
Design Methodology Management Using Graph Grammars

Reid Baldwin and Moon Jung Chung �

Department of Computer Science

Michigan State University

fbaldwin,chungg@cps.msu.edu

Abstract
In this paper, we present a design methodology manage-

ment system, which assists designers in selecting a suitable
design process and invoking the selected sequence of tools
on the correct versions of design data. We introduce a for-
mal graph representation of design methodologies in which
nodes represent either tasks or design data. Using a graph
grammar, nodes representing abstract tasks are replaced
by graphs of less abstract tasks and intermediate speci�ca-
tions. Graph grammars enable us to concisely and exibly
describe a large class of methodologies.

Often there are several alternative methodologies or
tools available for some subtasks, leading to di�erent
results. Our system utilizes automated control agents,
in combination with user interaction, to select among
methodologies and invoke tools. Multiple alternatives can
easily be explored simultaneously.

1 Introduction
Design methodology management is the selection and

execution of an appropriate sequence of tools to produce a
design description from available speci�cations. This can
be a daunting task due to incompatible assumptions and
data formats among tools. To support a higher degree
of automation, CAD frameworks must be able to select
and execute tools automatically for frequently repeated
tasks, enabling designers to concentrate on higher level
decisions.
The simplest form of assistance is monitoring design-

ers' actions. In [8], Di Janni describes a Monitor for CAD
tools which models �xed methodologies using extended
petri nets. The VOV system [2] records the sequence as
the designer executes tools. When an input �le is modi-
�ed, these systems help the user keep data consistent by
invalidating output �les or by repeating previous tool ex-
ecutions.
There are several systems which automatically deter-

mine what tools to execute. The Design Planning Engine
of the ADAM system [9, 10] produces a plan graph using a
forward chaining approach. Acceptable methodologies are
speci�ed by listing pre-conditions and post-conditions for
each tool in a lisp-like language. Estimation programs are
used to guide the chaining. Ulysses [1] and Cadweld [4]
are blackboard systems used to control design processes.
A knowledge source, which encapsulates each tool, views
the information on the blackboard and determines when
the tool would be appropriate. Minerva [7] and the OCT
task manager [3] use hierarchical strategies for planning
the design process. Hierarchical planning strategies take

�This work supported by the Air Force Wright Laboratory under

contract F33615-92-C-1029

advantage of knowledge about how to perform abstract
tasks which involve several subtasks.
Nelsis [12] provides a graph formalism, called owmaps,

for representing sets of methodologies. Each functional
unit (task) in a owmap has input and output ports indi-
cating the required data types. Flowmaps have a hierar-
chical structure in which some functional units correspond
to activities (atomic operations) and others correspond to
more detailed owmaps. Some owmaps are agged to
indicate that they should be executed automatically as
soon as the input data is available. When tasks are re-
peated, previous outputs and data derived from themmay
be invalidated. Flowmaps may o�er alternative method-
ologies, but users must statically specify a preference or
choose among them at run time. If two functional units
don't have any outputs, owmaps do not indicate whether
they are alternatives or must both be completed. Nelsis
does not provide any mechanism to pursue multiple ver-
sions simultaneously.
We introduce a formalism called process ow graphs

to represent individual methodologies. A type of graph
grammar called a design process grammar is used to doc-
ument what methodologies are available in a framework.
When tasks are repeated, there are multiple versions of
its outputs. We use a formalism called a versioned ow
graph to represent this situation and de�ne exactly when
versions of speci�cations are compatible. We believe that
our formalisms are more natural than the owmaps of
Nelsis. Alternative methodologies are very explicit, mak-
ing it easier to indicate which methodologies should be
chosen.
We have developed a framework which utilizes design

process grammars to assist designers in planning and exe-
cuting design activities. In our framework, designers build
a process ow graph interactively by applying produc-
tions from a design process grammar. A set of man-
ager programs utilize encapsulated knowledge to guide
the designer. Designers may optionally give the manager
programs direct control over more detailed decisions, en-
abling the designers to concentrate on higher level decision
making. Our framework is also capable of utilizing idle
resources by investigating several alternatives in parallel.
In the next section, we de�ne and discuss our for-

malisms for describing and manipulating design method-
ologies. We identify su�cient conditions to guarantee that
a process ow graph can be successfully generated. In the
following section, we extend these concepts to support the
simultaneous exploration of several alternatives. Finally,
we describe the architecture of our framework and its im-
plementation.

Description

Behavioral

Compile

Structural

Description

CDFG

FU Allocation

Table

Schedule

Table

Interconnect
& Control
Synthesis

Control

Table
Formatter Netlist

Schedule &

Allocate

Figure 1: A Sample Process Flow Graph

2 Specifying Design Methodologies
2.1 Process Flow Graphs
Process ow graphs describe the information ow of a

design process. Formally, a process ow graph is a bi-
partite acyclic directed graph of the form G = (T; S;E),
where

T is the set of task nodes. Each task node is labeled
with a task description. (We draw task nodes using
circles.)

S is the set of speci�cation nodes. Each speci�cation
node is labeled with a speci�cation type. (We draw
speci�cation nodes using rectangles.)

E is the set of edges indicating which speci�cations are
used and produced by each task. Each speci�cation
must have at most one incoming edge. Speci�cation
with no incoming edges are assumed to be inputs of
the design exercise.

Figure 1 shows a process ow graph that describes a possi-
ble high level VLSI design process, in which a behavioral
description is transformed into a structural description.
Unlike Nelsis, which allows cyclic graphs for iterative pro-
cesses [12], we do not allow cycles. We will discuss itera-
tive processes in section 4.
To address data format incompatibilities, the various

speci�cation types form a class hierarchy, where each child

is a specialization of the parent. There may be several
incompatible children. For example, VHDL Behavioral
Description is a child of Behavioral Description,
but is not interchangeable with Hardware C Behavioral
Description.
Task nodes can be either terminal or non-terminal.

A terminal task node represents a run of an applica-
tion program, which is commonly called a tool invocation.
We draw terminal task nodes with double circles. Non-
terminal task nodes represent abstract tasks, which could
potentially be done with several di�erent tools or combi-
nations of tools. Process ow graphs can describe design
processes to varying levels of detail. A graph containing
many non-terminal nodes indicates roughly what should
be done and what information is desired without describ-
ing exactly which tools should be used. Conversely, a
graph in which all nodes are terminal completely describes
a design process.
We use the following notation:

In(N) is the set of input nodes of node N :
In(N) = fM 2 T [Sj(M;N) 2 Eg.

Out(N) is the set of output nodes of node N :
Out(N) = fM 2 T [Sj(N;M) 2 Eg.

T (G); S(G); E(G) are the sets of task nodes, speci�cation
nodes, and edges of graph G, respectively.

I(G) is the set of input speci�cations of graph G:
I(G) = fN 2 S(G)jIn(N) = ;g.

2.2 Design Process Grammars
Graph grammars provide a convenient means for trans-

forming process ow graphs into progressively more de-
tailed process ow graphs. The user speci�es the overall
objectives by supplying the initial graph, which indicates
what input speci�cations are available, what output spec-
i�cations are desired, and what abstract tasks should be
performed. This graph is progressively modi�ed using a
graph grammar which we call a design process grammar.
The non-terminal task nodes, which represent abstract
tasks, are replaced by subgraphs of less abstract tasks
and intermediate speci�cations. The output speci�cation
nodes are also replaced by nodes that may have a more
speci�c format.
The productions in a graph grammar permit the re-

placement of one subgraph by another. A production in
a design process grammar can be expressed as a tuple
P = (GLHS ; GRHS; �in; �out) where

GLHS , GRHS are process ow graphs for the left side and
right side of the production, respectively, such that
T (GLHS) is a single, non-terminal task node repre-
senting the abstract task to be replaced.

�in is a mapping from I(GRHS) to I(GLHS) indicat-
ing the correspondence between input speci�cations.
Types must match exactly.

�out is a mapping from S(GLHS)�I(GLHS) to S(GRHS)
indicating the correspondence between output spec-
i�cations. Each output speci�cation must map to a
speci�cation with the same type or a subtype.

Compile

CDFG

Behavioral

Description

Verilog

2

1

CompVerilog

CDFG

Behavioral

Description

Verilog

1

2

Compile

CDFG

VHDL

Behavioral

Description

2

1

VHDL2CDFG

VHDL

Behavioral

Description

CDFG

1

2

Figure 2: Alternative productions based on input format

Resource

Constrained

Scheduling

FU Selection

& Binding

FU Allocation

Table

Schedule

Table

CDFG

3 2

1

FU

Binding

FU Allocation

Table

CDFG

Time

Constrained

Scheduling

Schedule

Table

3

1

2

Schedule &

Allocate

CDFG

Schedule

Table

FU Allocation

Table

1

2 3

Figure 3: Productions indicating alternative algorithms

Figures 2 and 3 illustrates some productions for the tasks
Compile and Schedule & Allocate. The mappings are
indicated by the numbers beside the speci�cation nodes.
The vertical bar is a shorthand notation to indicate mul-
tiple rules with the same GLHS but di�erent GRHS 's.
Alternative productions may be necessary to handle dif-
ferent formats, or because the right hand sides perform
di�erently in di�erent situations.
Let A be the non-terminal task node in T (GLHS) and

A0 be a non-terminal task node in the original process ow
graph, G. Formally, the production matches a node A0 if
and only if:

i. A0 has the same task label as A,

ii. There is a mapping, �in, from In(A) to In(A0), in-
dicating how the inputs should be mapped. For all
nodes N 2 In(A), �in(N) should have the same type
as N or a subtype.

iii. There is a mapping, �out, from Out(A0) to Out(A),
indicating how the outputs should be mapped. For
all nodes N 2 Out(A0), �out(N) should have the same
type as N or a subtype.

The mappings are used to determine how edges that
connected the replaced subgraph to the remainder of G
should be redirected to nodes in the new subgraph.
Once a match is found in graph G, the production is

applied as follows:

1. Insert GRHS � I(GRHS) into G. The inputs of the
replaced task are not replaced.

2. For every N in I(GRHS) and edge (N;M) in GRHS ,
add edge (�in(�in(N));M) to G. That is, connect
the inputs of A0 to the new task nodes that will use
them.

3. For every N in Out(A0) and edge (N;M) in G, re-
place edge (N;M) with edge (�out(�out(N));M) to
G. That is, connect the new output nodes to the
downstream tasks which will use them.

Interconnect

& Control

Synthesis

Netlist
Control

Table

Schedule &

Allocate

CDFG

Schedule

Table

Table

FU Allocation

Interconnect

& Control

Synthesis

Netlist
Control

Table

CDFG

Schedule

Table

FU

Binding

Time

Constrained

Scheduling

Table

FU Allocation

Figure 4: A Sample Graph Derivation

4. Remove A0 and Out(A0) from G, along with all edges
connecting them.

Figure 4 illustrates a derivation using a production from
Figure 3. The dotted lines outline the subgraph that is
replaced.

2.3 Guaranteeing Success
In this section, we discuss completeness of grammar

symbols, which guarantees that a process ow graph with
no non-terminal task nodes can be generated from an ini-
tial graph. Without this guarantee, it is dangerous to
start execution of any of the tasks before completely gen-
erating the process ow graph. The designer might reach
a dead end where, after investing considerable e�ort, there
are no tools to complete the job from the present state.
Being able to start execution before planning is completed
is important because information generated by executing
some tasks can be very useful in planning others.
A task node is complete with respect to certain in-

put and output types if it is possible to produce ac-
ceptable output types from any combination of possi-
ble input types. Formally, let I = fin1; in2; :::g and
O = fout1; out2; :::g be lists of types for a task's input and
output speci�cations, respectively. Let I0 = fin0

1
; in0

2
; :::g

be a list of types such that each in0

i
is ini or a subtype of

ini. A terminal task node N is complete with respect to
input types I and output types O if and only if:
for every possible I0, there exist an O0 = fout0

1
; out0

2
; :::g

with each out0
i
= outi or a subtype of outi such that the

tool represented by N can transform inputs with types I 0

into outputs with types O0.
A non-terminal task node N is complete with respect to
input types I and output types O if and only if:
for every possible I0, there exists a production P such that

i. N with In(N) having types I0 and Out(N) having
types O matches P , and

ii. every task node M in GRHS(P) is complete with re-
spect to the types of In(M) and Out(M).

Intuitively, Theorem 1 states that completeness of the
nodes in the initial graph guarantees success of design
planning. If all task nodes in the start graph are com-
plete with respect to the speci�cation types with which
they appear, there are tools available to transform the in-
put speci�cations into outputs of the desired type. Users
should avoid using a production with a task node in GRHS

which is not complete with respect to the input and out-
put types with which it appears. Fortunately, algorithms
exist to check a set of productions for completeness of
non-terminal tasks.

Theorem 1 If all of the task nodes N in a process ow
graph are complete with respect to the types of In(N) and
Out(N), the process ow graph can be transformed into
one with no non-terminal symbols.

The proof is an induction on the number of non-
terminal task label, input type, and output type com-
binations that are stated to be complete. As an induc-
tion basis, if there are no combinations, than any process
ow graph in which all of the nodes are complete with re-
spect to their neighbors already consist of all terminal task
nodes. If a new combination is added to the list of com-
plete combinations, then any process ow graph in which
all nodes are complete can be converted to a graph con-
taining only the previous set of combinations by applying
the appropriate productions. By the induction hypothe-
sis, this new graph can be converted into one containing
only terminal nodes. 2

3 Handling Multiple Versions
The previous section described how process ow graphs

are generated by replacing abstract tasks with graphs of
less abstract tasks. However, design involves a search
through the space of possible alternatives. As the tasks in
a process ow graph are executed, some of the tasks may
be executed several times. For example:

� The �rst execution might not produce an acceptable
result, so backtracking occurs and some of the deci-
sions made on the �rst execution are changed.

� New information may become available which
changes some of the decisions made on the �rst ex-
ecution, such as approximate characteristics of the
�nal design. In iterative design processes, this new
information is a direct result of earlier executions and
is re�ned in later executions.

Each time a task is repeated, it produces new versions
of its outputs. Multiple executions of an abstract task
often involves using a di�erent production from the de-
sign process grammar. In Nelsis, only one version of each
speci�cation may be considered at a time. [12]
An extension of the process ow graph, called a ver-

sioned ow graph, captures this dynamic nature of design
processes. Like a process ow graph, a versioned ow
graph is a bi-partite acyclic directed graph of the form
G = (T; S;E) with the same de�nitions for T , S, and E.
However, the rules for applying a production are changed
slightly. When a production is applied in a versioned ow
graph, the task node being expanded, A0, and its outputs
are not removed. A production can be applied to A0 again
indicating that the task is to be repeated. Each time a
production is �red, new speci�cation nodes are generated

Interconnect

& Control

Synthesis

Netlist
Control

Table

Schedule &

Allocate

CDFG

Schedule

Table

Table

FU Allocation

Interconnect

& Control

Synthesis

Netlist
Control

Table

Schedule &

Allocate

CDFG

Schedule

Table

Table

FU Allocation

Schedule

Table

FU

Binding

Time

Constrained

Scheduling

Table

FU Allocation

Figure 5: Sample Derivation in Versioned Flow Graph

Interconnect

& Control

Synthesis

Netlist
Control

Table

Schedule &

Allocate

CDFG

Schedule

Table

Table

FU Allocation

Schedule

Table

FU

Binding

Time

Constrained

Scheduling

FU

Selection

& Binding

Table

FU Allocation

Resource

Constrained

Scheduling

Schedule

Table

Table

FU Allocation

Alternative #2
Alternative #1

Original

Figure 6: Incompatible Speci�cation Nodes

for the outputs of the abstract task represented by A0.
These nodes represent alternative versions of those spec-
i�cations. The new task nodes are called subtasks of A0,
even if there is only one. Figure 5 shows how the deriva-
tion of Figure 4 would be carried out in a versioned ow
graph.
In versioned ow graphs, speci�cation nodes resulting

from di�erent assumptions can co-exist, as shown in Fig-
ure 6. Interconnection & Control Synthesis must
not be performed using the FU Allocation Table of al-
ternative #1 and the Schedule Table of alternative #2.
Prior to applying a production in a versioned ow graph,
the non-terminal task, input speci�cations, and output
speci�cations must be checked for compatibility.

De�nition 1 Two or more nodes are called compatible
if and only if a non-versioned process ow graph could be
constructed that contains all of them.

The above de�nition is not very practical in e�ciently
determining whether certain nodes are compatible. To de-
velop an e�cient algorithm for determining compatibility,

we must �rst de�ne the sequence of production �rings for
a node. A production �ring can be characterized by the
non-terminal task replaced, the production used, and the
input and output mappings. The sequence of �rings for a
node is de�ned recursively as the �ring in which the node
was added to the graph concatenated to the sequence of
�rings for the task node replaced by that �ring.

Theorem 2 Two nodes are NOT compatible if and only
if

i. their sequences of �rings contain di�erent �rings for
the same non-terminal task or

ii. the sequence of �rings for one node includes a �ring
applied to the other node (if it is a task) or its source
(if it is a speci�cation).

If each sequence contains a di�erent �ring applied to
non-terminal task N , then adding the �rst node to a non-
versioned process ow graph would delete N , making it
impossible to add the other node. If a production is ap-
plied to a task node N with output speci�cation node
S, then both N and S would be deleted from the non-
versioned process ow graph. Any node with that �ring
in its sequence would be incompatible with N and S. If
neither of the above conditions hold, then a non-versioned
ow graph can be constructed by applying the sequence
of �rings for the �rst node and then applying any �rings
in the sequence for the second that have not already been
applied. 2
The set of compatible nodes produced by a sequence of

�rings is called a design state. In order to apply a pro-
duction, all of the nodes involved must be included in the
same design state. Applying the production removes the
task node and its outputs from the design state, but not
from the versioned ow graph. To pursue an additional
alternative, a new design state is created. Productions
�red in the new design state have no e�ect on other de-
sign states and vice versa.

4 Implementation of a Design Process

Manager
Our software architecture is shown in Figure 7. The

focal point is a program called Cockpit which keeps track
of the versioned ow graph, applies productions, and ex-
ecutes tasks. Upon start-up, Cockpit reads a �le indicat-
ing what tasks are to be done (in the form of an initial
graph), what productions are to be considered, and what
constraints apply. Filenames are associated with the input
and output nodes of the initial graph to indicate where the
actual speci�cations reside. The cockpit program commu-
nicates with a set of manager programs using UNIX mes-
sage passing. The manager programs determine when to
apply productions or help the user decide when to apply
productions by assigning ratings. These programs allow
domain speci�c knowledge to be used in control decisions.
They may be written by end users, system administrators,
tool vendors, or others. The details of manager programs
will be discussed in section 4.2.
The manager programs need access to information from

other managers in order to make appropriate decisions.
For example, to evaluate a production which is known to
optimize area at the expense of latency, a manager would
need to gather information about which criteria is most

critical in the current context. To accommodate this, we
support a query protocol in which Cockpit routes queries
and replies among manager programs. One application of
queries is in iterative design, where managers send queries
about previous executions of the same task and utilize the
information to incrementally improve the design. This
mechanism is used for the data that would come to an
optional input port in the Nelsis formalism. Any cycles in
their owmaps due to an iterative process may be broken
and replaced by queries in our system.

4.1 Cockpit Program

Cockpit is a general purpose program which contains no
application speci�c knowledge other than what is in the
input �le. It determines when to apply productions or ex-
ecute tasks by interacting with the user and with a set of
manager programs. For each task node in the graph, the
program determines what productions could be applied,
as well as computing the input and output mappings. It
asks the corresponding manager program to assign a rat-
ing indicating the production's usefulness in the current
context. The user indicates which design state he is in-
terested in at the moment, and the program displays the
non-versioned process ow graph for that design state.
When the user clicks on a non-terminal task node, the
program displays a list of available productions for that
node, along with their computed ratings. By clicking one
of the production names, the rhs of the production is also
displayed. The user may choose to apply the production
by pressing a button. Another button allows the user to
execute the task, which for a terminal task node invokes
the corresponding tool. For non-terminal tasks, the exe-
cute button starts an automatic mode in which manager
programs decide which productions to use and execute the
subtasks on their own. The user may call up an editor to
view the data associated with a speci�cation node. The
user can backtrack (undo the application of a production)
at any time. By de�ning new design states, he can pursue
a new alternative without suspending the exploration of
other alternatives.

4.2 Manager Programs
In addition to taking commands from users, Cockpit

communicates with manager programs which can issue
similar commands. The user indicates in the input �le
which manager programs should be used for which tasks
and which productions. In this way, tasks which can
be automated e�ectively are performed by manager pro-
grams with little user intervention. Generally, manager
programs would be responsible for lower level (less ab-
stract) tasks, while the user directly manages high level
tasks. Users are always allowed to override the decisions
made by manager programs.
Manager programs have the following functions:

Manage Task This function is called when a task is ex-
ecuted. For terminal tasks, it is responsible for ex-
ecuting the tool. This may include determination
of options and parameter values. For non-terminal
tasks, it is responsible for deciding when to apply
productions. The Cockpit program informs it what
productions may be applied, as well as how each pro-
duction was rated. The Manage Task function can
create new design states if necessary to pursue di�er-
ent alternatives in parallel.

Designer

Manager B (written by system manager)

Manager C (written by local expert)

Manage_task() {

};

Manage_prod() {

};

Pre-eval() {

};

Prod_query() {

};

Manager A (written by end-user)

Annotate() {

};

Productions

Start Graph

Constraints

Cockpit

Prod2 (rating = 70)

Prod1 (rating = 90)

Input Spec

Input Spec

Output Spec

Tool A

Tool B

Tool C

Figure 7: Block Diagram of System

Manage Prod This function is called immediately after
applying a production in automatic mode. It decides
when each of the subtasks should be executed. It is
informed when the data in any of the speci�cation
nodes is modi�ed, so tasks which use that data can
be executed.

Pre Eval This function assigns the rating indicating how
suitable the production would be in the current con-
text. It is called whenever the Cockpit program
identi�es that the production can legally be applied.
Users and Manage Task functions can also explicitly
ask for a production to be re-evaluated if new in-
formation becomes available that might change the
rating.

Task Query This function answers queries for tasks spe-
ci�c information which may be useful in evaluating
a production or managing a task. Computing a re-
sponse often requires sending queries to one of the
productions or to a parent task in the task hierarchy.

Prod Query This function also answers queries for task
speci�c information. It is separated from Task query
because the method of computing the information
may depend upon which production was applied.

All of these functions have access to the input and out-
put �lenames and to any global information such as con-
straints.
These functions can implement a range of control

strategies. A simple Manage Task function might sim-
ply select the production with the highest pre-evaluation
rating. A more advanced Manage Task function might
decide to create several design states to apply several pro-
ductions in parallel. It should then decide what comput-
ing resources should be devoted to each. A Manage Prod
function might execute each subtask as soon as the in-
puts were ready. On the other hand, a Manage Prod
function for Chip Design might insist that simulation
be performed before synthesis, even though there is no
data dependency. More advanced Manage Prod functions
would adjust their behavior depending on what comput-

ing resources are available.
Pre-evaluation functions must encode task speci�c

knowledge to be useful. For the production in Fig-
ure 3 which replaces Schedule & Allocate with Time
Constrained Scheduling and FU Binding, the pre-
evaluation function would assign a high rating if a
time constraint was speci�ed, especially if the constraint
seemed di�cult to satisfy. The alternative production,
which uses Resource Constrained Scheduling, would
receive a high rating if an area constraint was speci�ed.
Query functions make more information available for

decision making. For example, the pre-evaluation func-
tion described above might send a query to the Schedule
& Allocate task asking if any other productions have
been applied and, if so, why they failed. The rating
would be higher if other productions failed due to time
constraints. Task managers may use queries to determine
which computing resources are available before deciding
how many productions to pursue simultaneously.

5 Conclusion
The primary advantages of our system are:

Formalism We have developed a strong theoretical foun-
dation for our system. This enables us to analyze how
our system will operate with di�erent methodologies.

Parallelism Our system allows several alternatives to be
explored simultaneously. This enables designers to
make better use of idle computing resources.

Flexibility Many di�erent control strategies can be im-
plemented by manager programs. The user is not
forced to encode knowledge using pre-de�ned meth-
ods.

Our framework will be most successful if there are many
small grain tools that use common formats for intermedi-
ate speci�cations. Unfortunately, we have found that tool
sets that exist now for high level synthesis do not satisfy
these requirements. We expect this to change due to users'
demand for interoperability among tools, as indicated by
the strong support for CFI.

References
[1] Michael L. Bushnell and S. W. Director. VLSI CAD

tool integration using the Ulysses environement. In 23rd
ACM/IEEE Design AutomationConference, pages 55{61,
1986.

[2] Andrea Casotto, A. Richard Newton, and Alberto
Sangiovanni-Vincentelli. Design management based on
design traces. In 27th ACM/IEEE Design Automation
Conference, pages 136{141, 1990.

[3] Tzi-cker F. Chiueh and Randy H. Katz. A history modle
for managing the VLSI design process. In International
Conference on Computer Aided Design, pages 358{361,
1990.

[4] James Daniell and Steven W. Director. An object oriented
approach to CAD tool control. IEEE Transactions on
Computer-Aided Design, pages 698{713, June 1991.

[5] H. Ehrig. Introduction to the algebraic theory of graph
grammars. In Graph Grammars and their Application to
Computer Science and Biology. Springer-Verlag, Berlin,
1979.

[6] H. Ehrig. Tutorial introduction to the algebraic theory of
graph grammars. In Graph Grammars and their Applica-
tion to Computer Science. Springer-Verlag, Berlin, 1987.

[7] Margarida F. Jacome and Stephen W. Director. De-
sign process management for CAD frameworks. In 29th
ACM/IEEE Design Automation Conference, pages 500{
505, 1992.

[8] Alberto Di Janni. A monitor for complex CAD sys-
tems. In 23rd ACM/IEEE Design Automation Confer-
ence, pages 145{151, 1986.

[9] David Knapp and Alice Parker. The ADAM design plan-
ning engine. In Arti�cial Intelligence in Design, Volume
II, pages 263{285. Academic Press, 1992. reprinted from
IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems, Vol. 10, No. 7, July 1991.

[10] David W. Knapp and Alice C. Parker. A design util-
ity manager: The ADAM planning engine. In 23rd
ACM/IEEE Design Automation Conference, pages 48{
54, 1986.

[11] M. Nagl. A tutorial and bibliographic survey on graph
grammars. In Graph Grammars and their Application to
Computer Science and Biology. Springer-Verlag, Berlin,
1979.

[12] K.O ten Bosch, P. Bingley, and P. van der Wolf. Design
ow management in the NELSIS CAD framework. In
28th ACM/IEEE Design Automation Conference, pages
711{716, 1991.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

