
Software Scheduling in the

Co-Synthesis of Reactive Real-Time Systems
�

Pai Chou, Gaetano Borriello

Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195

Abstract { Existing software scheduling techniques limit the

functions that can be implemented in software to those with a

restricted class of timing constraints, in particular those with a

coarse-grained, uniform, periodic behavior. In practice, how-

ever, many systems change their I/O behavior in response to

the inputs from the environment. This paper considers one

such class of systems, called reactive real-time systems, where

timing requirements can include sequencing, rate, and re-

sponse time constraints. We present a static, non-preemptive,

�ne-grained software scheduling algorithm to meet these con-

straints. This algorithm is suitable for control-dominated em-

bedded systems with hard real-time constraints, and is part of

the core of a hardware/software co-synthesis system.

I Introduction

An embedded system is a special purpose computer con-

sisting of one or more controllers and peripheral devices.

A reactive system is an embedded system that changes its

I/O behavior in response to inputs from the environment.

This is in contrast to those systems with a uniform peri-

odic behavior that is independent of their input. Many

reactive systems must also meet hard timing constraints

of various types imposed by the devices' protocols or by

the required system behavior. These systems are referred

to as reactive real-time systems.

Esterel [1] and StateCharts [4] have been used for spec-

ifying reactive systems. Reactive behavior can be suc-

cinctly and conveniently captured with parallelism and

watchdogs. A watchdog is a wait-on-signal statement

that encloses a statement block, and breaks control 
ow

out of the block upon receiving the signal. Both Es-

terel and StateCharts assume an idealized timing model,

�This work was supported by NSF under Grant MIP-8858782

and DARPA under contract N00014-J-91-4041.

where simple computations are assumed to take zero time

to perform. However, lengthy computations that violate

this assumption are extracted and treated as external sig-

nals, and timing constraints cannot be speci�ed on them

for scheduling. While this assumption simpli�es seman-

tics, it also restricts the class of applications that can be

speci�ed.

The watchdog-concurrency reactive programming

model has been augmented with timing constraints in [2].

The system behavior is divided into a number of modes.

A mode speci�es a scope within which a set of timing

constraints must be met, until one of the watchdogs de-

tects an event and disables, or causes a transition out of,

the mode. When such a transition is initiated, each con-

current branch to be disabled is scheduled to run until a

safe exit point is reached. This enables interleaving while

maintaining the integrity of I/O protocols and program

state.

A timing constraint speci�es a minimum or a maxi-

mum time separation between the start times of two op-

erations. Elementary operations, such as reading and

writing an I/O port or computations, take some bounded

amount of time to execute and are not preemptable.

Other operations, speci�cally polling loops that wait for

an input value, can iterate inde�nitely, and are said to

have unbounded delays. When there are multiple paths

between two operations, the maximumtiming constraints

are de�ned for those paths with only bounded-delay oper-

ations. We classify the constraints into sequencing, rate,

and response time.

A sequencing constraint speci�es the separation be-

tween the start times of two operations in the same mode

and same iteration without intervening unbounded delay

operations. Sequencing constraints are commonly found

in I/O protocols of peripheral devices. These protocols

consist of a sequence of read and write steps.

A rate constraint speci�es the separation between the

start times of two consecutive iterations of a loop. Note

that the rate constraint holds only between successive

iterations until the loop exits. A loop with a rate con-

straint can have a body with sequencing constraints. A



maximum rate constraint is well posed only if the loop

does not contain operations with unbounded delays.

A response time constraint is a constraint on a mode

transition. The path is de�ned to be from the last iter-

ation of the �rst mode to the �rst iteration of the next

mode. Response time constraints are also referred to as

intermodal constraints. Sequencing constraints are also

called intramodal constraints. For the purpose of schedul-

ing, a rate constraint can be formulated as an intramodal

constraint.

This paper presents a static scheduling algorithm for

producing a sequential program to meet both intramodal

and intermodal timing constraints. Static scheduling is

necessary because dynamic scheduling cannot guarantee

that constraints will always be satis�ed [7]. In the next

sections, we formulate the scheduling problem in terms of

a graph model and then present the scheduling algorithm.

II Scheduling Problem Formulation

The input to this problem is a constraint graph. It

is an extended version of the constraint graph used in

relative scheduling [6]. The vertices represent operations

and the edges represent timing dependencies. Each graph

is required to have a single entry point, or anchor. Each

vertex v has an non-negative integer execution delay �(v),

shown in Fig. 2 as a value after the `/' in the node. In

the basic problem, each graph corresponds to a mode and

contains only bounded delay operations.

Timing constraints are represented by a set of directed

edges. All edges have integer weights and are catego-

rized as either forward edges (those with zero or positive

weights) or backward edges (those with negative weights).

A forward edge from vertex v to vertex w with weight

ev;w indicates that the start time of w must be scheduled

at least ev;w time units after v's scheduled start time.

A backward edge from vertex w to vertex v with weight

ew;v indicates that the start time of w must be scheduled

no more than �ew;v time units after v's scheduled start

time. We call the constraint graph limited to forward

edges only the forward constraint graph and label it Gf .

In all modes, all nodes are required to be reachable from

the anchor, or start node, along a path in Gf .

The basic problem is de�ned as follows. Given a con-

straint graph G and an anchor vertex a, derive a valid

serial schedule. A schedule is a mapping of the vertices to

integers representing their start times relative to the an-

chor a. Serialization requires that operations be assigned

nonoverlapping times. That is, if vertex v has duration

�(v) and is assigned start time �(v) then no other event

is assigned a start time between �(v) and �(v) + �(v).

A schedule is valid if it satis�es all the constraints. In-

tramodal constraints are satis�ed if for all vertices v and

w in G with edge ev;w between them, �(w)��(v) � ev;w.

In the extended scheduling problem, we must also con-

sider the safe exit points, disables, and the intermodal

constraints. A set of safe-exit points S include all leaves

in Gf and any speci�ed internal safe exit points. The set

of disable nodes D is a subset of S. A legal exit point is

a safe exit point whose peer branches in Gf are at their

safe exit points. Formally, let P (c) be the set of vertices

scheduled before c (that is, fv : �(v) < �(c)g). A safe

exit point c is legal if every v 2 P (c) is safe with respect

to c and �. A vertex v is safe with respect to c and � if

v 2 P (c) and either (i) v is a safe exit point, or (ii) all

children of v in Gf are safe with respect to c and �.

Intermodal constraint edges are similar to their in-

tramodal counterparts. An intermodal edge (vx; wy)

with a nonnegative weight evx;wy associated with the

x! y transition requires that wy be scheduled no earlier

than evx;wy time units after vx's scheduled start time. An

intermodal edge (wy; vx) with a negative weight ewy;vx

associated with the x ! y transition requires that wy

be scheduled no later than �ewy;vx time units after xv's

scheduled start time.

III Scheduling Algorithm

A Intramodal Scheduling

Although intramodal scheduling can be solved using

serialization [5] and start time assignment [6], we present

here a combined algorithm, that is adaptable to inter-

modal scheduling (Section B) and can be easily modi�ed

to use di�erent heuristics. The input is an intramodal

constraint graph, and the output is a schedule for the

start times. The algorithm is shown in Fig. 1.

The algorithm is called with three parameters. The

�rst parameter G is a modal constraint graph. The sec-

ond parameter is the anchor a of the graph. Every vertex

must be reachable from a in G along non-negative weight

edges, as explained in section II. The third parameter c

is the current vertex being traversed. It is initially set to

a, and it separates the subgraph already serialized from

the rest of the graph.

This algorithm performs a variation of topological

traversal, starting from a. A vertex is a candidate to be

serialized next if all of its predecessors in Gf have been

serialized. If a vertex v is chosen from the candidate set

to be visited after c, then a forward edge is added from

v to all other successor candidates u of c. When adding

a forward edge (v; u), we assign the edge weight evu =

Max(�(v); La(u) � La(v)), where La is the longest path

length from the anchor a to the vertex, as computed by

the BellmanFord longest paths algorithm. The justi�-

cation for the edge weight is that since u is to be ordered



Serialize(Graph G;anchor a; candidate c) f
La := Single source longest paths(G, a);

if positive cycle found,
return Fail ;

C := topological successors of candidate c;

if (C is empty )
return schedule with �(v) = longest path from a;

D := C;

while (D not empty) f
v := SelectSuccessor(D);

B: foreach u 2 C � fvg f
add edge (v; u) to G, with weight
evu = Max(�(v); La(u)� La(v));

/* delay all successors by at least �(v) */

g
Serialize(G; a; v);

if (schedule found) return schedule;

/* else - positive cycle or backtrack */
Undo step B;

g /* while */

return Fail; /* no more candidates */
g

Fig. 1: Intramodal Scheduling Algorithm

after v, u cannot start until after v completes, or after a

longer minimum constraint from the anchor.

Note that the edge (v; u) could already exist, but it can

only be a backward (negative weight) edge representing

a maximum constraint from u to v. Since we order v

before u, this maximum constraint is always satis�ed,

and therefore no information is lost by converting (v; u)

into a forward edge.

A positive cycle in the constraint graph implies an in-

feasible constraint, since it requires a node to be sched-

uled later than its own start time. If the addition of new

edges results in positive cycles, then the algorithm back-

tracks. The next candidate is considered, until a schedule

is found or all candidates have been exhausted. Fig. 2

illustrates the algorithm.

This algorithm is guaranteed to �nd a feasible ordering

if one exists. At any level in the recursion, the algorithm

cannot fail unless all possible orderings of the remaining

unserialized nodes are infeasible. Since there is a feasible

order, this will not happen. The correctness of the algo-

rithm can be proved by induction, and is sketched as fol-

lows. Assuming a valid ordering exists, the basis is that

the anchor a is correctly ordered. Inductive hypothesis is

that everything from the anchor up to the current vertex

c is in the correct order. Suppose v is the next vertex in a

valid ordering, then La(v) is exact as the longest forward

path from a to v. A forward edge (v; u) is added for each

peer u of v. The edge weight �(v) is a necessary mini-

mum constraint by de�nition of serialization, because no

7







�

v/3k

u/2k
t/1k

s/1k

kc/1

ka/2

?

�
�	

?

?@
@@RA
A
A
A
AK

2

�
�
�
���

1

-4

1

2

2

3

(a) Vertices a, c have been serial-
ized. The successor candidates of c
are fu;s; tg but not v since v is a
successor of u.

2

�(u)

v/3k

u/2k

t/1k
s/1k

kc/1

ka/2

?

�
�	

?

2

-4

1

2

-XXXXXXz
A
A
A
A
AAK

?@
@
@R

�
�
�
��

7

�(u) = 2

1

(b) Suppose we pick u to serialize
next. We add an edge from u to its
peers s and t, with the edge weight
of �(u) = 2 in both cases. How-
ever, this results in a positive cycle
(a; u; t).

= 7 � 3 = 4

La(u) � La(t)�

?

A
A
A
AK

@@R

v/3k

u/2k t/1k

s/1k

kc/1

ka/2

?

?

2

1

-4

2 2

7

�
�
�
��

(c) Suppose t is selected after c. We
add edges (t; s) and (t; u), with edge
weights 1 and 4, respectively. No
positive cycle is formed. The suc-
cessor candidates of t are fu; sg.

�(u)
PPPPPq

4�
A
A
A
AK

@@R

v/3k

u/2k t/1k

s/1k

kc/1

ka/2

?

?

2

1

-4

2

(d) Suppose u is chosen to be serial-
ized after t. We add the edge (u;s)
and no positive cycle is formed. The
successor candidates of u are fv; sg.
The graph can be completely serial-
ized in one more step (not shown).

Fig. 2: Example of Intramodal Serialization

computations can overlap. If La(u)� La(v) > �(v) then

it is also a necessary constraint. The weight is exact if u

is to be ordered immediately after v. Since the algorithm

backtracks to try all possible vertices, it �nds a solution

if one exists.

Note, however, that in the worst case, an exponential

number of orderings may be attempted. The complex-

ity of this scheduling problem is NP-hard. There exists

a simple transformation to this problem from the \Se-

quencing with Release Times and Deadlines" problem,

which is NP-complete in the strong sense [3].

It is possible to substitute the SelectSuccessor()

function (just above label B) with a heuristic function

that selects vertices in a better order and considers the

e�ects of choices on scheduling disables and safe exit

points. To select a good candidate to serialize next, we

use a \slack" function as a heuristic. Slack is a measure

of how urgently a vertex should be serialized. Smaller

slack implies higher priority. A heuristic for choosing

operations on a path with a disable is to schedule the

disable near the safe exit points such that the amount

of code remaining before reaching the safe exit points is

minimized. This code will need to be executed at the exit

to the mode and impacts not only code size but more im-

portantly, the ability to meet response time constraints.



6

6

?

6

���:XXXz

���9 XXXz
k

d/1

k
e/1

k
f/2

kg/2

3 4

3 -4

-8
�

��	
@
@@R

6���9 XXXz
ka/1

k
b/2

k
c/2

6 3

3 2

-

�
? -

? �

-10

3

Mode A

Mode B

(a) An intermodal constraint graph.
The response time edges associated
with the A to B transition are
f(b; d); (c; d); (e; b)g; those for the
B to A transition are f(g;a); (c; f)g.

6

6
���9XXXz

-10?

23

���9 XXXz
ka/1

k
b/2

k
c/2

6 3

-8

���:XXXz

���9 XXXz
k

d/1

k
e/1

k
f/2

kg/2

3 4

3 -4

���9 XXXz
ka/1

k
b/2

k
c/2

6 3

3

(b) Construct a graph with copies
of mode A before and after mode B.
Serialization starts on the anchor of
B, which is the vertex d.

���:
ke/1 k

f/2

kg/2

3

-4

-1

���92

���9
kd/16
���9XXXz3

-8

2

6

-10?
���9 XXXz
ka/1

kb/2 kc/26 3

3

���:

���9
k

d/1

k
e/1

k
f/2

kg/2

3

-4

-1

���92

(c) Another graph is constructed,
where the predecessor and successor
of A are both the serialized version
of B. The anchor for this serializa-
tion is a.

3� 3
c/2kb/2k

a/1kXXXz

2 ���9
1 -

-4

3

g/2k
f/2
k

e/1
k

d/1
k

���9

���:

3? -10

6

-8

3XXXz6 d/1k���9
2 ���9
1 -

-4

3

g/2k
f/2
k

e/1k
���:

(d) After a complete ordering is ob-
tained for mode A, and since mode
B is also totally serialized, the inter-
modal constraints are sufficient for
both serialized graphs. The final or-
derings are (a; c; b) and (d; e; f; g).

Fig. 3: Example of Intermodal Serialization

B Intermodal Scheduling

Intermodal scheduling, the scheduling of modes to

meet intermodal constraints, can be viewed as an ex-

tension to the intramodal version. Instead of scheduling

each mode in isolation, now we must also consider inter-

modal constraints.

Fig. 3 shows an example of our method of intermodal

serialization. Since modes A and B alternate we serial-

ize B by generating a graph consisting of two copies of

A, and one of B, with one A before the B and one after.

Additional precedence edges are added from all legal exit

points of a preceding mode to the anchor of its successor

to ensure that all of a mode's nodes are executed before

control is passed to the next mode. After B is serialized,

we repeat the process for A with two copies of the serial-

ized version of B, one before and one after A. Should no

feasible solution be found for serializing A, the algorithm

backtracks to �nd a new feasible solution for B before

retrying A. In addition, intermodal constraints can be

relaxed by considering di�erent legal exit points as more

schedules for the various modes are completed.

IV Conclusion

Software synthesis is an emerging �eld in the automa-

tion of embedded system design. We speci�cally tar-

get the co-synthesis of embedded reactive real-time con-

trollers, where the software is characterized by real-time

constraints on control-dominated programs. Our focus

is on low-cost systems that exploit microcontrollers or

core processors and do not use an operating system to

implement dynamic scheduling.

In this paper, we have presented an algorithm for soft-

ware scheduling based on an extended model of timing

constraint speci�cations as described in [2]. It is more

general than earlier work in this area. The concept of safe

exit points allows us to consider the e�ects of watchdog-

style constraints used to describe reactive behavior. A

new scheduling technique is guaranteed to �nd a static

schedule that meets all the sequencing, rate, and response

time constraints. The speci�cation methods and schedul-

ing algorithm are part of the Chinook hardware/software

co-synthesis system currently under development at the

University of Washington.

References

[1] F. Boussinot and R. De Simone. The Esterel lan-

guage. Proceedings of the IEEE, 79(9), Sept. 1991.

[2] P. Chou, E. Walkup, and G. Borriello. Scheduling

issues in the co-synthesis of reactive real-time sys-

tems. Technical report, Univ. of Washington, Dept.

of Computer Science, Mar. 1994.

[3] M. R. Garey and D. S. Johnson. Computers

and Intractability: a Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979.

[4] D. Harel. StateCharts: a visual formalism for com-

plex systems. Science of Programming, 8, 1987.

[5] D. C. Ku and G. De Micheli. Constrained con
ict

resolution and resource sharing in Hebe. Integration

{ The VLSI Journal, 12:131{165, Dec. 1991.

[6] D. C. Ku and G. De Micheli. Relative scheduling

under timing constraints: algorithms for high-level

synthesis of digital circuits. IEEE Transactions on

Computer-Aided Design, 11(6), June 1992.

[7] J. Xu and D. L. Parnas. On satisfying timing con-

straints in hard-real-time systems. IEEE Trans-

actions on Software Engineering, 19(1):70{84, Jan.

1993.


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




