
Hardware-Software Co-Design

and ESDA

Kurt Keutzer

Synopsys, Inc.

Mountain View, CA

keutzer@synopsys.com

1 Introduction

Hardware-software co-design is not a new problem; sys-
tems with signi�cant portions of hardware and software
have been designed for decades. Similarly, system design
is not new but the prospect of Electronic System Design
Automation (ESDA) has received a great deal of recent
attention. Several factors have contributed to the grow-
ing importance of these areas but two are particularly
relevant: Computer-aided design can claim some modest
success in responding to the productivity challenge posed
by exponential improvements in processing technology.
At the same time, time-to-market challenges for system
designers require that complex systems of hardware and
software be designed and deployed in 18 months. As a
result the formerly distant relatives of hardware and soft-
ware development have now been brought together and
the importance of taking a system perspective has been
stressed.
This abstract will very briey identify the problems

associated with hardware-software co-design and ESDA
and will attempt to identify the most promising of the
current responses to these problems. To aid in identify-
ing these problems it may be useful to understand two
di�erent trends in the evolution of design automation.
The �rst trend is the familiar raising the level of abstrac-
tion, which we associate with ESDA, and this will be
treated in Section 2 as well as in [4]. The second trend
is broadening design coverage, which we associate with
hardware-software co-design, and this will be the focus of
Section 3 as well as [6].

2 Raising the Level of Abstraction

To supply the increase in productivity required by the
exponential improvements in processing the most con-
sistently useful approach has been to raise the level of
abstraction. Within a relatively short span of about 15
years the primary level of design entry has evolved from
the transistor level captured in mylar, to the gate level
captured in schematics, to the register-transfer level cap-
tured in hardware description languages such as VHDL or
Verilog. To e�ectively raise the level of abstraction entails
providing a formal model at the new level of abstraction.
Gate-level netlists or register-transfer level HDL models
may seem like simple data representations but each of
these is also associated with a clear semantics that not
only captures data but allows for analysis and synthe-
sis. Simply providing a higher level of abstraction is not
su�cient. What must also be supplied is a set of design
tools that allow for entry, analysis and veri�cation at that
level, as well as synthesis tools to target to lower levels in
the hierarchy. Thus, to truly be a new design paradigm,
ESDA must address each of these aspects and this will

be detailed in the subsequent paragraphs.

Level of Abstraction By de�nition the appropriate
level of abstraction for ESDA is the system level. At
present ESDA does not provide a single model of system
behavior that spans both hardware and software but in-
stead a number of di�erent models of behavior have been
proposed each of which can be used to describe a portion
of system behavior.
Work on formal models of dataow behavior grew up

in the DSP application domain and synchronous dataow
[5] is a formalization of a model of computation that DSP
designers have successfully used for some time. Variants
of the synchronous dataow model are reected in the
commercial o�erings of cossap from Cadis and spw from
Comdisco. Work on formalmodels of control-oriented be-
havior has evolved up in domains associated with control-
dominated systems such as mechanical control systems or
telecommunication protocols. Among the various models
of control, statecharts [3] has been particularly successful
and is reected in the i-Logix toolset.
To properly model many complex systems requires the

integration of more than one computational or applica-
tion domain. This raises the problem for any ESDA
environment as to how to provide for integrating mul-
tiple domains within a single environment. Addressing
the need for such a heterogeneous environment for sim-
ulation has been the focus of the Ptolemy environment
[2]. In Ptolemy multiple computational domains can be
integrated and their communication scheduled.

Tools for Veri�cation and Analysis System-level
veri�cation entails veri�cation of both the functional-
ity and the performance of the system. Simulation re-
mains the primary workhorse for veri�cation of system-
level functionality and simulation issues will be discussed
in Section 3. A radically di�erent approach to verify-
ing functionality is to use formal veri�cation, but current
formal techniques appear best suited for deeply analyz-
ing particular problems, such as cache coherency, and not
for providing broad functional veri�cation. Comprehen-
sive system-level performance analysis has almost no tool
support. A system designer wishing to make signi�cant
system-level trade-o�s typically enjoys the use of only a
few specialized tools, such as tools for queing analysis, or
more generalized versions of the same in a tool such as the
workbench from SES. Moreoever, given a system-level
description in any one of the domains mentioned in the
previous section there are currently no reliable tools for
estimating the performance of the �nal implementation
of that description in either hardware or software. In
the absence of reliable system-level estimation tools for
either hardware or software the prospects of automated
hardware-software partitioning are dim.

1



Synthesis There is a truism in the industry that analy-
sis proceeds synthesis but it is also useful to observe that
synthesis leverages the investment in analysis. For exam-
ple, simulation of HDL models of circuits was considered
useful before the advent of synthesis but it was the ability
of synthesis to provide a path of implementing the circuit
that made the investment in a simulation model easier
to justify. Similarly, the market for system level entry
and analysis tools has grown slowly but through improv-
ing links to both hardware and software implementation
there is a promise that the market may grow much more
quickly. Substantial progress has been made in the de-
velopment of translators from system level descriptions
to both programming languages, such as C, and hard-
ware description languages, such as VHDL. However, it
is not su�cient to simply supply links to implementation.
Those links must be able to provide e�cient implemen-
tations. Nevertheless, current implementations resulting
from domain speci�c entry and synthesis techniques have
been su�ciently competitive to be used for a number of
industrial designs.

3 Improving System Coverage

Whenever the level of abstraction is raised, more and
more implementation details need to be addressed in some
way. The migration from transistor-level to gate-level re-
quired not only gate level simulators and schematic edi-
tors but also physical design tools that could place and
route the resulting netlist. As the level of abstraction is
raised to the system level, all the elements of the system
level need to be addressed in some way. The emerging
problem is the implementation, analyis and veri�cation of
complex systems with interacting hardware and software
components. To attempt to quantify the problem: In
current processing technologies an entire system consist-
ing of a microprocessor, peripherals, memory , asic and
software can be implemented on a single chip. Described
at the system level this system can consist of hundreds
of interacting domain-speci�c modules. The �nal imple-
mentation of this system in hardware and software can
easily result in 150,000 lines of Verilog at the register-
transfer level and an additional 30,000 lines of C code
that will reside in the program memory. To verify such
a system entails more than simply verifying the hard-
ware in isolation, building a prototype, and verifying the
software on the prototype. Verifying such a system un-
der strong time-to-market pressures requires co-verifying
the hardware and software as they are developed. A more
comprehensive treatment of the problems associated with
hardware-software co-veri�cation will be presented in a
companion paper in this session [6] but problems asso-
ciated with one approach to the problem will be briey
described. In one proposed environment asic hardware
under development would be co-simulated with the ac-
tual software under development. Principal constituents
of this environment are then: simulator, processor mod-
els and interfaces to software compilers and debuggers.
In this environment the processor models and asic cir-
cuitry are both run in the same simulation environment.
Software is executed in memory as data for the processor
models. In this way software and asic circuitry can each
be debugged in their native environments. Obstacles to
this approach will be touched on below:

Simulation Speed Chief among the requirements of
any viable hardware-software co-simulation environment
is simulation speed. While designers of micro-controller
based systems have been able to do signi�cant software

debugging using simulators running at only 1-10 cycles
per second, input from other designers is that simulation
speeds in excess of 100 cycles-per-second will be necessary
before even the core algorithms of an audio DSP system
can be debugged. To supply these speeds will require
the integration of cycle-based based simulation techniques
[1], as well the development of design methodologies that
make cycle-accurate modeling su�cient.

Processor Models Another requirement
for hardware-software co-simulation is the availability of
simulation models. To simulate the execution of software
in a standard simulation environment it is necessary that
a simulation model of the processor be available in that
environment.

Interfaces In a true hardware-software co-simulation
environment both software developers and hardware de-
velopers should be able to use their own respective de-
bugging environments. To accomplish this new inter-
faces need to be created between software development
environments and existing hardware simulation environ-
ments.

4 Conclusion

There presently exist well-de�ned computation models
at a higher level of abstraction than the register-transfer
level HDL's and these models can be analyzed and syn-
thesized into either hardware or software. Using these
techniques o�ers the potential for signi�cant productiv-
ity boosts over current register-transfer level synthesis
techniques. The use of these techniques does introduce
new problems, or at least exacerbate existing ones. Chief
among these emerging issues is the problem of verifying
a complex software system interacting with a complex
hardware system. Verifying such systems in a timely
manner will require signicant improvements in simulation
speed, the easy availability of processor models and the
existance of links from hardware simulation environments
to software compilers and debuggers. As these tools come
into place over the next few years it does appear that
system designers of the future will be reasonably well
equipped to cope with another rise in the complexity of
system development.

References

[1] Z. Barzilai, L. Carter, B. Rosen, and J. Rutledge.
HSS - a high-speed simulator. IEEE Transactions
on Computer-aided Design, CAD-6(4):601{617, July
1987.

[2] J. Buck, S. Ha, E. A. Lee, and D. Messerschmidt.
Ptolemy: A framework for simulatingand prototyping
heterogeneous systems. In International Journal of
Computer Simulation, 1994. to appear.

[3] D. Harel. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231{274, February 1987.

[4] A. Kalavade and E. A. Lee. Manifestations of hetero-
geneity in hardware/software codesign. In Proceed-
ings of the DAC, June 1994. to appear.

[5] E. A. Lee and D. Messerschmitt. Synchronous data
ow. In IEEE Proceedings, 1987.

[6] James A. Rowson. Hardware/software co-simulation.
In Proceedings of the DAC, June 1994. to appear.

2


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




