
HSIS: A BDD-Based Environment for Formal Verification

A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S. C. Krishnan, R. K. Ranjan,
T. R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R. K. Brayton and A. L. Sangiovanni-Vincentelli

Department of EECS, University of California at Berkeley, Berkeley, CA 94720

Abstract
Functional and timing verification are currently the bottlenecks

in many design efforts. Simulation and emulation are extensively
used for verification. Formal verification is now gaining acceptance
in advanced design groups. This has been facilitated by the use of
binary decision diagrams (BDDs). This paper describes the essential
features of HSIS, a BDD-based environment for formal verification:

1. Open language design, made possible by using a compact and
expressive intermediate format known as BLIF-MV. Currently, a
synthesis subset of Verilog is supported.

2. Support for both model checking and language containment in a
single unified environment, using expressivefairness constraints.

3. Efficient BDD-based algorithms.

4. Debugging environment for both language containment and
model checking.

5. Automatic algorithms for the early quantification problem.

6. Support for state minimization using bisimulation and similar
techniques.

HSIS allows us to experiment with formal verification techniques
on a variety of design problems. It also provides an environment for
further research in formal verification.

1 Introduction

In the design of digital systems, there are two different levels of
verification, corresponding to the two major phases of design. The
first phase of design is transferring ideas into an initial description,
using a high-level description language, like VHDL or Verilog. De-
sign verification is used at this level to answer the question “Is what
I specified what I wanted?”. The second phase of design is synthe-
sizing the initial description into a circuit which can be implemented.
Implementation verification is used at this level to answer the question
“Is what I synthesized what I specified?”; this capability is present to
some degree in many synthesis packages today.

There are two major approaches to design verification. The tradi-
tional approach is simulation, which is well-understood and has been
applied widely in the design community. Designers are comfortable
with simulation because thinking in terms of input patterns and ex-
pected output patterns is intuitive. However, exhaustive simulation is
not feasible for even moderately sized systems.

The second approach is formal design verification, which is the
process of mathematically proving that a system possesses a given
property. The theory behind this approach has been investigated over
the last couple of decades, but only in the last five years have practical
tools emerged. Formal design verification is equivalent to exhaustive
simulation, but can often be performed in only a fraction of the time.

However, formal design verification is currently limited to relatively
small designs, and the methods for specifying properties are complex
to uninitiated users. We seek to improve the efficiency of verification
so that larger designs can be verified, and to develop simpler methods
for specifying properties.

Of the various formal verification methods, the first to be used in
design verification was theorem proving [11, 3]. These techniques are
somewhat similar to the formal verification techniques used to verify
the correctness of software written in programming languages. These
verification techniques usually require extensive interactive use of hu-
man experts. There have been two recent approaches for verifying
properties of systems described as state transition systems. One ap-
proach is to specify both the system and the properties as!-automata.
The verification task is equivalent to verifying that the language of the
system is contained in the language of the properties (the language
containment approach) (as in the verification tool COSPAN [12]). An
alternative approach of doing property verification is to specify the
properties using temporal logic and perform model checking on the
system specification to verify these properties [7]. Systems that ma-
nipulate these state-based systems explicitly are limited by the size of
state spaces. In the context of implementation verification, Coudert
and Madre [8] illustrated the use of BDDs to implicitly manipulate
state transition systems with much larger state spaces. Since then, the
use of BDDs has been extended to manipulate transition systems in
the area of design verification (as in the tool SMV [21]).

In this paper,we describe HSIS (for Hierarchical Sequential Interac-
tive System), a BDD-based environment for design verification. HSIS
is designed to be a unified environment for formal verification and logic
synthesis; currently we only support the verification framework. HSIS
uses an intermediate format for specification (BLIF-MV), suitable for
verification and synthesis, and translation from various HDLs. HSIS
supports both approaches to property checking (language containment
and model checking) in one unified environment. HSIS encompasses
the state-of-the-art techniques in verification, and serves as a vehicle
for further research.

Figure 1 gives an overview of HSIS. Currently the entry language is
Verilog, although we hope to support other languages, such as VHDL,
in the future. Verilog is compiled into BLIF-MV, an intermediate
format for describing a system of interacting, non-deterministic finite
state machines. The user describes the desired properties of a design
in the Property Intermediate Format (PIF). Then the PIF file and BLIF-
MV file are used as inputs to verification. Properties that are specified
using Computation Tree Logic (CTL) are processedby the CTL model
checker. Properties that are specified using automata are processed by
the language containment checker. If the design fails to satisfy one of
the properties, then a bug report is created, which can be processed
by the debugger to help locate and understand the source of the error.
When the user is satisfied with the state of the design, an automatic
synthesis tool may be used to synthesize hardware, and/or a compiler
can be used to generate software.

To the best of our knowledge, HSIS is the only verification tool that
supports a widely used simulation HDL. This feature allows the same

Compiler

Design
Verification

Debugger

SIS

BLIF−MV

Verilog

Compiler

Compiler

bug report hardware software

VHDL

PIF

Figure 1: HSIS verification and synthesis framework.

description to be used for simulation, synthesis, and verification.
An important feature of formal verification is its ability to exhibit

a counter-example for properties that do not hold. In HSIS, we have
done several things to help the user locate errors more quickly. Both
the model checker and language containment debuggers are based
on a set of routines that heuristically search for short error traces.
Moreover, the model checker debugger interacts with the user heavily.

There are several other noteworthy features of HSIS:

1. Expressive and compact environment. For language contain-
ment, the edge-Streett/edge-Rabin environment is supported.
One can prove that the next natural extension to this environ-
ment makes the language containment problem NP-complete.
As for CTL, a logic known as fair CTL is supported. Combin-
ing the two environments is achieved using techniques described
in [15].

2. Automatic algorithm for early quantification. In building tran-
sition relations for individual processes, or for the product ma-
chine, it is necessary to multiply a set of BDDs and existentially
quantify out some variables. This can be done more efficiently
taking advantage of early quantification. HSIS provides an au-
tomatic procedure [14] that gives a schedule of how to multiply
and quantify out variables.

3. Use of don’t cares. Don’t care information can be used to sub-
stantially improve the performance of algorithms by minimizing
the BDDs in intermediate computations. We take advantage of
don’t care information as much as possible. One source of don’t
cares comes from state equivalences, such as bisimulation. Ini-
tial experiments indicate that significant reduction in BDD size
can be achieved. We are also investigating the general problem
of minimizing BDDs in the presence of don’t cares.

4. Simulation. In order find some easy bugs, HSIS provides a state-
based simulator. This facility enumerates the reachable states of
the design, under user control.

The flow of the paper is as follows. Section 2 describes the recom-
mended design methodology for formal verification, Section 3 front-
end input languages for verification, Section 4 BLIF-MV, Section 5
our verification environment, Section 6 our debugging techniques,

Section 7 experimental results, and Section 8 conclusions and future
work.

2 Design Methodology

The recommended design methodology for complete formal ver-
ification of a large design is a top-down design methodology. The
design is specified in an HDL. Verification starts at the the earliest
abstract level of design. Then at each step of the design process, the
design is refined by removing some non-determinism in the specifi-
cation (this process is described in detail in [19]). As long as new
behavior is not added to the design during refinement, then most prop-
erties (all properties except for existential properties, which assert the
existence of some behavior) proved at higher levels of abstraction will
automatically hold at the lower levels.

However, it might be too much to ask the designers to change the
design methodology today to introduce verification at an early design
stage. HSIS can also be used as a useful debugging tool at the lowest
level of designs even if a top-down verification had not been part
of the methodology. In other words, it is possible to directly take
HDL descriptions from lowest level of designs and prove properties
of these designs. However, verification of small modules from a large
design might require some additional modeling for the abstraction of
the environment (to make the verification tractable) for this kind of
“bottom-up” verification methodology.

3 HDL Front End

One of the guiding principles in the design of HSIS was to support
various front-end languages. This is achieved by using an intermediate
format based on multi-level logic, called BLIF-MV [4] and described
in Section 4, which is capable of compactly representing finite-state
behavior (all digital hardware systems fall in this category). In order to
have the same specifications for synthesis,simulation, and verification,
we use the synthesis subsets of HDLs. By providing an expressive
and compact intermediate format, the use of HSIS is not limited by
the designer’s choice of specification language; one only needs to
construct a translator from the language to BLIF-MV. However, in
translating from an HDL we need to restrict the constructs of the HDL
so that the system is expressible in BLIF-MV. (for example, we do
not allow non-synthesizable constructs of Verilog which cannot be
translated into BLIF-MV). One can compile many languages such as
VHDL, Esterel, SMV, and Murphi to BLIF-MV. Currently we provide
support for translation from a synthesizable subset of Verilog [6].

In order to allow abstraction in the system or to model an envi-
ronment, we need to express non-determinism. In most HDLs, in-
cluding Verilog, non-determinism is not supported. Balarin and York
proposed using the non-blocking assignment in Verilog to describe
non-determinism of register variables [2]. We have further extended
Verilog minimally by creating a new construct for describing non-
determinism of wire variables.

It is also desirable to have the following additional features in
Verilog for ease of expression.

� Enumerated types. At a high-level of design, it is convenient
to assign symbolic values to variables. Thus, we have extended
Verilog by introducing an enumerated type construct. However,
such descriptions can easily be translated into standard Verilog.

� Inductive descriptions. Because of the state explosion prob-
lem, many times it is necessary to scale down the design size.
For instance, one might scale down a 32-bit bus to a 4-bit bus.
Thus, it is important that descriptions can be easily scaled. In
Verilog, there is no facility for describing such inductive struc-
tures because one cannot enumerate over the modules, that is,

the connection structure is fixed. We are defining a construct
which allows inductive specifications, which can be translated
to standard Verilog.

The Verilog input to HSIS must describe a closed system, that is,
there cannot be any external inputs. Thus, to verify a component of
a larger system, it is also necessary to describe the environment in
which the componentoperates. The environment gives the constraints
under which the desired properties of the component should hold.
Sometimes, it suffices to specify the environment as being able to
randomly produce any sequence of inputs to the component; this is a
common use of non-determinism. Other times, more detail must be
given to the environment to properly account for the actual operating
conditions of the component.

4 BLIF-MV

We have designed an intermediate format called BLIF-MV [4]
to allow for easy translation from HDLs for the purposes of both
verification and hierarchical synthesis. It is a natural extension of
BLIF, the Berkeley Logic Interchange Format [23]. We extended BLIF
to provide non-determinism and multiple valued variables. Multiple-
valued variables are very useful in describing state transition graphs
symbolically. The need for non-determinism is felt in describing the
environment and for abstraction in the verification process. We have
also added some other constructs to BLIF-MV to make the interchange
format more compact.

A description in BLIF-MV looks very much like synchronoushard-
ware. Indeed, if there is no non-determinism, it is exactly synchronous
hardware. More specifically, a description in BLIF-MV consists of a
set of variables, a set of latches, and a set of relations defined over the
variables. A latch has an input and an output that can take symbolic
values. All latches are implicitly enabled by the same global clock.
For every relation, a subset of variables are marked as inputs, and
the rest are outputs. Relations (sometime called tables) correspond to
combinational circuits. However, a relation may be non-deterministic,
that is, for a given input pattern, a set of outputpatterns may be defined,
any one of which may be produced. If the relation defines exactly one
output pattern for every input pattern, then it is just a multi-valued
logic function.

Thus while BLIF-MV is similar to hardware, the non-determinism
makes it sufficient for verification. BLIF-MV has a rich set of con-
structs. This allows the translation from an HDL (like Verilog) to be
compact. This compactness is important to ensure that our verification
routines do not become inefficient just because of any verbosity in the
translation from an HDL specification to our intermediate format. For
hierarchical synthesis, it ensures that symbolic descriptions can be re-
tained efficiently and easily in passing from an HDL to our synthesis
system.

The formal concurrency model associated with BLIF-MV is called
the combinational/sequential (c/s) model. The semantics of the syn-
chronous c/s models follows:

1. Initially, all latches are initialized to one of their initial values (a
latch may have more than one initial value).

2. At every clock tick, each latch transfers its input value to its
output. These values then propagate through the relations until
latch inputs are reached.

The behavior of a c/s model can be described by a relation known as
the product transition relation, which is obtained by taking the inter-
section of all the relations in a model. The product transition relation
is denoted by T (x; i; y), where x denotes the vector of present state
variables (output of latches), y the vector of next state variables (inputs
to latches), and i the rest of the variables. Usually for verification,

all non-state variables are existentially quantified from the product
transition relation.

Quantifying the non-state variables gives rise to the early quantifi-
cation problem when BDDs are used. Each relation is represented by
a BDD.1 The problem is to multiply a set of BDDs, and quantify out a
set of variables. However, if a subset of BDDs are multiplied, and the
rest do not depend on a variable i that must be quantified, then i can be
quantified from the partial product. The early quantification problem
is to find a schedule for multiplying and quantifying variables, such
that the maximum size of any BDD is minimized.

Because descriptions are given hierarchically, the early quantifica-
tion problem arises in two places. First, when all relations in a given
module are multiplied and intermediate variables are quantified. Sec-
ond, in verification, when all relations corresponding to all modules
are multiplied and non-state variables are quantified (i.e. T (x; y) is
computed). We have implemented two different packages for this
problem that appear quite effective. For example, in compiling Ver-
ilog to BLIF-MV, many small tables and intermediate variables are
created. In one example, around 1600 relations had to be multiplied
and 1500 variables had to be quantified out. Determining the sched-
ule and performing the multiplication and quantification takes only
several seconds.

We can show that descriptions in other models of concurrency such
as the Selection/Resolution model [18] and the interleaving shared
memory model [9] can be mapped efficiently (in basically linear or
close to linear time) into descriptions in synchronous c/s. Although
interleaved (or asynchronous) behavior can be modeled using syn-
chronous c/s, it may be computationally advantageous to directly
model it. Therefore, we have extended the c/s model to directly
support interleaved semantics.

The extended c/s concurrency model associates a synchrony tree
with each description. A synchrony tree is a tree whose leaves are
the latches, and whose intermediate nodes are labeled with A (for
asynchronous) and S (for synchronous). The semantics is that at
every point in time only a subset of latches change their values. The
subset to be updated is any set of latches that can be reached using the
following procedure: start at the root, and at each synchronous node,
choose all branches, whereas at each asynchronous node, choose one
branch randomly. We are working on techniques to take advantage of
asynchronous descriptions.

In summary BLIF-MV is a common intermediate format for both
verification and synthesis. A BLIF-MV description with no non-
determinism is synthesizable. Our choice of Verilog for an HDL entry
into HSIS was arbitrary; any other HDL front end can be supported by
constructing a translator to BLIF-MV. In using an HDL for verification
and synthesis via HSIS, i.e. BLIF-MV, one needs to restrict to the
synthesizable subset of the HDL and augment it with non-determinism,
as we have described in Section 3.

As a final note on BLIF-MV, we believe that BLIF-MV may be
suitable as an intermediate format for the emerging field of hard-
ware/software codesign.

5 Verification

In this section, we describe the verification engine of HSIS. Lan-
guage containment and model checking, two popular automatic prop-
erty verification techniques are supported in HSIS. To model even-
tuality properties, such as saying that a request is followed by an
acknowledge in a finite but unbounded amount of time, one needs to
reason on infinite behaviors. While it is arguable whether one would
want to verify such properties, it is true that when one abstracts a
system, in order that the abstraction not be trivial(and hence useless) it
is necessary to impose some fairness constraints. Fairness constraints

1[1] forms the basis for our BDD variable ordering algorithm.

are described in Section 5.1. In Section 5.2 we discuss property check-
ing by language containment, and CTL model checking. In Sections
5.3 and 5.4 we briefly discuss some of the efficient techniques we have
used in HSIS.

5.1 Fairness Constraints

To describe designs at high-levels of abstraction, non-determinism
is used. For example, assume we want to model an FSM that can
remain at some state from 10 to 15 clock ticks. One may model this
by a single state s, which has a self-loop, and can non-deterministically
exit s at any time. However, now it is possible for the FSM to remain
in s forever, which may cause the desired properties to fail. Fairness
constraints remove such unwanted behavior. The fairness constraints
that are allowed in HSIS [16] can be divided into two categories:

� Negative fairness constraints. Any behavior satisfying a neg-
ative fairness constraint is removed. For example, a negative
state-subset constraint says that a behavior that stays in the sub-
set forever should be excluded. The indefinite but finite delay
of the above example can be modeled using negative fairness
constraints, which exclude the behavior that the FSM stays at s
forever.

� Positive fairness constraints. These constraints restrict the legal
behavior by allowing only those behaviors that satisfy these
constraints. For example, the indefinite but finite delay can be
modeled by marking the edges which go out of the pause state
as positive fair edges. Since only those behaviors are accepted
where some positive edge is taken infinitely often, the behavior
where the FSM stays at s forever is implicitly excluded.

As verification becomes more acceptable, we expect that designers
will start the verification job at higher levels of abstraction. In this
case, fairness constraints will be an indispensable feature.

5.2 Property checking

Properties can be stated and proved in HSIS using either automata
(the language containment paradigm), or CTL formulas (the model
checking paradigm).

Automata can be used to express properties of designs [18]. HSIS
offers support for a class of automata, known as edge-Rabin au-
tomata [16]. Such automata can be used to describe two types of
properties: safety properties and liveness properties. A safety prop-
erty checks for behavior that should never happen (e.g. two units
writing to the bus at the same time). A liveness property checks for
behavior that the system should exhibit given enough time (e.g. if a
request for memory is sent, then the memory value finally arrives).
Safety properties can be checked using simulation, but liveness prop-
erties cannot.

We demonstrate the language containment paradigm using an ex-
ample. Assume we would like to state the property that out1 and out2
are never asserted at the same time. This property is a special case
of safety properties known as invariance. The automaton in Figure 2
can be used for this property. The only acceptable behaviors of this
automaton are those that remain in state A forever (indicated by the
dotted box around stateA). Hence, any behavior where out1 and out2
are simultaneously asserted in not accepted. Verification by language
containment checks whether the language of the system is contained
in the language of the property. This is true if and only if no behavior
is produced by the system where out1 and out2 are simultaneously
asserted.

An alternative way to state properties is to use CTL formulas [7].
For example, to state the above safety property, we use the CTL
formula AG(out1 + out2), which is read “for all reachable paths

else

out1 = 1 && out2 = 1

true

A B

Figure 2: Automaton to check that out1 and out2 are never asserted
at the same time.

from the start state, and for all states on these paths, out1 and out2
are never asserted at the same time.”

There are several reasons to support both automata and CTL for-
mulas.

1. There are properties expressible by one but not the other [15].

2. Some properties may be more easily expressed in one than the
other. For example, properties involving sequencing of events
are expressed more easily using automata. On the other hand,
CTL is easier to use for simple properties. A simple property can
usually be expressed in one line using CTL, whereas using au-
tomata, both the transition relation and the acceptanceconditions
need to be specified. Using libraries for commonly encountered
properties may alleviate this problem.

3. One method may have a computational advantage over the other.
In our experience, it appears that language containment is faster
in general. However, CTL model checking is more efficient
for invariance properties, since we have optimized the model
checker with respect to these properties.

4. Debugging in one may be easier than the other. For example,
the CTL debugger allows for interaction, which is not provided
in the language containment debugger.

5.3 Efficient BDD-Based Algorithms

When reasoning on infinite behaviors both language containment
and CTL model checking are achieved by state exploration (note that
for infinite behaviors we need more than just reachability, i.e. need
some form of “efficient” cycle exploration). There are two main meth-
ods to perform this exploration–explicit methods and implicit methods
(based on BDDs). Implicit methods manipulate sets of states at a time.
There are very many examples of large state spaces that can be ex-
plored with implicit techniques, but not explicit [5]. As is discussed
in [17] a straight forward translation of the explicit algorithms in not
necessarily the best for BDDs. The language containment check is
translated to a language emptiness check, and this fails if there is an
accepting run in the automaton. A fair state is one that is involved
in some cycle satisfying all fairness constraints, and thus a reachable
fair state means a failing language containment check. In [15] it is ex-
plained how such an emptiness check as well as CTL model checking
can be achieved through first computing an approximation to the set
of fair states. In [17], several graph operators were introduced that can
be used to obtain various approximations. These operators are based
on techniques introduced by Emerson and Lei in [10], and are used in
HSIS to provide for efficient BDD-based verification algorithms.

5.4 Early Failure Detection

If verification is to be used as a debugging tool, much in the same
way as a debugger is used for a programming language like C, then it
is expected that it would be used more often with properties which fail,

Example # lines # lines time (sec.) # reached # lc time # CTL time
Verilog BLIF-MV read blif mv states props lc (sec.) formulas mc (sec.)

philos 120 549 0.0 18 2 0.1 2 0.1
ping pong 69 163 0.1 3 6 0.0 6 0.0
gigamax 269 1650 4.2 630 1 3.1 9 5.3
scheduler 207 909 3.7 2706604 2 8.4 1 4.3
dcnew 325 2618 5.3 213841 1 0.3 7 1.8
2mdlc 355 18498 105.9 65958 1 21.5 1 521.4

Table 1: Table of examples.

than with those that pass. It is therefore important from a performance
point of view to spend time verifying whether there is an early failure
in the process. HSIS offers two techniques for early detection.

The first technique can be used in both model checking and language
containment (for model checking, the formula must involve universal
quantifiers). The idea is to take a few reachability steps, and then
check the property. If the property fails on a subset of reachable
states, then the property fails on the whole reachable set. Hence, we
are done and the error can be reported. In our experience, most errors
can be detected with only a few reachability steps, and since the first
few steps are usually fast, Early Failure Detection can quickly find
errors.

The second technique, which can only be used in the context of
language containment, looks at the structure of the graph induced by
fairness constraints. When fairness constraints are used, many errors
are easier to detect without doing the complete fair path computations.
We have methods that catch such errors quickly. This technique is
used in conjunction with the first one, that is, it can be applied to a
subset of reachable states.

6 Debugging

Debugging is one of the most important aspects of a verification
tool. HSIS provides a fairly complete debugging environment [13].
The debugging methods vary depending on the type of property check-
ing being performed.

6.1 Debugging for Language Containment

If the property is specified using automata, a debug trace that vio-
lates the property is printed. Intuitively, if the debug trace is short, then
it is easier to understand the error. Hence, the language containment
debugger tries to find a short debug trace. A debug trace is broken
into two components: an initial path to a cycle, and a cycle satisfying
all fairness constraints. The language containment debugger returns
an error trace such that the path to the cycle is minimum among all
error traces. The cycle itself is heuristically minimized, since the cycle
minimization problem is known to be NP-hard.

6.2 Debugging for Model Checking

A shortcoming of the language containment debugger is that it is
not interactive, and a lot of information is given to the user at once.
The model checker overcomes some of these problems by unfolding
the formula one step at a time.

CTL formulas are all state formulas, i.e. they are attributes of
states. The algorithm for model checking, i.e. checking if a given
finite state system is a model for a formula, is defined recursively. If
a formula is boolean combination of sub-formulas, say h = f + g,
and say h is false, then the user can be given the choice of choosing
which formula he wants certified false, i.e f or g. There are some
other formulas which assert the existence of paths of a certain kind
from a state. In this case, if the formula is false, the user is allowed
to prompt which next state to pursue, to produce a “witness” for the

falsity of the formula. On the other hand, if the formula asserts that all
paths from a state satisfy a property, then the tool heuristically finds
the shortest path to the state where the next sub-formula is false.

7 Experiments

We have used HSIS on a number of examples—both academic and
industrial. The performance of our tool has been encouraging, and we
have released it for alpha-test.

From a user’s perspective the most attractive feature of HSIS is
that it is an interactive tool providing the user with error traces of
the system for failing properties. We view this feature of a formal
verification tool as making it more like an intelligent simulator, that
is, the tool returns the sequence of inputs to assert an error.

Table 1 gives experimental data on a cross section of examples.
The experiments were run on a DECsystem 5900/260 with 440MB
physical memory. The first two examples, dining philosophers and
ping pong, are toy examples. 2mdlc is a message data-link controller
obtained from industry. Gigamax is a multiprocessor cache consis-
tency protocol [20]. Scheduler is a distributed scheduling protocol for
multiple tasks from [22]. All examples were written in the augmented
subset of Verilog discussed in Section 3. They were then translated
into BLIF-MV using the vl2mv tool supplied with HSIS. The time to
translate from Verilog to BLIF-MV was in all examples negligible—all
under 0.5 seconds. The time to read in the BLIF-MV includes the time
to parse the description and form the transition relation BDDs for all
the FSMs specified. At this point, we verified some properties, some
of which were expressed as CTL formulas and others as automata. On
some examples we specified fairness constraints on the system. For
properties specified as automata, the transition structures were written
in Verilog and the fairness constraints and acceptanceconditions in the
property intermediate format (PIF). Error traces from failing properties
pinpointed errors in both the system and property specifications.

8 Conclusions and Future Work

HSIS is a formal verification tool that encompasses state-of-the-art
methods and that provides a platform for future research in verification.
By using an intermediate format for the specification of interacting,
non-deterministic FSMs, HSIS is able to maintain independence from
particular front-end languages. Currently, we support a synthesis
subset of Verilog, extended to support non-determinism.

Properties can be specified using either automata or CTL. Allowing
both types of properties permits a wider class of properties to be stated,
and gives the user flexibility in using the formalism that seems most
natural for a given application. The support of expressive fairness con-
straints makes it possible to exclude unwanted infinite behaviors that
often arise when abstracting a design or describing an environment.

The debugging capabilities of HSIS play an important role in help-
ing the user to locate the source of errors. In the language containment
mode, HSIS returns a trace of the system that demonstrates how a prop-
erty fails, and in the model checking mode, HSIS interacts with the
user by giving the error trace a piece at a time. Note the difference
between verification and conventional simulation: with simulation,

the user must conceive of a sequence of inputs that reveals a given
error; with verification, the user is given a sequence of inputs that re-
veals the error. We see this use of formal verification as an “intelligent
simulator” as the key to lead designers to embrace formal verification.

HSIS has been implemented in C and is fully operational. We have
exercised HSIS with a dozen or so small to medium-sized examples.
The next step in the development of HSIS is to distribute HSIS to
industrial teams that are familiar with formal verification, so that the
strengths and weaknesses of HSIS can be assessed. Research on
efficient verification algorithms continues, so that the domain of HSIS
can be extended to larger and more complex designs.

As we stated before,we view HSIS as a tool that will enable research
on how to make verification more practical. The research in our group
continues in various directions:

1. Timing verification. Timing verification associates timing
bounds with components, and then proves properties of designs.
To accommodate timing verification, we have extended BLIF-
MV to handle timing constraints. Research is in progress on
several techniques for timing verification.

2. Abstraction and minimization. Very large designs have to ab-
stracted manually for tractability of the verification algorithms.
Research is in progress on how to achieve automatic abstractions.

3. Hierarchical verification. As verification becomes more widely
accepted, it will be applied at higher levels of abstraction. We
are working on techniques that compare lower level designs with
higher level ones to guarantee that re-evaluation of properties
proved at higher levels is not needed.

4. Partitioned transition relations. In some cases the product ma-
chine construction blows up. We are investigating the algorithms
for early quantification that can compute the reached state-set
without forming the product machine.

5. Use of asynchrony for efficient computation. Asynchronous be-
havior can be modeled using synchronous concurrency models.
However, it may be computationally advantageous to work on
asynchronous specifications directly. We are working on tech-
niques for taking advantage of this extra information.

6. Non-deterministic property checking. In some cases, it may
be easier to specify properties using non-deterministic automata
(currently, only deterministic properties are allowed). This ex-
tension makes the language containment problem much harder.
We are currently working on determinization techniques.

7. Graphical source-level debugging. Ultimately, it would be de-
sirable to debug a design at the source code level (e.g. Verilog).
By annotating the BLIF-MV file with line numbers indicating
where assignments are made, we hope to reflect the information
in a debug trace back up to the source code level. This would
enable the user to see the sequence of instructions that led to the
faulty behavior.

8. Library of properties. To make formal verification more acces-
sible to novices, we plan to compile a library of commonly used
properties. The elements of the library would be parameterized
so that they could be adapted to specific situations, and they
would be accessible through an interface that would not require
knowledge of CTL or !-automata.

Acknowledgment

This work has been supported by the SRC grant 94-DC-008,
NSF/DARPA Grant MIP-8719546, Intel, Motorola, ATT, DEC and
the California Micro Program.

References

[1] A. Aziz, S. Tasiran, and R. K. Brayton. BDD Variable Ordering for Interacting
Finite State Machines. In Design Automation Conference, 1994.

[2] F. Balarin and G. York. Verilog HDL Modeling Styles for Formal Verification. In
IFIP Conference on Hardware Description Languagesand their Applications, pages
439–452. OCRI Publications, April 1993.

[3] R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic Press,
New York, 1988.

[4] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. P. Kurshan,
S. Malik, A. L. Sangiovanni-Vincentelli, E. M. Sentovich, T. Shiple, K. J. Singh,
and H.-Y. Wang. BLIF-MV: An Interchange Format for Design Verification and
Synthesis. Technical Report UCB/ERL M91/97, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, November 1991.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Symbolic Model
Checking: 1020 States and Beyond. Information and Computation, 98(2):142–170,
1992.

[6] S. T. Cheng. Compiling Verilog into Automata. Technical report, UC Berkeley,
1994.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263, 1986.

[8] O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of
Sequential Circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 126–129,
November 1990.

[9] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol Verification as a
Hardware Design Aid. In Proc. Intl. Conf. on Computer Design, pages 522–525,
October 1992.

[10] E. A. Emerson and C. L. Lei. Modalities for Model Checking: Branching Time
Strikes Back. In Proc. ACM Symposium on Principles of Programming Languages,
pages 84–96, 1985.

[11] M. Gordon. HOL: A Proof GeneratingSystem for Higher-orderLogic. In G. Birwis-
tle and P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 73–127. Academic Press, Boston, 1988.

[12] Z. Har’El and R. P. Kurshan. Software for Analytical Development of Communica-
tion Protocols. AT&T Technical Journal, pages 45–59, January 1990.

[13] R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-Based Debugging of Design
Using Language Containment and Fair CTL. In C. Courcoubetis, editor, Proc. of the
Conf. on Computer-Aided Verification, volume 697, pages 41–58. Springer-Verlag,
June 1993.

[14] R. Hojati, S. Krishnan, and R. K. Brayton. Heuristic Algorithms for Early Quantifi-
cation and Partial Product Minimization. Technical Report M94/11, UC Berkeley,
1994.

[15] R. Hojati, T. R. Shiple, R. K. Brayton, and R. P. Kurshan. A Unified Environment
for Language Containment and Fair CTL Model Checking. In Proc. of the Design
Automation Conf., pages 475–481, Dallas, Texas, June 1993.

[16] R. Hojati, V. Singhal, and R. K. Brayton. Edge-Streett/Edge-Rabin Automata En-
vironment for Formal Verification Using Language Containment. Technical Report
M94/12, UC Berkeley, 1994.

[17] R. Hojati, H. Touati,R. P. Kurshan, and R. K. Brayton. Efficient!-Regular Language
Containment. In Proc. of the Fourth Workshop on Computer-Aided Verification,
pages 371–382, Montréal, Québec, Canada, 1992.

[18] R. P. Kurshan. Reducibility in Analysis of Coordination. In Discrete Event Systems:
Models and Applications, volume 103 of LNCIS, pages 19–39. Springer-Verlag,
1987.

[19] R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Prince-
ton University Press, 1993. To appear.

[20] K. L. McMillan and J. Schwalbe. Formal Verification of the Encore Gigamax
Cache Consistency Protocols. In International Symposium on Shared Memory
Multiprocessors, April 1991.

[21] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[22] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[23] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS:
A System for Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41,
Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

