
Random Generation of Test Instances for Logic Optimizers

Kazuo Iwama Kensuke Hino

Department of Computer Science and Communication Engineering
Kyushu University, Hakozaki, Fukuoka 812, Japan

fiwama, hinokeng@csce.kyushu-u.ac.jp

Abstract The attempt of using random test circuits

for evaluating the performance of logic optimizers like

SIS is apparently new. To generate \reasonable" ran-

dom circuits, we propose the random applications of

several transformation rules to an initial circuit in-

stead of the obvious method, random placement of

connections. A preliminary experiment has been con-

ducted on SIS's responses against such random cir-

cuits. SIS shows considerably di�erent performances

for di�erent circuits generated from the same original

circuit.

1. Introduction

There have been millions of papers on logic optimizers
and also have been even more papers on generating test-
cases for detecting faults of logic circuits. However, there
have been few papers on how to generate test-cases for
evaluating the performance of algorithms for logic opti-
mizers. In this paper, we present a new way of providing
those test-cases, a random generation of test circuits, for
logic optimizers such as MIS [1], SIS [6] and Transduction
Method [4].

Since it is little meaningful for this kind of algorithms

to use the worst-case upper bound such as O(n2n
(1+�)

),
we are forced to depend on so-called the empirical
performance-evaluation. To do so, there has been vir-
tually no other way than using benchmarks; for exam-
ple, MCNC[8] is the most standard benchmark set that
includes more than 70 combinational multi-level circuits
(and also other types of circuits). Those benchmark cir-
cuits are carefully selected with a wide variety and appear
to have been accepted in the �eld. Even so, it is still
true that we cannot give reasonable answers to the fol-
lowing naive question: Is the algorithm that is good for
the benchmarks good for every circuit? It is also hard to
�gure out the general tendency of the performance when

the size of instances increases. Moreover, we cannot even
deny the possibility of cheating, or unnatural tune-ups of
the algorithms only for benchmarks, in theory.

In these circumstances, it is quite reasonable to use
random instances as well as benchmarks. That is actu-
ally very common in many graph problems [7] and in the
satis�ability problem for CNF predicates (SAT) [3, 5]. In
the case of (multi-level) logic circuits, however, there is
no obvious way of generating random circuits. Consider,
for example, the following way motivated by the standard
generation of random graphs: (i) We �rst introduce some
number of logic gates, (ii) and then between each pair of
the input of one gate and the output of another, a connec-
tion is drawn with some probability. Unfortunately, it is
questionable if such \circuits" can be accepted as logic cir-
cuits in the usual sense. Furthermore, if we provide logic
optimizers with such random circuits, we would have very
little information about what kind of (simpli�ed) circuits
should be output by the optimizers.

Our answer to those questions is as follows: Our gen-
erator does not make random connections between gates
but applies a sequence of random transformations into
an initial circuit. Each single transformation should not
change the logic function realized by the circuit and it
should be computed quickly. In more detail: (i) Circuits
are described by strings in a usual way. (ii) The equiv-
alent transformation is given as a rewriting rule over the
strings, which can be applied in polynomial time. (iii) A
complete set of these transformations (rules) is developed,
where \complete" means that from any circuit to any
(other) equivalent circuit there exits at least one sequence
of transformations. (iv) A test circuit is obtained from an
initial circuit by applying the rules (principally) at ran-
dom. Many test circuits of di�erent sizes can be obtained
from the single initial circuits. The initial circuit can be
good information on \correct" answers of the optimizer.
These details will be give in Sections 2-4.

The �rst version of the generator has been imple-
mented. As a preliminary experiment, the majority func-
tion of six variables, the 4-bit adder and so on have been
chosen as the initial circuits. A number of di�erent test
circuits have been generated from each initial circuit. For
those test circuits SIS produced the simpli�ed circuits
which are considerably di�erent, twice to four times di�er-

1

ent, in size and depth. This suggests that our motivation
and goal are not bad and the project has the promising
future.

2. De�nition of Circuits

Within this paper we restrict ourselves to logic circuits
using only NAND gates of unlimited fan-in and unlimited
fan-out. Circuits of AND, OR and NOT gates have been
also discussed under the same framework [2]. Restriction
of fan-in and fan-out will be an important future research.
A (NAND) circuit is given as a set of equations, e.g., as
follows:

g[0] = (g[010]; (g[011]; (x3)))
g[010] = (g[011])
g[011] = (x1; (x2); x4)

Namely, a circuit is divided into one or more subcircuits
such as g[01], g[010] and g[011]. This circuit is illustrated
as follows using conventional diagrams.

3x

1x

4x

2x

g[0]

g[010]g[011]

De�nition 1. A partial circuit (p-circuit) is a
string over alphabets f0;1; 0; 1; x; g; (;); [;]; ; g de�ned re-
cursively as follows:

(1) 0 and 1 are p-circuits.

(2) x[`] is a p-circuit where ` is a string over f0; 1g,i.e.,
` 2 f0; 1g� .

(3) g[`] is a p-circuit where ` 2 f0; 1g�.

(4) Suppose that S1; S2; � � � ; Sm(m � 1) are p-circuits.
Then (S1; S2; � � � ; Sm) is also a p-circuit.

0 and 1 denote logical false and true, respectively. To
avoid confusion, we use di�erent symbols 0 and 1 for bi-
nary strings used in (2) and (3). x[`] is an input vari-
able. Again for simplicity we assume that if n variables
are needed then those are x[1]; x[10]; x[11]; � � � ; x[Bn] (Bn

is the binary number for n). x[Bi] may be denoted by xi
if no confusion occurs. g[`] is called a label.

De�nition 2. A proper circuit is a set
fW1;W2; � � � ;Wtg, where:

(1) Each Wi is a string of the form

g[`] =p-circuit,

which is called the de�nition of p-circuit g[`].

(2) If a label g[`] appears in some p-circuit, then its def-
inition must exist.

(3) The de�nition of p-circuit g[`] must be unique for each
p-circuit.

In this paper all circuits are proper, so proper circuits
are simply called circuits. Suppose that a circuit C has n
inputs and m outputs. Then C includes x1; � � � ; xn and,
without loss of generality, g[B0]; g[B1]; � � � ; g[Bm] as C's
outputs. (Namely, g[0] must exist if C is a circuit of single
output under this rule.)

3. Transformation Rules

A transformation rule, or simply a rule, is denoted by
g =) h. The following set of rules are denoted by <.

(1) (1)() 0

(3) (x; x)() (x)
(5) x; ((y; z))() x; y; z

(7) (x;1)() (x)

(2) (0)() 1

(4) (x; (x))() 1

(6) x; y () y; x

(8) ((x))() x

(9) (x; (y; z))() (((x; (y)); (x; (z))))

(10) If g[`] = f is the de�nition of p-circuit g[`] then
g[`]() f .

(11) If g[`] is neither an output of the circuit nor does
not appear in right-hand side of the de�nition of any
p-circuit, then the de�nition of g[`] is removed. (This
rule is called a deletion.)

(12) If the de�nition of label g[`] does not exist in the
right-hand side of any de�nition, then g[`] = C is
added, where C can be any p-circuit whose length is
bounded polynomially. This rule is called a creation.

f () g stands for f =) g and g =) f . f (and g

also) is a string (not necessarily a p-circuit, see e.g., rule
(5)) including special symbols x; y and z. Suppose that
we wish to transform a circuit C1 to C2 by applying a
rules f =) g. Then we seek a substring s of C1 that
\matches" f . In this pattern matching the special symbol
x (y; z also) matches any substring s1 of C1 if s1 meets the
condition of p-circuits (such s1 is called a subcircuit of C1).
Circuit C2 is obtained by replacing s of C1 by the right-
hand side of the rule, i.e., by g. The formal de�nition of
this transformation is omitted but the following example
will be helpful:

Example. Suppose that we wish to apply rule

x; ((y; z)) =) x; y; z

to p-circuit C1 that is

((x1); ((x2; (g[01]; ((x4; x1))))); x3):

2

Since we allow x; y and z to match any subcircuit of C1,
there are two di�erent possibilities. The �rst possibility is
to set

x = (x1); y = x2; z = (g[01]; ((x4; x1)));

which transforms C1 into C2; that is

((x1); x2; (g[01]; ((x4; x1))); x3)

The other possibility is to set

x = g[01]; y = x4; z = x1;

and then we obtain a di�erent C2 such as

((x1); ((x2; (g[01]; x4; x1))); x3):

Rule (10) is so-called a substitution and its converse.
If label g[`] appears in a p-circuit, it can be replaced by
the right-hand side of the de�nition of g[`]. Conversely, if
some subcircuit s1 of p-circuits coincides with the right-
hand side of some de�nition, say g[`] = s1, then the whole
s1 can be replaced by g[`]. Note that if the de�nition
g[`] = s1 does not exists, it can be created by rule (12).

More formally, the transformation from a circuit C1 is
de�ned by a function T (C1; r; k). Here, r is a rule and
k is an integer. Recall that there may be two or more
possibilities for applying rule r to C1. The integer k is
for selecting one of such possibilities, namely, the kth one.
(Exactly speaking, we have to de�ne some order for these
possibilities.) T (C1; r;k) returns a (unique) circuit C2 or
nil if there are no possibilities for the application of rule
r.

Theorem 1. For any circuit C of size n, T (C; r; k) can
be computed in time polynomial in n.

Proof. Consider for example rule r: x; ((y; z)) =)
x; y; z. Then a straightforward way of computing
T (C; r; k) is as follows: (i) Regarding circuit C as a string,
we decompose C using substrings s1; s2; � � � ; s5 such that
C = s1s2; ((s3; s4))s5 (each si may be the null string).
One can see that the number of di�erent such decomposi-
tions is polynomial in the size n of C. (ii) Then we check
if all of s2; s3 and s4 are subcircuits. If so, we say that
the decomposition is proper. Again this can be done in
polynomial time. (iii) Now we select the kth one out of
the proper decompositions (if any). The argument is sim-
ilar for other rules. As for rule (12), note that we imposed
the restriction that the created p-circuit be of polynomial
size. 2

We next show that the set < of transformation rules is
complete. Two circuits C1 and C2 are said to be equivalent
if (i) the number of inputs and outputs is the same in both
circuits and the corresponding two outputs, g[`] in C1 and
g[`] in C2, realize the same logic function.

Theorem 2. Let C1 and C2 be any equivalent circuits.
Then there exists a sequence of rules, each of them in <,
which transforms C1 into C2.

Remark 1. The theorem only claims the existence
of such a sequence. According to the following proof, its
length (the number of primary transformations) can easily
be exponential. To �nd an essentially shorter sequence is
hard even if there are some.

Proof of Theorem 2. We assume that the circuit has
only one output. Extension to the multi-output case is
straightforward.

So-called DNF is used as a normal form of circuits: A
circuit of n variables is said to be in DNF if it is given
as g[0] = f where f = (p1; p2; � � � ; pm). Each pi must
be (y1; y2; � � � ; yn) where yi = a single variable xi or its
negation (xi). For any j, pj must be lexicographically
earlier than pj+1, namely, the binary number obtained
by replacing each xi ((xi), respectively) of pj by 1 (0,
respectively) must be smaller than the similar number for
pj+1.

Then it turns out that for any circuit C, there is a
sequence of rules, each in <, that transforms C into
the normal form. Note that this is enough to claim
the theorem by the following reason: Let C1 and C2

be equivalent circuits. Then for each Ci, there is a se-
quence ri1ri2 � � � riti of transformations. Note that these
two sequences must transform both C1 and C2 into ex-
actly the same string, since the normal form is unique
for any logic function. Now consider the sequence S =
r11r12 � � � r1t1r2t2 � � � r22 r21, where r is the opposite of r,
namely, if r is f =) g then r is g =) f for rules (1)�(10)
and if r is (11) then r is (12).

The algorithm for getting the sequence ri1ri2 � � � riti is
fairly complicated. We have to omit it, but the following
example for reducing the level of circuits (from four to
three) would be helpful.

(x1; (x2; (x3; (x4))))

(8) (x; (y; z)) =) (((x; (y)); (x; (z))))

(x1; (((x2; (x3)); (x2; ((x4))))))

(4) x; ((y; z)) =) x; y; z

(7) ((x)) =) x

(x1; (x2; (x3)); (x2; x4)) 2

4. Random Circuit Generator

Application of the complete set < will be wide. A natural
possibility is to use it for simplifying circuits, since it is
guaranteed that there is a path from a given circuit to any
simpler one. Of course, however, very careful choice of
rules should be needed for this purpose, which is far from
easy. Then what happens if we chose rules carelessly? The
circuit is probably not simpli�ed but is complicated. That
meets our present goal!

3

Generator RC-GEN.

Input: A circuit C1

Output: A circuit C2 that is equivalent to C1 and is prob-
ably more complicated than C1.

Step1: C C1

Step2: Select a rule r at random from <.

Step3: Apply r to C to get C0. If there are two or more
possibilities, select one of them at random.

Step4: C C0 and repeat Step2-Step4 some speci�ed
times.

Step5: C2 C

This basic structure of RC-GEN needs appropriate
modi�cation for actual implementation. Suppose, for ex-
ample, that

((x2; x3); ((x3;); x4); ((x2); x3))

is chosen as the initial circuit C. Now our experiment
shows that if all rules are applied with the same probabil-
ity then such a circuit as follows is generated after 50-time
execution of the main loop.

((((((((x1,x3))),((((x3,(0)))),((((x4,x4))))))))),((((
x2,(((((((((((x1,x3))),((x3,1))),((((x1,x3))))),1,((((

(x1,x3))),((((x3,1))))),((((x4,x4,x4)))))),((((x1,x3)

)),(((((x4,x4)))))))),(((((((x1,1,x3))),((((x3,(0)))),(
(((x4,x4)))),((((x4))))))))))))),x3))))

One can easily feel that the circuit does not make much
sense as a usual logic circuit. Our consideration for better
implementation is as follows:

(1) Clearly there are too many parentheses, which can
be removed by applying the =) direction of rule (5) more
frequently. The current setting is 30 times as high as the
normal probability.

(2) The (= direction of (3) and (4) makes the string
(circuit) longer. However, it is simply a repetition of ex-
actly the same thing. What is desirable is that after the
application of these rules, a lot of other rules are applied to
the same subcircuits and these are changed into di�erent
ones. We decided to restrict the number of applications
of these rules into only twice during the whole course of
the generation.

(3) The most important rule for modifying circuits is
probably (8). We set the probability of both directions of
(8) three times as high as the normal probability.

(4) As for rule (10), there are less problems for the
substitution (the(= direction) but are several di�culties
for the opposite direction. First of all, there is almost no
possibility of the rule's being actually applied, since even
if we wish to replace a subcircuit s by g[`], the de�ni-
tion g[`] = s probably does not exist. Hence, we need to
combine this rule with the creation of g[`] = s, i.e., rule

(12). To emphasize its objective (management of multiple
fan-out), it may be more appropriate that the rule can
be applied only if we can �nd two or more subcircuits s1
and s2 such that s1 = s2. Then both subcircuits can be
replaced by the same label, say g[`]. At this moment, the
substitution is excluded from the rule set and the creation
is allowed only if the two (or more) equivalent subcircuits
above mentioned are found.

After these considerations, the circuit given at the be-
ginning was transformed into the following circuit (by 500-
time repetition) that appears much \better" than before:

(((((((((x2,(x3,x1),((x3),x4)),((x4,(x3),1),(x1,x3),1),
(0)),(x1)),((((x3),0),((x3,x1),((((x3),x4),x2),(x3),x4)

),(0,(x1))),(x3))),x3),(((((((x2,(0),(x1,x3),((x3),x4,(0

))),x4,(x3)),(x1),(((x1,(x2)),(x1,((x1,x3))),(x1,(((x3),
x4,1)))),x3,1)),((1),(x1,x3)),(((x3),(x2,((x3),x4)),x4),

(x1,x3))),((((x2,(x1,x3),((x3),1,x4,(0))),x4,(x3)),(x1),

(x1,(x2,(x1,x3),((x3),x4)),1,x3)),x3)),(0)),(x4))),x2),(
(x1,(0),x3),((((x3),x4),x2),(x3),x4),(x3,1))))

5. Experiments

For the �rst experiment, we selected the majority function
of six variables, namely

g0=((x1,x2,x3),(x1,x2,x4),(x1,x2,x5),(x1,x2,x6),(x1,x3,x4),
(x1,x3,x5),(x1,x3,x6),(x1,x4,x5),(x1,x4,x6),(x1,x5,x6),

(x2,x3,x4),(x2,x3,x5),(x2,x3,x6),(x2,x4,x5),(x2,x4,x6),

(x2,x5,x6),(x3,x4,x5),(x3,x4,x6),(x3,x5,x6),(x4,x5,x6))

For this experiment, we excluded the rules from (10)
to (12) so that only tree-like (single fan-out) circuits
would be involved. From this initial circuit, we generated
a number of circuits by applying the rules 2000 times.
(Since there are cases when the selected rule cannot be
applied, the actual number is one half or one third of
2000.) Those circuits are then given to SIS where we se-
lected, as the optimizing option, the algebraic factoriza-
tion (i.e.,\script.algebraic") and the area oriented technol-
ogy mapping using the library including only NAND and
NOR gates of up to four inputs.

The result is shown in Table 1. In each row, the left
half gives data for the test circuit and the right half for
the SIS's output. For example, No.1 test circuit contains
1894 gates and 3650 connections and its network level is
24, which is simpli�ed by SIS into 23 gates, 46 connections
and 8 levels in 17.9 sec. (SUN SPARC 2). No.0 row shows
the result when the initial circuit itself is given to SIS.
(This is the same for Tables 2 and 3.)

Generally, SIS showed a remarkable performance. How-
ever, there are subtle di�erences among the �ve test cir-
cuits illustrated in the table. For example, No.2 is worth
than No.1 even if the test circuit is smaller. No.3 is the
worst that is about four times as bad as the best in each

4

of the number of gates, connections and levels.

The second experiment is for the 4-bit adder, where
the full set of rules are included. Although it has �ve
outputs (including the �nal carry), we put them together
into a single output in two di�erent ways. The one is that
the �nal output becomes one i� exactly two of the four
outputs of the adder (excluding the �nal carry) are one.
Namely the initial circuit is given as follows:

g0=((g1,g2),(g1,g3),(g1,g4),(g2,g3),(g2,g4),(g3,g4))

g1=(((x1),x2,(g5)),(x1,(x2),(g5)),((x1),(x2),g5),(x1,x2,g5))
g2=(((x3),x4,(g6)),(x3,(x4),(g6)),((x3),(x4),g6),(x3,x4,g6))

g3=(((x5),x6,(g7)),(x5,(x6),(g7)),((x5),(x6),g7),(x5,x6,g7))

g4=((x7,(x8)),((x7),x8))
g5=((x1,x2),(x2,g6),(g6,x1))

g6=((x3,x4),(x4,g7),(g7,x3))

g7=((x5,x6),(x6,g8),(g8,x5))
g8=((x7,x8))

The other is that the output becomes zero if the �ve
outputs of the adder are 01010. Results are shown in
Tables 2 and 3, where we can also see di�erences of up to
twice.

Table 1.

No.
source output

time
gate conn. level gate conn. level

0 21 80 2 20 39 8 1.8

1 1894 3650 24 23 46 8 17.9

2 732 1375 16 39 81 9 8.3

3 1738 3132 20 103 212 22 28.6

4 882 1657 15 41 83 10 9.0

5 146 283 13 26 49 6 2.4

Table 2.

No.
source output

time
gate conn. level gate conn. level

0 55 113 11 48 86 18 4.7

1 236 463 22 52 95 16 8.2

2 180 354 27 56 100 15 7.1

3 454 942 26 104 202 19 24.2

4 340 746 37 93 172 33 16.6

5 359 763 39 48 86 20 11.7

Table 3.

No.
source output

time
gate conn. level gate conn. level

0 56 112 12 46 84 19 3.9

1 319 618 27 79 153 21 14.6

2 176 358 24 39 77 12 6.5

3 715 1627 34 67 132 26 26.6

4 926 1861 35 52 98 20 23.0

5 159 335 23 37 73 12 6.7

6. Concluding Remarks

The reason why random circuits have been seldom used
for testing the performance of logic optimizers is that we
did not know how to generate the random circuits appro-
priately. The main contribution of this paper is to propose
the random transformation for that purpose, to establish
its theoretical foundations and to claim that the method
is useful or at least is worth doing more research and de-
velopment. Testing other optimization systems and trying
to use the result to improve the optimizers will be obvious
future work.

References

[1] R. K. Brayton, R. Rudell, A. L. Sangiovanni-

Vincentelli, and A. R. Wang, \Mis: A multiple-

level logic optimization system," IEEE Trans. CAD, 6,

pp. 1062-1081, 1987.

[2] K. Hino and K. Iwama,\On a complete set of basic op-

erations to transform between equivalent switching cir-

cuit," Technical Report of the Institute of Electronics,
Information and Communication Engineers, COMP92-67

(1992-11) (in Japanese).

[3] K. Iwama, H. Abeta, and E. Miyano, \Random gener-

ation of satis�able and unsatis�able CNF predicates," in

Proc. 12th IFIP World Computer Congress, pp. 322-328,

1992.

[4] S. Muroga, Y. Kambayashi, H. C. Lai, and

J. N. Culliney, \The Transduction method { Design

of logic networks based on permissible functions," IEEE

Trans. Comput. 38, 10, 1989.

[5] D. Mitchell, B. Selman, and H. Levesque, \Hard

and easy distributions of SAT problems," in Proc. 10th

National Conference on Arti�cial Intelligence, pp. 459-

465, 1992.

[6] E. M. Sentovich, K. J. Singh, et al., \SIS: A

system for sequential circuit synthesis," Memorandum

No. UCB/ERL M92/41, 1992.

[7] G. Tinhofer, \Generating graphs uniformly at random,"
in Computational graph theory, pp. 235-255, Springer,

1990.

[8] S. Yang, \Logic synthesis and optimization Benchmarks
user guide version 3.0," in 1991 MCNC International

Workshop on Logic Synthesis.

5

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

