
E�cient Representation and Manipulation of Switching Functions

Based on Ordered Kronecker Functional Decision Diagrams
�

R. Drechsler1 A. Sarabi2 M. Theobald1 B. Becker1 M. A. Perkowski2

1 Computer Science Department 2 Department of Electrical Engineering
Johann Wolfgang Goethe University Portland State University
D-60054 Frankfurt am Main, Germany Portland, OR 97207-0751, USA

email: <name>@kea.informatik.uni-frankfurt.de email: <name>@ee.pdx.edu

Abstract

An e�cient package for construction of and opera-
tion on ordered Kronecker Functional Decision Diagrams
(OKFDD) is presented. OKFDDs are a generalization of
OBDDs and OFDDs and as such provide a more compact
representation of the functions than either of the two deci-
sion diagrams. In this paper basic properties of OKFDDs
and their e�cient representation and manipulation are
presented. Based on the comparison of the three decision
diagrams for several benchmark functions, a 25% improve-
ment in size over OBDDs is observed for OKFDDs.

1 Introduction

The increasing complexity of modern VLSI circuitry is

only manageable through advanced CAD systems which

as one important component include logic synthesis tools.

Problems encountered in synthesis can often be formulated

in terms of Boolean functions. The e�ciency of the manip-

ulation algorithms on the functions largely depends on the

data structures chosen for the representation of the func-

tions. Currently, the most popular data structures are Or-

dered Binary Decision Diagrams (OBDDs) introduced by

Bryant [5]. OBDDs have been most widely used in logic

synthesis, veri�cation, testing, modeling and simulation

[3, 11, 6]. They allow e�cient manipulations of switching

functions and such applications as testing for satis�abil-

ity and equivalence. Nevertheless, there exist functions for

which e�cient OBDDs do not exist [13].

Still other decision diagrams have been studied which

are especially pertinent to the design with AND/XOR cir-

cuits. Realization with AND/XOR logic often leads to

a more compact realization of switching functions than

AND/OR [17, 14]. The networks realized in this logic have

been recently of more interest mainly due to the new tech-

nologies which make this realization more practical. The

new FPGA technologies have made it possible to utilize

universal logic blocks which do not distinguish between

the types of logic used. This calls for more integration of

AND/XOR logic into mainstream synthesis.

Decision Diagrams such as the so-called (Ordered)

Functional Decision Diagrams (OFDD) [10] and (Ordered)

Kronecker Functional Decision Diagrams (OKFDD) [15]

�This work was supported in part by DFG grantBe 1176/4-1
and NSF grant MIP-9110772.

utilize advantages of AND/XOR representation in their

structure. While OFDDs are based solely on AND/XOR

representations, OKFDDs are a generalization of OBDDs

and OFDDs and provide a combination of AND/XOR and

MUX-based representations. As they are not restricted to

just one type of decomposition, they provide a more com-

pact representation of the switching functions than either

OBDDs or OFDDs.

It has been shown that for certain classes of Boolean

functions, the size of an OFDD is exponentially smaller

than the OBDD representation of the same function and

vice versa [2]. Thus, it is possible to represent functions

e�ciently using OKFDDs for which no e�cient OBDDs or

OFDDs exist.

In this paper, an e�cient package for construction of

and operations on OKFDDs is introduced. Here, a re-

duction type for the minimization of OFDDs [1] is uti-

lized which allows the usage of complemented edges anal-

ogous to that for OBDDs [3]. As the size of an OKFDD

largely depends on the chosen variable ordering as well as

the type of decomposition, an algorithm for minimization

of OKFDDs based on dynamic variable ordering is intro-

duced. In this approach, a modi�ed version of the sifting

algorithm introduced by Rudell [13] is utilized. In addition

to the variable ordering, this sifting algorithm chooses an

appropriate decomposition type for the variables. Further-

more, the implementation of new e�cient synthesis algo-

rithms for OKFDDs is given. Finally, experimental results

are provided which con�rm the compactness of OKFDDs

and show the e�ciency of the approach.

2 Decision Diagrams

In this section, essential de�nitions and properties of

OKFDDs are presented. As OBDDs and OFDDs are spe-

cial versions of OKFDDs, these two structures are also

de�ned and will be compared with each other. Procedures

for reduction of OKFDDs are also presented.

The core of the data structures is a decision diagram

(DD), which is a directed acyclic graph with some addi-

tional properties.

De�nition 1 A decision diagram (DD) over Xn :=

fx1; x2; : : : ; xng is a rooted directed acyclic graph =

(;) with vertex set V containing two types of vertices,

non-terminal and terminal vertices. A non-terminal vertex

v is labeled with a variable from Xn, called the decision

g g

!

xi

xj xj

xi

g

xj

0

g

!

xj

type type

i re : e c i es

variable for v, and has exactly two successors denoted by

lo (v); g (v) . A terminal vertex v is labeled with

a 0 or 1 and has no successors.

The size of a DD, denoted by , is given by its

number of internal nodes. If DDs are to be used as a data

structure in design automation, it turns out that further

restrictions on their structure will be necessary. Two such

restrictions are de�ned below:

De�nition A DD is free if each variable is encountered

at most once on each path in the DD from the root to

a terminal vertex. A DD is ordered if it is free and the

variables are encountered in the same order on each path

in the DD from the root to a terminal vertex.

In the following, letter O will be used to denote ordered

DDs.

It is possible to de�ne certain reductions on the decision

diagrams in order to reduce their size. Three reduction

types will be used.

e : Delete a node v0 whose successors are identical

to the successors of another node v and redirect the

edges pointing to v0 to point to v.

e : Delete a node v whose two outgoing edges point

to the same node and connect the incoming edges of

the deleted node to the corresponding successor.

e D: Delete all nodes v whose successor g (v)
points to the terminal 0 and connect the incoming

edges of the deleted node to the corresponding suc-

cessor.

In Figure 1, graphical representations of reductions of

type and are shown. While each node in a DD is a

candidate for the application of reduction type I, candi-

dates for the application of the remaining reduction types

have to be de�ned in advance: The non-terminal nodes of

a DD are partitioned in two classes, Shannon nodes and

Davio nodes. Reduction of type S (D) is only allowed at

Shannon (Davio) nodes. In the following it is assumed that

this partition is given.

De�nition A DD is reduced if no reductions can be

applied to the DD.

TwoDDs, 1 and 2, are called e uivalent i 2 results

from 1 by repeated applications of reductions and inverse

reductions. A DD, 2, is called the reduction of a DD, 1,

if 1 and 2 are equivalent and 2 itself is reduced.

A careful analysis of the proofs in [5,] shows that the

following lemma is valid for DDs:

e 1 The reduction of a free DD, , is uniquely de-

termined and can be computed in linear time in the size

of .

Until now it has not been de�ned how DDs can be

related to Boolean functions. To do this, the following

notions are helpful. All nodes labeled with the same

variable are denoted as a level in the following. Let

: n
! be a Boolean function over the variable set

Xn. Then 0
i denotes the cofactor of with respect to

xi = 0, de�ned by 0
i (x) := (x1; ::; xi�1; 0; xi 1; ::; xn) for

x = (x1; x2; : : : ; xn)
n. Similarly, 1

i denotes the co-

factor for xi = 1. Finally, 2
i is de�ned as 2

i := 0
i

1
i ,

where stands for xclusive OR operation. (Notice that

the three functions 0
i ;

1
i ;

2
i can naturally be interpreted

as Boolean functions from n�1 to de�ned over the

variables x1; : : : ; xi�1; xi 1; : : : ; xn.) Using the above de�-

nitions, the following decompositions can be proven for an

arbitrary Boolean function :

= �xi

0
i xi

1
i o (1)

=
0
i xi

2
i o v v o (2)

=
1
i �xi

2
i g v v o (3)

Furthermore, these are the only possible single-variable de-

compositions which can lead to the unique representation

of the functions, up to negation [16]. Single-variable de-

compositions refer to all the decompositions to subfunc-

tions i which totally remove a single variable from both

subfunctions. It has to be mentioned that the uniqueness

of the representation is only under the condition that all

negations are transformed as described later on by com-

plemented edges.

Now, the ordered Kronecker Functional Decision Dia-

grams can formally be de�ned as follows:

De�nition An OKFDD over Xn is given by an or-

dered DD over Xn together with a uniquely deter-

mined decomposition type, i fShannon; positive Davio;
negative Daviog, assigned to each variable xi (

f1; ::; g). The function : n
! represented by

an OKFDD, , over Xn is de�ned as:

1. If consists of a single node labeled with 0 (1), then

is an OKFDD for = 0 (= 1).

2. If has a root v with label xi, then is an OKFDD

for

xi lo (v) xi i (v) : i is Shannon

lo (v) xi i (v) : i is positive Davio

lo (v) xi i (v) : i is negative Davio

where lo (v) (i (v)) are the functions represented

by the OKFDD rooted at lo (v) (g (v)).

If at every node in above de�nition only Shannon de-

composition is applied, the OKFDD will be an OBDD. If

only Davio decompositions are applied, the OKFDD will

be an OFDD. As it is evident, the OKFDD is the more

general decision diagram than both OBDD and OFDD.

De�nition A node in an OKFDD is called a hannon-
node if it is expanded by Shannon decomposition - qua-

tion (1). It is called a Davio-node if it is expanded by Davio

decompositions - quations (2) or (3); the latter being a

negative Davio-node and the former a positive Davio-node.

Utilizing reductions, it is possible to de�ne canonical

representations of functions. The combination of reduction

types I and S is well-known for OBDDs. The function

represented by a DD is well de�ned for OBDDs in the

sense that
1
= i 1 and 2 are equivalent OBDDs.

The same is also true for OFDDs with positive Davio nodes

if reduction types I and D are used [1]. Using Lemma 1

canonicity can also be proven for OKFDDs:

eo e 1 Reduced OKFDDs are canonical representa-

tions for Boolean functions if the decomposition types are

�xed for every variable.

OBDDs and OFDDs are special cases of OKFDDs for

which Shannon decomposition and Davio decompositions

are used for all splitting variables, respectively. In the case

of OKFDDs in general, each variable can be split by any of

the three decompositions given in equations (1), (2), and

(3). The advantage of using OKFDDs over just OBDDs or

OFDDs is for example that there are classes of functions

for which OBDDs are exponential in size while OFDDs

with only positive Davio-nodes are polynomial and vice

versa [2]. Using the OKFDDs, it is possible to achieve

a reduced size DD which is not restricted by the type of

decomposition.

The OKFDDs can further be reduced in size by using

complemented edges. The constraints of complemented

edges to maintain a canonical form for BDDs were given

in [3]. Similarly, complemented edges can be used for the

representation of a function and its complement by the

same node in the case of Davio-nodes [1].

Im ementation

In this section, implementational details of the OKFDD

package are described and OKFDD manipulation algo-

rithms are introduced.

c ca ta s

First, programming techniques and methods of imple-

mentation used to speed-up the package are described.

The methods are similar to other packages used for rep-

resentation and manipulation of OBDDs and OFDDs

[3, 12, 1]. Hence, these techniques are only brie y re-

viewed.

For the fast availability of the functions, a hash-based

unique table is used to store the nodes. A computed ta-

ble is implemented for the optimization of the synthesis

algorithms. Furthermore, level lists are used for the man-

agement of the nodes of each stage.

In this way, fast access to the nodes is possible by the

algorithms and e�cient local transformations can be per-

formed. The memory management is done by garbage col-

lection. The nodes are only deleted if the storage place

is needed for other nodes. Thus, it would not be needed

to recompute the results each time if they were used ear-

lier on. By the unique table, di erent OKFDDs can share

the same sub-OKFDDs. Therefore, several functions can

e�ciently be represented at the same time.

rat s a str ct

s

In the following, the algorithms for OKFDDs with �xed

variable ordering and a list of decomposition rules are

given.

First, the XOR-operation is presented as it provides the

basis for construction of certain other operations. Notice

that for two functions, and g one has:

g = (0 g0) xi(2 g2)

g = (1 g1) xi(2 g2)

g = xi(0 g0) xi(1 g1)

These equations make it possible to recursively split

up the Davio- and Shannon-nodes into their left and

right subgraphs and perform XOR-operations on the sub-

graphs. The resulting algorithm for XOR-operation on

two OKFDDs, kfdd or kfdd (), is a generalization of the

XOR-operation on two OFDDs, presented in [1].

The e�cient XOR-operation allows the construction of

OKFDDs from OBDDs. Here, one starts with a recur-

sive computation in the OBDD. At each Shannon-node,

v (labeled xi), which is to be transformed into a positive

Davio-node, the Davio-node, v0, corresponding to the func-
tion represented by v is constructed. The successor lo (v)
can be directly used for lo (v0) since it represents the co-
factor with respect to xi = 0. For the case of a negative

Davio-node, g (v) needs to be used. For the successor

g (v0), the XOR-operation has to be performed on the

successors of v. Although the operations for each node

can be performed e�ciently, the algorithm has exponen-

tial worst case behavior if it is iterated for all nodes in an

OBDD [2]. On the other hand, it can be shown that the

complexity remains polynomial, as long as only a constant

number of levels are transformed.

An algorithm to transform OKFDDs to OKFDDs with

an other choice of decomposition rules follows directly from

the algorithm described above with some slight modi�-

cations. Here, the recursive call of XOR-operation on

OBDDs, performed by if-then-else operation [3], has to

be substituted with the procedure for the general case

kfdd or kfdd (). Additionally, di erent cases for the avail-

ability of the successors have to be distinguished. For in-

stance, if a negative Davio-node must be transfered to a

Shannon-node, the function 0 must �rst be computed.

The realization of the AND-operation turns out to be

more complicated for Davio-nodes in comparison to the

XOR-operation. The following recursive equation holds

for positive Davio-nodes:

g = (0 xi 2) (g0 xig2)

= (0 g0) xi((2 g2) (0 g2) (g0 2))

This equation again de�nes a recursive algorithm which

has exponential worst case running time [2]. The same

results hold for negative Davio-nodes. However, for

OKFDDs with a constant number of levels, where the

Davio expansion is performed, it can be shown that the

operation is polynomial, since in these cases e�cient syn-

thesis operations on Shannon nodes can be carried out in

the rest of the graph.

The negation of a function, , can be computed by ob-

serving that = 1 . Thus, the operation requires an

xj

xi

xj

1 2

xi

xj

xi

1 2

i re : c e ce ri e

XOR-operation with the constant 1. Since the package

uses complemented edges, negation can be performed even

more e�ciently, simply by setting a complement edge.

Now, using the algorithms for the XOR-, AND-, and

NOT-operations, any binary operation can be realized.

For an OKFDD, , the restriction for variable

xi and constant can be computed by traversing the graph

and performing the corresponding substitutions. The case

for Shannon-nodes is given by [3]. For the case of positive

Davio-nodes, if xi = 0, edges from nodes v with label xi to

g (v) have to be deleted. If nodes with indegree 0 result,
these and their outgoing edges are also deleted. Clearly,

all this can be done in linear time. If xi = 1, then at

each node, v, with label xi and subfunctions g0 and g1,
the following has to be done. As before, the g -edge has

to be deleted, at the lo -edge an OKFDD for g0 g1 must

be rooted, i.e., an XOR-operation has to be executed. For

negative Davio-nodes, a similar procedure is required.

timi ation o DD i e

While the variable ordering plays a dominant role in the

identi�cation of the minimal OBDD representation of the

functions, in OKFDDs both the ordering and the decom-

position type are important. Depending on the order of

the variables and the particular decomposition among the

possible three, the size of the OKFDD can vary from lin-

ear to exponential [2]. It is well-known that in the case of

OFDDs and OBDDs, the size of the decision diagram can

be minimized by exchange of adjacent variables [7, 1]. It

can be proven that this idea can be extended to OKFDDs.

Therefore, it is also possible to use all techniques based on

exchanging of adjacent variables for OKFDDs. specially

the sifting algorithm, window permutation, and exact min-

imization algorithms [13,] can be used. The general case

for the exchange of variable, , and an adjacent variable, ,

is shown in Figure 2. Notice that the exchange pattern is

independent of the decomposition type of the nodes. The

exchange is performed very quickly since only edges must

be redirected. In this approach complemented edges are

also used.

By the sifting algorithm, the variables are sorted into

decreasing order based on the number of nodes at each

level and then each variable is traversed through the DAG

in order to locate its locally optimal position while all other

variables remain �xed.

The dynamic variable ordering based on the sifting algo-

rithm can be utilized in the minimization of OKFDD sizes

as well. In this scheme, the sifting algorithm is modi�ed so

that at each position all three types of decompositions are

tested and the local optimum is chosen based on both the

Name in out OBDD OFDD OKFDD

b1 3 4 6 5 5

c17 5 2 6 6

cm 2a 5 3 11

majority 5 1 7 7 7

rd53 5 3 16 13 13

rd73 7 3 30 21 21

wim 4 7 1 22 17

5xp1 7 10 41 45 2

e : ris e er es r i

s i i s

i i e i es

position and the type of the decomposition of the variable.

Thus, each time a variable changes the decomposition rule,

the new locally optimal position is determined by exchange

of adjacent variables.

The minimization scheme can be summarized as fol-

lows: A heuristic or random order OBDD is constructed

initially. If the size of the OBDD exceeds a chosen num-

ber of nodes, the reordering is applied. Here, each variable

traverses through the levels, exchanging its level with its

adjacent variable. With each exchange, an OKFDD is con-

structed with the chosen variable expanded with each of

the Davio decompositions respectively and the optimal po-

sition of the variable is found by sifting. This is repeated

for all levels and the locally optimal position and type of

decomposition is designated. The procedure is repeated

for a next variable, and so on. Thus, only one variable

is changed in each step and from this point of view this

heuristic is very simple.

erimenta esu ts

The experimental results con�rm the advantage of

OKFDDs overOBDDs and OFDDs and show the e�ciency

of the approach presented.

Herein the size of OKFDDs is compared with the size

of OBDDs and OFDDs. First, the minimal size for arith-

metical benchmark circuits [4] is considered. The bench-

marks are minimized by an algorithm similar to the one

presented in []. The results are given in Table 1. The op-

timum size can only be determined for small benchmarks

due to the exponential running time of the minimization

algorithm. For small functions there is only a minor im-

provement. But with increasing size of the functions the

gains improve, see e.g. 5xp1.

In a next series of experiments, larger benchmarks are

considered for which the optimal ordering can not be de-

termined. For this purpose, some benchmarks from [4] and

MCNC 1 are used.

For all types of decision diagrams (OBDDs, OFDDs

and OKFDDs), dynamic variable ordering [13], starting

from the original variable ordering was used. The results

are presented in Table 2. In the last row the total sum of

nodes for all the considered benchmarks is given. As it can

be observed, for these functions, the average gain is 25

when the simple ordering heuristic from Section 4 is used.

Currently, incorporation of more sophisticated schemes

such as changing several decompositions in parallel are be-

ing investigated. From the available results it can be in-

ferred that the use of OKFDDs can potentially have drastic

Name in out OBDD OFDD OKFDD

add6 12 7 6 45 44

apex7 4 37 2 6 360 266

bc0 26 11 535 727 431

chkn 2 7 322 45 27

cps 24 10 1040 12 3 766

f51m 3 35 25

intb 15 7 656 624 4 0

mlp4 134 107 106

radd 5 33 20 1

s1423 1 7 26 1 3 21 17 1

tial 14 617 600 47

ts10 22 16 1 3 155 155

total 6623 246 4 41

e : ris e er es r

s

in uence on realizations for which e�cient OBDDs do not

exist.

onc usions

In this paper, the e�ciency of ordered Kronecker Func-

tional Decision Diagrams as a more compact decision dia-

gram than OBDDs or OFDDs was shown. OKFDDs as a

generalization of OBDDs and OFDDs will be always more

compact than the two and this was con�rmed through ex-

perimental results. For small functions, this was shown by

comparison of optimal OBDDs, OFDDs, and OKFDDs.

For larger benchmarks, an average 25 improvement in

size over OBDDs was achieved.

Furthermore, a package for e�cient representation and

manipulation of Boolean functions by this data structure

was introduced. �cient algorithms were presented which

make fast construction and manipulation of OKFDDs pos-

sible. The construction algorithm uses the direct corre-

spondence between OFDDs and OBDDs.

The canonicity of the OKFDDs and e�cient construc-

tion and manipulation techniques presented here make

OKFDDs a prime candidate for utilization in applications

where OBDDs have been the main construct. Applica-

tions in synthesis and veri�cation as well as technology

mapping to various FPGA architectures are among those

that OKFDDs can be utilized.

The presented results provide the incentive to further

investigate the e�cient construction and application of

OKFDDs. It is the focus of current research to develop

more sophisticated ordering and decomposition heuristics.

With the help of these heuristics, even more compact rep-

resentations - also for functions with prohibitively large

OBDD and OFDD sizes - should be constructible in rea-

sonable time.

e erences

[1] B. Becker, R. Drechsler, and M. Theobald, On the

Implementation of a Package for �cient Represen-

tation and Manipulation of Functional Decision Dia-

grams, IFI .5 orkshop on Appl. of eed-
uller pans. in irc. Design, 1 3.

[2] B. Becker, R. Drechsler, and R. Werchner, On the

Relation Between BDDs and FDDs, Technical report,

University of Frankfurt, 12/ 3, 1 3.

[3] K. S. Brace, R. L. Rudell, and R. . Bryant, �cient

Implementation of a BDD Package, roc. 2 th Design
Automation onf., pages 40 45, 1 0.

[4] R. K. Brayton, G. D. Hachtel, C. McMullen, and

A. L. Sangiovanni-Vincentelli, ogic inimization Al-
gorithms for I nthesis, Kluwer Academic Pub-

lishers, 1 4.

[5] R. . Bryant, Graph-Based Algorithms for Boolean

Function Manipulation, I rans. on omp., C35,
pages 677 6 1, 1 6.

[6] R. . Bryant, Symbolic Boolean Manipulation with

Ordered Binary Decision Diagrams, A omp. ur-
ve s, Vol. 24, pages 2 3 31 , 1 2.

[7] M. Fujita, . Matsunga, and T. Kakuda, On Variable

Ordering of Binary Decision Diagrams for the Appli-

cation of Multi-Level Synthesis, uropean onf. on
Design Automation, pages 50 54, 1 1.

[] . Gergov and C. Meinel, �cient Analysis and

Manipulation of OBDDs Can be xtended to Read-

Once-Only Branching Programs, to be published in

I rans. on omp., 1 4.

[] N. Ishiura, H. Sawada, and S. ajima, Minimization

of Binary Decision Diagrams Based on xchange of

Variables, roc. Int. onf. on omputer-Aided De-
sign, pages 472 475, 1 1.

[10] U. Kebschull, . Schubert, and W. Rosenstiel, Mul-

tilevel Logic Based on Functional Decision Diagrams,

roc. uropean Design Automation onf., pages 43
47, 1 2.

[11] S. Malik, A. R. Wang, R. K. Brayton, and A.

L. Sangiovanni-Vincentelli, Logic Veri�cation Using

Binary Decision Diagrams in a Logic Synthesis nvi-

ronment, roc. Int. onf. on omputer-AidedDesign,
pages 6 , 1 .

[12] S. Minato, N. Ishiura, and S. ajima, Shared Binary

Decision Diagrams with Attributed dges for �cient

Boolean Function Manipulation, roc. 2 th Design
Automation onf., pages 52 57, 1 0.

[13] R. L. Rudell, Dynamic Variable Ordering for Or-

dered Binary Decision Diagrams, roc. Int. onf. on
omputer-Aided Design, pages 42 47, 1 3.

[14] A. Sarabi and M. A. Perkowski, Fast x-

act and uasi-Minimal Minimization of Highly

Testable Fixed-Polarity AND/XOR Canonical Net-

works, roc. 2 th Design Automation onf., pages
30 35, 1 2.

[15] A. Sarabi, P. F. Ho, K. Iravani, W. R. Daasch, and

M. A. Perkowski, Minimal Multi-Level Realization of

Switching Functions Based on Kronecker Functional

Decision Diagrams, Int. orkshop on ogic nth.,
pages P3a:1 6, 1 3.

[16] T. Sasao. ogic nthesis and Optimization, Kluwer
Academic Publishers, 1 3.

[17] T. Sasao and Ph. Besslich, On the Complexity of

Mod-2 Sum PLAs, I rans. on omp., Vol. 3 ,

No. 2, pages 262 266, 1 0.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

