
1. Types of Codesign

We identify three distinct types of hardware/software codesign:

1. Joint design of an instruction-set architecture and its program.

2. Synthesis of hardware and/or software from a common speci-
fication.

3. Specification, synthesis, and simulation of heterogeneous sys-
tems.

These can be viewed as manifestations of heterogeneity in the
design methodology.

The first type concerns the joint synthesis of a data-path and
its controller, two conceptually distinct parts of a processor
[Pau93]. The heterogeneity in this approach is limited to distin-
guishing the datapath from its controller.

In type 2, a unified representation of an application is
mapped into some mixture of implementation technologies. For
example, a dataflow graph could be partitioned, and the separate
partitions could be fed to hardware and software synthesis tools
[Kal93]. The software components execute on commodity proces-
sors, or possibly on processors synthesized as in type 1. A hierar-
chical finite state machine could also be converted to hardware or
software implementations [Har90]. If concurrent FSMs are used,
then a mixture of hardware implementations might be attractive. In
type 2, the heterogeneity is limited to distinguishing implementa-
tion technologies; the model of computation is unified.

In type 3, the design representation need not be unified. Dis-
tinct models of computation can be used for different parts of the
design. The model of computation for each component would be
chosen on the basis of the properties of that component. For
instance, dataflow would be used for signal processing, and hierar-
chical FSMs for control. A typical application could combine both
models of computation. Within each model of computation, types 1
or 2 might apply in synthesizing the implementations.

Type 3 addresses a large cross section of system-level design
problems. In the signal processing domain, for example, most
applications combine some hard-real-time numerical processing of
signals with much more dynamic control. In applications such as
modems, wireless communication systems, video phones, voice
mail systems, voice recognition systems, disk-drive controllers,
and data compression, one or more signal processing kernels are
invoked in response to outside stimuli. For example, a modem
needs to negotiate a common transmission format with another
modem when a connection is established, or when a wireless
device moves from one service area to another.

2. System-Level Design

Type 1 is fundamentally still a chip-level design problem. It
can be viewed as an approach to high-level synthesis. In this paper,
we concentrate on system-level problems, and hence on types 2
and 3. In this context, four key problems emerge:

    • partitioning

    • synthesis

    • cosimulation

    • design methodology management

2.1. Partitioning
The partitioning problem has been broached, though some-

what less successfully so far, for hardware/software codesign
[Gup92] [Hen93] [Bar92]. We have been investigating the parti-
tioning problem for hardware/software codesign by concentrating
on the synchronous dataflow (SDF) model of computation [Lee87].
Synthesis of both hardware and software from SDF graphs has
been demonstrated [Pin94] [Rab91], and the model has proven use-
ful for a reasonable set of signal processing applications. Thus, we
focus on type 2 codesign, in which a unified representation is
mapped onto some mixture of implementation technologies.

Even a unified model such as SDF does not preclude a bias
towards one type of implementation or another. Certain properties
of a graph lead to a preference:

    • the mix of operations,

    • the speed requirements,

    • the regularity of the graph,

    • the parallelism in the graph,

    • the word length requirements, and

    • the need for programmability.

In the last of these, where the end-product requires some degree of
programmability, the bias is obviously towards software. In the
others, the bias is less obvious.

If the mix of operations is dominated by bit manipulations, as
in an error-correcting coder or decoder, the bias is towards hard-
ware. If it is dominated by conditionals, the bias is towards soft-
ware. If it is dominated by inner product computations, then the
bias is towards software, since DSP architectures are highly tuned
for this type of operation.

The regularity and parallelism of the graph couple with the
other sources of bias [Rab93]. An irregular graph is biased towards
software. A graph lacking parallelism is also biased towards soft-
ware.
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Widely disparate word length requirements for different
parts of the graph imply a bias towards hardware, although this
effect can get quite complicated. Applications requiring more pre-
cise numerical representations are biased towards software, if for
no other reason than that the cost of the hardware is high, in both
silicon area and design time. It had best be reused.

Systematic partitioning techniques require quantification of
these factors that introduce a bias. A good start on some of them is
described in [Rab93].

In order to make these bias values meaningful, it is important
to partition at a task or a process level of granularity. This can be
accomplished by clustering the original graph to identify natural
clusters for mapping, taking into account communication over-
head, control structures, and concurrency. Subsequently, the graph
may be partitioned by an iterative assignment and scheduling pro-
cess, taking these biases into consideration.

2.2. Synthesis of Hardware and Software
The hardware and software synthesis problem has received

considerable attention (see [Kal93], [Rab91], and [Pin94], for
example). We will not address it further in this paper.

2.3. Cosimulation
Cosimulation has two distinct manifestations. In a design

that mixes models of computation (as in type 3), these models of
computation must be made to operate together [Buc94]. Alterna-
tively, in a design that mixes implementation technologies, as in
types 2 and 3, or Figure 1), the models of designs using these tech-
nologies must interact [Kal93].

2.4. Design Management
Design management has been addressed at the chip level (see

[All91] for example), but the extensions to the system level are not
yet well understood (at least not by these authors). We are investi-
gating a design methodology that treats the design flow as part of
the design itself. Thus, for example, the choice of a partitioning
tool is a part of a design that uses it. The choice of a synthesis tool
for embedded software is similarly a part of the design.

The interconnection of all the tools used to construct a
design, from the high-level algorithmic simulation tools, down to
hardware simulation used for timing validation, is considered part
of the design. Representation of this design flow, thus, becomes as
important as representation of components in the design. Version
management for tools gains equal priority with version manage-
ment for library elements.
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Figure  1 An illustration of a heterogeneous simulation environment. A
hardware design (bottom left) containing a programmable DSP mixed
with other hardware is developed using event-driven and SDF
semantics. The DSP Model (corresponding C++ code in the upper right
window) invokes the Motorola DSP56000 Simulator (bottom right) that
executes software generated by software synthesis tools. Timing
verification is possible by using a Logic Analyzer (top left).
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