3.95

single-cycle adders, subtracters and comparators assumed
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