
An E�cient Zero-Skew Routing Algorithm

Masato Edahiro

C&C Research Laboratories, NEC Corporation

Miyazaki, Miyamae-ku, Kawasaki 216, Japan

Department of Computer Science, Princeton University

Princeton, NJ 08544-2087, USA

Abstract| A bucket algorithm is proposed for zero-
skew routing with linear time complexity on the aver-
age. Our algorithm is much simpler and more e�cient
than the best known algorithm which uses Delaunay
triangulations for segments on Manhattan distance.
Experimental results show that the linearity of our al-
gorithm is accomplished. Our algorithm generates a
zero-skew routing for 3000-pin benchmark data within
5 seconds on a 90MIPS RISC workstation.

I. Introduction

With scaling down the dimensions of devices, zero-skew
clock routing technique becomes more critical for high
performance VLSI's because wiring delay grows compa-
rable to (or even dominates) gate switching delay. Even
though exact zero skew was achieved [11], more e�cient
delay minimization algorithms are still desired.
There have been four types of algorithms proposed

for the total-wire-length minimization in zero-skew rout-
ing. Matching-based [3] and partitioning-based algo-
rithms [2] were the �rst practical algorithms for this prob-

lem whose time complexity is O(n log2 n). A bottom-up
construction algorithm [8] reduced the total wire length
by 15%, though its time complexity is O(n2 log n). A
clustering-based algorithm [4] improved the time com-
plexity to O(n log n) without any increase of the total
wire length. Thus, the clustering-based algorithm is cur-
rently the most e�cient in a theoretical sense. In prac-
tice, however, the clustering-based algorithm might not
be e�cient because it is required to construct Delaunay
triangulations for segments on Manhattan distance, for
which no practical algorithm has been proposed.
As for the total delay minimization, Edahiro [5] re-

cently proposed delay time estimation and optimum wire-
sizing methods. He proposed a minimum-delay zero-skew
routing algorithm by combining these methods with the
clustering-based algorithm [4].
In this paper, we propose a zero-skew routing algorithm

that is much simpler and practically more e�cient than
the clustering-based algorithm. The time complexity of
our algorithm is linear on the average. In this algorithm,
we introduce a relation graph to represent the nearness

root

center
vc

v
3
s

v
4
s v

5
s

v6
s v

7
s

v
8
sv

2
s

v
1
s vr

Figure 1: Clock Tree with a root vr and leaves S =
fvs

1
; v

s
2
; . . . ; vs

8
g.

between nodes on clock trees. In addition, we de�ne an
independent edge set on the relation graph that is used to
construct minimum-delay zero-skew routings in a bottom-
up fashion.
We use a bucket algorithm to construct relation graphs.

The bucket algorithm �nds `nearness' between nodes in
linear time on the average. In order to search the inde-
pendent edge set, a depth �rst traverse is utilized on the
relation graphs, which is performed in linear time. As a
result, linearity of our algorithm is accomplished.
Experimental results show that, while the delay time

increases 3% in our algorithm compared with the best
known algorithm [4, 5], our algorithm is much simpler
and more e�cient. Our algorithm generates a zero-skew
routing for 3000-pin benchmark data within 5 seconds on
a 90MIPS RISC workstation.

II. Zero-Skew Routing

Given a fan-out terminal vr and a set of n fan-in ter-
minals S = fv

s
1; v

s
2; . . . ; v

s
ng, a clock tree is de�ned by a

tree rooted by vr whose n leaves are S (Fig. 1). We call
the fan-out terminal root and fan-in terminals leaves. A
set of leaves in the subtree rooted by a node v is called
leaves connecting to v and denoted by Sv. In this paper,
clock trees are always binary, though nodes may degen-
erate and they do not look binary in some cases. Also,
we call the nearest internal node to the root the center
denoted by vc.
We assume that the load capacitance C(vsi ) is given for

each leaf vsi , which is usually the gate capacitance of tran-
sistors associated with the leaf. Also, the load capacitance
C(v) for an internal node v is de�ned by the total capaci-
tance in Sv that includes wire capacitance as well as gate
capacitance.



Then, a zero-skew routing for the given root and leaves
is de�ned by a clock tree in which all delay time from the
root to all leaves is equal. From this de�nition, it is clear
that, for any node in the zero-skew routing, all delay from
the node v to leaves in Sv should be equal, which is called
delay time �(v) for v. For leaves vsi , �(v

s
i ) = 0.

An exact zero-skew routing can be constructed in a
bottom-up fashion by repeatedly calculating the position
of an internal node v from the positions of children v1
and v2 of v using the following equations derived from
�-model [5]:

�(v) =
rl1

w1

�
cl1w1

2
+ C(v1)

�
+ � (v1)

=
rl2

w2

�
cl2w2

2
+ C(v2)

�
+ � (v2);

C(v) = C(v1) + C(v2) + c(l1w1 + l2w2);

where l1 (l2) and w1 (w2) are length and width of the
wire from v to v1 (v2), and r and c are wire resistance
and capacitance for an unit length and width wire.
This operation to determine the location of a node v is

called the zero-skew merge. At a zero-skew merge, it is
clear that l1 + l2 � l, where l is the distance between v1
and v2. Therefore, in order to minimize the delay time,
it is desired to �nd v such that l1 + l2 = l. If there is
no such a v, zero-skew routing algorithms should use a
detour. Although the number of detours depends on the
algorithms and the input data, detours hardly appear in
actual layouts on `good' algorithms.
Note that, in Manhattan distance, a set of feasible

points for v satisfying the above equations forms a di-
agonal segment in general. This segment (or point for a
leaf) is called the segment for v or simply v. The segment
for v can be calculated in constant time even if children
are also expressed by diagonal segments [2, 6].

III. Definitions

In this section, we de�ne the relation graph and the
independent edge set on the relation graph, which play
important roles in our algorithm.

A. Relation Graph

First, we de�ne the relation graph with a relation func-
tion f(vi; vj) of segments vi and vj . Examples of relation
functions will be described later. Let K be a set of seg-
ments. The relation graph G(K;E) for K is de�ned by
the weighted directed graph such that

i) Each node v 2 K has exact one out-going edge, so that
jEj = jKj,

ii) If (vi; vj) 2 E for vi; vj 2 K, 8vk 2 K � fvig,
f(vi; vj) � f(vi; vk) (if there is a tie, one of the tie
edges is arbitrarily selected),

iii) Each edge e = (vi; vj) 2 E has a weight w(e) =
f(vi; vj).

An example of relation graph is depicted in Fig. 2. As we
explain in the following sections, some edges in relation
graphs are selected at each step of our algorithm, and,

v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
s

v
2
s

v
1
s

5

4
2

1
1

3
2

2

Figure 2: Relation Graph for K = fv
s
1
; . . . ; vs8g in Fig. 1.

for each selected edge, its two endpoints are zero-skew
merged. We say that the zero-skew merge is associated
with the edge.
We use two types of relation function. The nearest-

neighbor relation function calculates the Manhattan dis-
tance between segments for vi and vj . Note that the rela-
tion graph with this function is equivalent to the nearest
neighbor graph [4, 9]. Since the distance between seg-
ments for vi and vj turns out the increase of the total
wire length when vi and vj are zero-skew merged, the
nearest neighbor relation tries to minimize the total wire
length.
The other is called the minimum-delay relation func-

tion. Since the total delay td is well-estimated by the
following formula [5]:

td � 1:85
C(vr)

�VDD

+ 0:7�(vr);

where � is the MOS transistor gain factor, we de�ne the
minimum-delay relation function by:

f(vi; vj) = 1:85
C(v)

�VDD

+ 0:7�(v);

where v is the segment obtained by the zero-skew merge
between vi and vj . It is clear that this relation function
tries to minimize the total delay. Note that it is not dif-
�cult that the minimum-delay relation function includes
the wire width optimization technique proposed in [5].
In this paper, we analyze properties of the relation

graphs and our routing algorithm only for the nearest-
neighbor relation function because the minimum-delay
relation function is too complicated to look into. Fortu-
nately, since short wire length tends to cause short delay
time, these two relation functions have similar behavior
in zero-skew routing algorithms.
Now, we show a property for the nearest neighbor graph

[4]. Let the sequence fe0; e1; . . . ; ejKj�1g be the edges in
E sorted by their weights in non-decreasing order. Then,
the following property characterizes the weight of ei.

Property 1 For 0 � 8i < jKj � 1,

w(ei) �
Dp

jKj � i� 1
;

where D is the diameter of K.

B. Independent Edge Set

In a relation graph, two edges are called dependent if
these edges share an endpoint. Also, an edge set is called



v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
s

v
2
s

v
1
s

5

1

3

2

Figure 3: Independent Edge Set for Fig. 2 (solid lines).

independent if no two edges in the set are dependent. An
example of the independent edge set is shown in Fig. 3.
Since zero-skew merges associated with dependent

edges cannot be implemented at the same time, we need
to select an independent edge set from a relation graph
to minimize the total wire length or the total delay. We
describe the selection algorithm in the next section.

IV. Algorithm

In this section, we propose a zero-skew routing algo-
rithm with linear time complexity on the average. In
our algorithm, we use a parameter k > 1. Typically,
2 � k � 5. Also, we use a function s(a; b; c) where a � c

de�ned by

s(a; b; c) =

8<
:

a; a � b;

b; a < b < c;

c; b � c:

First, we outline our algorithm. Let K be a subset of
nodes in the zero-skew routing we are constructing. Ini-
tially, K � S. At each step of our algorithm, after con-
structing a relation graph for K, an independent edge set
on the relation graph is selected. Then, zero-skew merges
between vi and vj are applied for all edges (vi; vj) in the
set, and K is updated by deleting vi and vj and insert-
ing v that is generated by the zero-skew merge associated
with (vi; vj). Repeating this procedure several times, the
position of the center vc is determined.
After that, a clock routing is generated by embedding

wires in a top-down fashion using positions calculated
above.
It is important to note that, as discussed in [4], ap-

plying zero-skew merges associated with all edges in an
independent edge set could cause longer total wire length
and/or total delay time. They pointed out that it is a
better idea to limit only jKj=k smallest-weight edges in
the relation graph. This technique is also implemented in
our algorithm.
Let us take a simple example in Fig. 4. We assume

k = 2. For a set of leaves S (Fig. 4 (a)), the relation graph
is depicted in Fig. 4 (b), in which weight w(e) is attatched
on each edge e. An independent edge set is shown in Fig. 4
(c). Zero-skew merges are implemented for two edges in
the independent set because of the limit k = 2. The new
segments are v9 from (vs

3
; v

s
4
) and v10 from (vs

7
; v

s
8
) (Fig. 4

(d)). K is updated to fvs1; v
s
2; v

s
5; v

s
6; v9; v10g, and v9 (v10)

becomes a father of vs
3
and v

s
4
(vs

7
and v

s
8
) in the zero-

skew routing we are constructing (Fig. 4 (e)). Then, a
relation graph is reconstructed for the updated K (Fig. 4

(f)). After repeating this operation, the segment for vc
is obtained. Figure 4 (g) shows all calculated segments,
and their tree structure is depicted in Fig. 4 (h).
Then, we �rst draw a wire from vr to the nearest posi-

tion on the segment for vc. Drawing all wires from father
to children on the clock tree in a top-down fashion, a
zero-skew routing is generated (Fig. 4 (i)).
In the following sections, we describe our algorithm in

detail.

A. Relation Graph Construction

In the algorithm proposed in [4], the nearest neighbor
graph is constructed from a Delaunay triangulation [9].
However, calculating Delaunay triangulations seems ex-
pensive in practice. In this section, we propose a new con-
struction method using the bucketing technique, which
accomplishes linear time complexity on the average.

(1) Bucket Decomposition

Buckets are spatial partitioning by meshes. In our
algorithm, all segments in a node set K are distributed
in �(jKj) buckets. Since we need to store diagonal seg-
ments in buckets, we use buckets partitioned by diagonal
lines in our implementation. An example of the bucket
decomposition for Fig. 4 (a) is shown in Fig. 5.
The bucket size is determined by the following way.

Let D be the diameter of K, that is, the distance be-
tween the farthest pair of elements in K. Also, let

d =
p
s(2; (1� 1=k)jKj+ 1; jKj)� 1. Then, the size of a

bucket is calculated by (D=d) � (D=d).
There are two signi�cant characteristics in this parti-

tioning method. First, on this partition, we have only
to check nine buckets for a portion of each segment vi
inside a bucket to �nd an edge (vi; vj) that is possible
to belong to jKj=k smallest-weight edges in the nearest
neighbor graph. This is simply proven. By Property 1,
for the (jKj=k)-th smallest-weight edge e in the nearest
neighbor graph, the upper bound of w(e) is D=d. This
means that we do not need to check any segment whose
distance from vi is more than D=d. Since the bucket size
is (D=d) � (D=d), for any portion of segment inside a
bucket, we have only to check nine buckets.
The second characteristic is that the number of buckets

is �(jKj). This is also proven easily. From the de�nition
of buckets, the number of buckets is d2, which is �(jKj).
Now, we assume that segments in K are uniformly dis-

tributed, and that length of any segment in K is not very
long so that each segment intersects with O(1) buckets.
Note that these assumptions are satis�ed for benchmark
data [7, 11]. Under these assumptions, it is easy to see
that each bucket contains O(1) segments in K on the av-
erage, and it requires only O(1) time for a segment vi inK
to �nd an edge (vi; vj) that is possible to belong to jKj=k
smallest-weight edges in the nearest neighbor graph.

(2) Relation Graph Construction

Next, a relation graph is constructed using the bucket
decomposition described above. In our algorithm, how-
ever, we do not construct an entire relation graph,
but generate its subgraph that includes at least jKj=k
smallest-weight edges in the nearest neighbor graph. This



root

v
3
s

v
4
s v

5
s

v6
s v

7
s

v
8
sv

2
s

v
1
s vr

root

v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
s

v
2
s

v
1
s vr

5

4
2

1
1

3
2

2

root

v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
s

v
2
s

v
1
s vr

5

1

3

2

(a) (b) (c)

root

v
3
s

v
4
s v

5
s

v6
s v

7
s

v
8
sv

2
s

v
1
s vr

v
10

v
9

root

v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
sv

2
s

v
1
s vr

v
10

v
9

root

v
5
s

v6
s

v
2
s

v
1
s vr

v
10

v
9

5

2.5 2.5

3

2.5

2.5

(d) (e) (f)

root
vr

root
vr

root
vr

v
3
s

v
4
s v

5
s

v6
s

v
7
s

v
8
sv

2
s

v
1
s

(g) (h) (i)

Figure 4: Example of Our Algorithm.

subgraph is su�cient for our purpose because only jKj=k
smallest-weight edges are necessary in our algorithm as
we have discussed above.
In order to calculate the subgraph, we �rst construct

the bucket decomposition. Then, for each segment vi 2
K, we �nd a segment vj , which minimizes the relation
function f(vi; vj) among all segments in K contained in
nine buckets around vi. From the above discussion, the
following property is clear.

Property 2 Our bucket algorithm requires O(jKj) time
on the average to construct a subgraph of the nearest
neighbor graph for K, which includes at least jKj=k

smallest-weight edges in the nearest neighbor graph.

B. Independent Edge Set Selection

In this section, we describe a linear-time algorithm to
select an independent edge set from a relation graph. It
is desired that edge weights in the independent set are as
small as possible. First, we describe a simple algorithm
whose complexity is not linear.

(1) Basic Algorithm

In this algorithm, we �rst sort all edges in the relation
graph for K in non-decreasing order. Also, let I be a set
of edges and initially I = �. Then, edges are taken one
by one in the sorted order. If an edge is independent from
all edges in I, add it to I; and otherwise, the edge is just
discarded. After checking jKj=k smallest-weight edges,
an independent edge set has been stored in I. We call
the independent edge set by this algorithm the canonical
independent set. Fig. 4 (c) is the canonical independent
set on the relation graph in Fig. 4 (b) for K.
Note that the time complexity for this algorithm is

O(jKj log jKj) for sorting.

(2) Linear Time Algorithm

Next, we propose a linear time algorithm to �nd the
canonical independent set. Before explaining our algo-
rithm, we state the condition for the canonical indepen-
dent set.



Property 3 Edge e = (vi; vj) is in the canonical inde-
pendent set if no edge e

0 of w(e0) � w(e) incident to vi
or vj is in the canonical independent set.

Now, we propose our algorithm to �nd the canonical
independent set. Our algorithm uses a depth �rst search.
In our algorithm, each edge e has a 
ag flag(e) initialized
by UNSEEN . If an edge e is to be in the canonical
independent set, flag(e) is set to Y ES, and if not, flag(e)
is set to NO.

Algorithm Find Independent Set

Step 1: For all v 2 K, check dependency(v;NULL).

Step 2: Canonical Independent Set := fAll edges with Y ES


agg.

procedure check dependency(v; e0)

Step 1: If e0 6= NULL AND flag(e0) 6= UNSEEN , return.

Step 2: Take a smallest-weight edge e with flag(e) 6= NO

among all edges incident to v.

Step 3: If e = e0, flag(e0) = Y ES and return.

Step 4: check dependency(v0; e), where v0 is the other end-

point of e.

Step 5: If flag(e) = Y ES, flag(e0) = NO and return.

Step 6: Go to Step 2.

As we discussed above, we have only to check jKj=k
smallest-weight edges. In order to implement it, we need
to calculate the weight of the (jKj=k)-th smallest edge.
There is a theoretically linear-time algorithm [1] for this
calculation, but another algorithm shown in [10] is prac-
tically more e�cient. Once the weight is known, our al-
gorithm is easily modi�ed for the weight.
Next, we analyze the time complexity of this algo-

rithm. Since the algorithm traverses the relation graph in
a depth-�rst fashion, it is clear that the time complexity
is linear if sorting in Step 2 of check dependency can be
performed in a constant time. In order to prove it, the
following property is useful [4].

Property 4 At most ce edges are in-coming to any node
in the nearest neighbor graph, where ce is a constant.

By this property, the number of edges to be sorted in
Step 2 of check dependency is constant. As a result, it is
proven that our algorithm has linear time complexity.

Property 5 Our algorithm requires O(jKj) time to �nd
a canonical independent set on the nearest neighbor graph
for K.

C. Zero-Skew Routing Algorithm

Now, we present our linear-time zero-skew routing algo-
rithm. Let K be a set of segments. Initially, K = S. Our
algorithm has two phases, Find Center and Embedding.
In Find Center, segments for all internal nodes are cal-
culated in a bottom-up fashion, and then, in Embedding,
the best position of each node is determined in a top-down
fashion.
The algorithm is stated as follows:

v
3
s

v
4
s v

5
s

v6
s v

7
s

v
8
sv

2
s

v
1
s

Figure 5: Bucket Decomposition for K = fv
s
1
; . . . ; vs8g in

Fig. 4 (a).

Algorithm Find Center

Step 1: K := S.

Step 2: If jKj = 1, stop.

(The element in K is the segment for the center vc.)

Step 3: Let D be the diameter of K, and let

d =
p
s(2; (1� 1=k)jKj+ 1; jKj)� 1.

Construct buckets of size (D=d) � (D=d) for K.

Step 4: Construct a relation graph G(K;E) on K.

Step 5: Calculate i-th minimum value v� of w(e) among

8e 2 E, where i = s(1; jKj=k; jKj � 1).

Step 6: Select the canonical independent set from fe 2

Ejw(e) � v�g.

Step 7: Apply zero-skew merges associated with all edges in

the canonical independent set.

Step 8: Go to Step 2.

Algorithm Embedding

Step 1: Determine the center vc by selecting the nearest point

to the root vr on the segment for vc. Route from vr to

vc.

Step 2: local embedding(vc)

procedure local embedding(v)

Step 1: If v has no child, return.

Step 2: Let v1, v2 be the children of v. For i = f1; 2g,

determine a point vi on the segment for vi so as to satisfy

the zero-skew merge equations. Route from v to vi.

Step 3: local embedding(v1), local embedding(v2).

It is clear that the time complexity of Algorithm
Embedding is linear. Also, from the analysis in the pre-
vious sections, Steps 3-7 in Algorithm Find Center are
performed in O(jKj) time on the average for K. Since
the degree of nodes in relation graphs is constant (Prop-
erty 4), the size of the canonical independent set is �(jKj)



Table 1: Total Delay Time [nsec] for three algorithms.
#pins part. [2] clst. [4, 5] proposed

prim1 269 6.56 5.60 5.62

prim2 603 16.99 12.77 12.84

r1 267 2.49 1.91 1.95

r2 598 5.61 4.06 4.30

r3 862 7.71 5.40 5.57

r4 1903 18.58 11.58 11.69

r5 3101 31.48 17.60 18.10

Table 2: CPU Time [sec] for three algorithms.
(Clustering-based algorithm [4, 5] has O(n2) time com-

plexity because we did not implement Delaunay triangu-
lation algorithm.)

#pins part. [2] clst. [4, 5] proposed

prim1 269 0.42 0.90 0.25

prim2 603 1.92 5.03 0.70

r1 267 0.18 0.87 0.27

r2 598 0.52 4.63 0.68

r3 862 0.82 9.72 1.05

r4 1903 2.20 48.1 2.55

r5 3101 3.77 127.6 4.08

for K. Therefore, after zero-skew merges associated with
a canonical independent set for a set K, the size of the
resultant set is O(cjKj) where c is a constant less than 1.
As a result, we obtain the linearity of our algorithm.

Lemma 1 Our zero-skew routing algorithm requires
O(n) time on the average.

V. Experimental Results

Now, we show experimental results with benchmark
data prim1-prim2 [7] and r1-r5 [11]. In this experi-
ment, we compared our algorithm with the partitioning-
based [2] and the clustering-based algorithms [4, 5]. The
clustering-based algorithm [4, 5] is currently the best al-
gorithm in the total delay time and theoretically the most
e�cient in the time complexity. However, this algorithm
might not be e�cient in practice because the algorithm
needs to construct Delaunay triangulations for segments
on Manhattan distance, for which no practical algorithm
has been proposed. On the other hand, the partitioning-
based algorithm [2] is the most practical in the sense of ex-
ecution time, though the total wire length is much longer
compared with the clustering-based algorithm [4, 5].
In our algorithm, we used the minimum-delay relation

function and the parameter k = 4. The wire-width opti-
mization proposed in [5] was used in the clustering-based
algorithm [4, 5] and our algorithm.
Tables 1 and 2 show the total delay time and CPU time

for the experiment. The total delay time is estimated by
the formula in [5] that was justi�ed using SPICE simula-
tion. CPU time was measured on a 90MIPS RISC work-
station. Note that our implementation for the clustering-
based algorithm [4, 5] has O(n2) time complexity because
we did not implement the Delaunay triangulation algo-
rithm, though the total delay time on zero-skew routings

generated by our program for the algorithm [4, 5] is equal
to that reported in [5].
It is observed in Table 1 that our algorithm is 10%-

40% better than the partitioning-based algorithm [2] for
the total delay time. Also, it is important to note that Ta-
ble 2 indicates that the time complexity of our algorithm
is linear, while that of the partitioning-based algorithm
[2] is a little more than O(n) (theoretically, O(n log2 n)).
Although CPU time for the clustering-based algorithm
[4, 5] shows O(n2) time complexity, we believe that our
algorithm is still much more e�cient than O(n log n) algo-
rithm because the algorithm needs to construct Delaunay
triangulations several times. Tables show that our algo-
rithm generates a zero-skew routing for r5 (3101 pins)
within 5 seconds with only 3% increase of the total delay
time compared with the best known algorithm [4, 5].

VI. Conclusions

We have proposed a zero-skew routing algorithm with
linear time complexity on the average. In order to achieve
linearity, relation graphs are constructed using bucket-
ing technique, and independent edge sets are found by a
depth �rst search. This algorithm is much simpler and
more e�cient than the best known algorithm which uses
Delaunay triangulations for segments on Manhattan dis-
tance. Experimental results show that our algorithm gen-
erates a zero-skew routing for 3000-pin benchmark data
within 5 seconds on a 90MIPS RISC workstation.

Acknowledgment

The author would like to thank A. B. Kahng and K. D.
Boese of UCLA and R. S. Tsay of ArcSys Inc. for pro-
viding benchmark data, and R. J. Lipton of Princeton
University for valuable discussion.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1976.

[2] T. H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and A. B.

Kahng, \Zero skew clock routing with minimum wirelength,"

IEEE Trans. on CAS II, Vol. 39, pp.799-814, 1992.

[3] J. C. Cong, A. B. Kahng, and G. Robins, \Matching-based

methods for high-performance clock routing," IEEE Trans. on

CAD, Vol. 12, pp.1157-1169, 1993.

[4] M. Edahiro, \A clustering-based optimization algorithm in zero-

skew routings," Proc. of 30th DAC, pp.612-616, 1993.

[5] M. Edahiro, \Delay minimization for zero-skew routing," Proc.

of 1993 ICCAD, pp.563-566, 1993.

[6] M. Edahiro, \Equi-spreading tree in Manhattan distance," un-

published.

[7] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, \Clock rout-

ing for high-performance ICs," Proc. of 27th DAC, pp.573-579,

1990.

[8] Y. M. Li and M. A. Jabri, \A zero-skew clock routing scheme

for VLSI circuits," Proc. of 1992 ICCAD, pp.458-463, 1992.

[9] F. P. Preparata and M. I. Shamos, Computational Geometry:

An Introduction. Springer-Verlag, 1985.

[10] R. Sedgewick, Algorithms in C. Addison-Wesley, 1990.

[11] R. S. Tsay, \An exact zero-skew clock routing algorithm,"

IEEE Trans. on CAD, Vol. 12, pp.242-249, 1993.


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




