
Generation of High Quality Non-Robust Tests for Path Delay Faults

Kwang-Ting Cheng Hsi-Chuan Chen
Department of ECE AT&T Bell Laboratories

University of California Murray Hill, NJ 07974
Santa Barbara, CA 93106

Abstract - Earlier research results have shown that for many
designs, a large portion of path delay faults is not robustly testable.
In this paper, we investigate the test strategy for the non-robustly
testable faults. We first present some experimental results to show
that the quality of a non-robust test set may be very poor in detect-
ing small delay defects caused by manufacturing process variation.
We further show that a better set of non-robust tests can be
obtained by including timing information in test generation. A
good non-robust test can tolerate a larger timing variation on the
off-inputs of the path than a poor test. An algorithm for generating
such better quality non-robust tests is presented. We present exper-
imental results to compare quality of non-robust test sets with and
without using our method. We also present an algorithm, as well
as experimental results, for generating validatable non-robust tests.

1. Introduction

The ultimate objective of delay testing is to find and apply a
set of test vectors that can uncover all defects that affect the
circuit’s timing behavior. Two fault models are commonly used for
timing defects: the gate delay fault model [1, 2] and the path delay
fault model [3, 4, 5]. There are pros and cons for both models,
which has been discussed in many articles (e.g. [6]). In this paper,
we use the path delay fault model.

It requires a vector pair to test a delay fault. There are three
conditions that can be imposed on the tests for path delay faults:
single path sensitization condition, robust condition and non-robust
condition. A single-path-sensitization test requires all off-inputs of
the target path to remain in their non-controlling values such that
the timing of the target path can be fully characterized by the test.
A less stringent condition is the robust condition. A robust test [4,
5] guarantees the detection of the fault regardless of the delays at
all other signals. Results reported in [5] and [7] show that a large
number of faults do not have any robust test for many benchmark
and industrial circuits. These faults are called robustly untestable
faults. The least stringent condition is the non-robust condition. It
only requires the vector pair creates the desired transition at the
source of the path and the second vector of the pair statically sensi-
tizes the path. A non-robust test will detect the delay fault in the
target path if the arrival times of all off-inputs signals are not late
(i.e. not faulty). However, if any of them is late, the test may
become invalid. Faults that do not have any non-robust test are
called non-robustly untestable faults.

We need some definitions for further discussion. Given a
logic circuit C, an instance F of C is referred to an implementation
of C. Each gate and connection of F is associated with a propaga-
tion delay (which can be a number or a range). Different instances
have the same circuit structure (as C) but may have different propa-
gation delays at signals and can be considered as models for dif-
ferent manufactured chips. Given a logic design, those instances
that do not have any sensitizable path longer than the clock period
τ are called good instances. The presence of different delay defects
will result in different instances.

Paths that are non-robustly untestable may still affect a
circuit’s performance for certain instances [8]. These paths are
called functional sensitizable paths. A sufficient condition was
suggested in [8] for paths that are false (i.e. unsensitizable) for all
possible instances. These paths are considered redundant and need
not be tested. It has been shown that a large percentage of path
delay faults are redundant for many benchmark circuits as well as
real designs.

For a non-robust testable fault, there usually exist many
non-robust tests. Our preliminary study shows that some of the
non-robust tests have a higher quality than others in terms of their
capability in detecting delay defects. Existing methods cannot dif-
ferentiate these tests. For such a fault, we attempt to generate a
non-robust test which is closer to a robust test. We introduce a
metric, called robustness, for a non-robust test. The higher the
robustness of a non-robust test, the lower the probability of the test
becomes invalid (due to extra propagation delays at other signals).
We will give the definition of robustness of a non-robust test in
Section 3. In Section 4, we will show an algorithm for generating
non-robust tests with high robustness.

A non-robust test becomes invalid if certain other paths are
defective. If we can robustly test those paths that may invalidate a
non-robust test for the target path, the non-robust test along with
the robust tests for those associated paths form a validatable non-
robust test for the target fault [9]. To generate high quality non-
robust tests, the first attempt should be to generate validatable
non-robust tests. To the authors’ knowledge, no algorithm or tools
have been reported for automatic generation of validatable non-
robust tests. In Section 5, we present an algorithm for generating
such tests.

We present experimental results in Section 6. We first show
how much improvement we can make with respect to the metric we
define (i.e. robustness) in generating non-robust tests. We also
present results of validatable non-robust test generation for some
benchmark circuits. To justify the metric we use for non-robust
test generation, we designed and conducted an experiment to assess
the quality of different non-robust tests with different level of
robustness. We generate a large number of (normally distributed)
random instances. These instances are generated in a way to mimic
the impact of process variation on signal propagation delays. We
then simulate different sets of tests to compare their capability of
detecting faulty instances. The details of the experiment are
explained in the next section and Section 6.

2. An Experiment

To give a clear motivation for this work, we designed the
following experiments to compare the quality of robust and non-
robust tests. For a given logic circuit, we generated a large set of
instances with different propagation delays at signals to mimic the
manufacturing process variation. These generated instances are
used for delay testing. The way we generate the propagation
delays is described in the next paragraph. An instance whose long-
est sensitizable path is longer than the clock period is then con-
sidered as delay-defective. The longest propagation delay of an
instance can be identified by a timing analyzer. We then use a

multiple-delay logic simulator to simulate robust and non-robust
tests and compare them on their capability of detecting these
delay-defective instances.

In our experiments, the nominal propagation delay for each
signal and each gate is given. We assume the propagation delay at
each signal is a random variable of normal distribution. The mean
is the given nominal propagation delay and the standard deviation
is also given. We use a random number generator (for a normal dis-
tribution of given mean and standard deviation) to generate the pro-
pagation delay for each signal. We generate a large number of
instances. For each generated instance, we use our timing analyzer
[10] to identify the longest sensitizable path and calculate the pro-
pagation delay along that path. This number is referred as the
delay of the instance. Curve (a) in Fig. 1 shows the distribution of
the delays for 4,000 generated instances of c880. The nominal pro-
pagation delay at each signal for c880 is obtained from [11]. The
nominal propagation delay of the longest sensitizable path is 46.8
nanoseconds (ns). Based on this result, we choose a clock period
of 55 ns. to give a reasonable safety margin for the design. None
of the 4,000 instances in Fig. 1(a) has a delay longer than this clock
period. We then generate another 4,000 instances assuming a 10%
shift in the nominal delay at each signal to reflect the worst case
process. I.e., the mean of the propagation delay at each signal is
assumed to be 1.1 times the given nominal propagation delay.
Curve (b) in Fig. 1 shows the distribution of the delays for these
4,000 generated instances of c880. Our timing analyzer reports
556 instances having sensitizable paths longer than 55 ns and, thus,
delay-defective. We like to see how the delay tests generated
under different sensitization conditions (i.e. robust, non-robust, etc)
perform in detecting these delay-defective instances. We prepared
two sets of test sequences for path delay faults: (1) robust tests and
(2) non-robust tests. For test generation, we only consider those
paths whose nominal propagation delays are longer than 38.8 ns.
There are totally 2441 paths considered for test generation. As
shown in Table 1, 427 faults are not robustly testable and 292 paths
are not non-robustly testable. Notice that a non-robust test has
more don’t cares in its two-pattern tests than a robust test, if both
tests exist. In generating the non-robust tests, we leave as many
don’t cares as possible in the two-pattern tests and then randomly
fill in 0 and 1 for those don’t cares.

Propagation delay of longest sensitizable path (ns.)

No. of
instances

44 46 48 50 52 54 56 58 60
0

50
100
150
200

••••••••••••••••••••••
•
••••••

••
••
••
•
•
••••

••
•

•
•••

•
••
••
•••

•••
•••
•••

•
••
•••
••
•••
•
•
•
•
••
••••••••

••
•••
•••••••••••

•
•••••••••••••••••••••••••••••••••••••

(a) (b)

Fig. 1: Distribution of longest sensitizable path delays for 4000
generated instances of c880.

We then used AT&T’s multiple-delay logic simulator
MIDAS that accepts externally supplied gate/signal propagation
delays to simulate both sets of tests. In simulating a two-pattern
test for an instance, all signals under the first vector are stabilized
before the second vector is applied. The outputs are then observed
55 ns later and the observed values are compared with the expected
values to determine the detection. Table 1 shows the number of
test vector pairs in each test set and the number of detected
instances out of total 556 delay-defective instances.

A similar experiment is conducted for circuit styr, a MCNC
FSM benchmark example synthesized by our synthesis system.
Table 2 shows the results for circuit styr. Totally 210 long paths
are considered for test generation. Out of the 10,000 instances that
were generated assuming a 10% increase in nominal propagation

delays, 5825 instances have sensitizable paths longer than the
specified clock period.
_ __

Table 1 - Delay testing results of C880._ ___ __
path delay faults No. of # faulty instances

Test set
detected untestable vector pairs detected total_ __

Robust 2014 427 2014 378 556
Non-robust 2149 292 2149 353 556_ __

_ __
Table 2 - Delay testing results of styr._ ___ __
path delay faults No. of # faulty instances

Test set
detected untestable vector pairs detected total_ __

Robust 145 65 145 2103 5825
Non-robust 181 29 181 139 5825_ __

From these results, we observed that the quality of a non-
robust test set is clearly inferior to a robust one. Many faulty
instances detected by the robust test set were not detected by the
non-robust test set. Therefore, if a fault is robustly testable, a
robust test should be used. However, a certain percentage of paths
are robustly untestable for most circuits [5, 7]. For those robustly
untestable while non-robustly testable paths, the non-robust tests
may fail to detect defects in these paths. Synthesis for robust delay
testability [12, 13, 14] is a possible solution to this problem. How-
ever, synthesizing a 100% robustly testable circuit may require
more logic and/or more primary inputs. Therefore, it may not be a
feasible solution for certain designs. In this paper, we attempts to
solve the problem by test generation. Given a set of paths which
are not robustly testable, we attempt to generate a set of non-robust
tests with higher test quality. For each robustly untestable but
non-robustly testable fault, we attempt to generate a non-robust test
which is closer to a robust test. We introduce a metric, called
robustness, for a non-robust (NR) test. The higher the robustness of
a non-robust test, the lower the probability of the test becomes
invalid (due to extra propagation delays at other signals). We will
give the definition of robustness of a NR test in the next section.

The results shown in Tables 1 and 2 also indicate that, for
these two circuits, neither the robust test set nor the nonrobust test
set detects all faulty instances. There are two reasons for this: (1)
There exists some functional sensitizable paths [8] for both circuits.
These path are neither robustly testable nor non-robustly testable
while they may affect the circuit’s performance. No tests are gen-
erated for these paths and thus timing defects on these paths might
not be detected. (2) We only consider long paths for test genera-
tion. Therefore, a faulty short path may not be detected. However,
for this experiment, few instances were missed due to this reason.

3. Definitions

A path P x is a logical path associated with a physical path P
= (g 0 , f 0 ,g 1 , f 1 , , f m − 1 ,g m), which is an alternating sequence of
gates and connections, and a transition x ∈ {rising, falling} at the
source of the path. Gate g 0 is a primary input and g m is a primary
output. Connections f i , 0≤ i≤m − 1, is an on-input of P x which
connects gate g i to gate g i + 1. A connection is called an off-input
of f i if it is connected to g i + 1 but not originated from g i . In this
paper, we call a path and a path delay fault interchangeably.

Given a logic circuit, there is an instance corresponding to
the desired timing specification. We call such an instance as the
fault-free instance.

Let V=<v 1 , v 2> be an input vector pair and v 2 is applied at
time t = 0. The logic values stabilized at connection f and at gate g
under v 2 are called the stable values at f and g under v 2 respec-
tively. The times, when f and g become stable under v 2, are called
the stable times at f and g under v 2 respectively. Let ST(f ,v 2) be

the stable time at connection f under v 2 for the fault-free instance.

A two-pattern test <v 1 , v 2> is a NR test for a path fault if
and only if (1) it launches the transition at the root of the path and
(2) v 2 causes all off-inputs to settle at their non-controlling values.
A NR test may become invalid if any non-robust off-input of the
path is late.

Definition (non-robust off-inputs): Given a path-delay
fault and a NR test V (a vector pair), non-robust off-inputs are
those off-inputs at which the transitions may mask the transitions at
the on-inputs. Similarly, a robust off-input has either a stable non-
controlling value or a transition that can never mask the transitions
at the on-inputs.

For an AND gate g, if the on-input of g has a falling transi-
tion under V, those off-inputs of g that do not have a stable 1 under
V are non-robust off-inputs. If the on-input of g has a rising transi-
tion, the off-inputs are robust off-inputs for all non-robust tests.

Definition (slack at a non-robust off-input): Given a NR
test V and the fault-free instance, suppose f s is a non-robust off-
input and f o is the corresponding on-input. The slack at the non-
robust off-input s, denoted as slack(f s , V), is defined as:
ST(f o ,V) − ST(f s , V).

Definition (slack of a non-robust test): Given a non-robust
test V and the fault-free instance, suppose f s i

, i = 1 , 2 ,... ,n, are
non-robust off-inputs and f o i

, i = 1 , 2 ,... ,n, are the corresponding
on-inputs. The slack of the non-robust test V, denoted as slack(V),
is defined as: MIN i = 1 , 2 ,.. ,n slack(f s i

, V).

Among all non-robust tests, we attempt to find a non-robust
test V that has the maximum value of slack(V). The reason is the
following: the larger the slack at the non-robust off-inputs, the
lower the probability that the transitions at the non-robust off-
inputs mask the on-input transitions. A non-robust test with a larger
slack can tolerate larger timing variations at the non-robust off-
inputs. For delay defects caused by process variation, the slack of
a non-robust test should be closely related to the probability of fault
masking at the non-robust off-inputs. Fig. 2(a) and Fig. 2(b) show
two different non-robust tests for a non-robust testable while robust
untestable path. Only a portion of the circuit is shown for illustra-
tion and the target path is highlighted by thicker lines. The arrival
times of the transitions (for the fault-free circuit) are also shown in
the figure. The propagation delay of a logic gate is assumed to be 1
ns. For the test given in Fig. 2(a), the arrival time of the on-input
of the output gate is 20 ns. and the off-input arrival time is 18 ns.
Therefore, it can only tolerate a 2 ns. variation at this off-input
while the test in Fig. 2(b) can tolerate a 12 ns. variation.

b
a5ns

S1

S0
c

S1

6ns

S0

7ns

8ns

20ns

S0

c

a

S1

5ns
18ns

7ns

20ns

17ns
16ns

S1 b
S0

6ns
(a) (b)

Fig. 2: (a) A non-robust test that tolerate less timing variation. (b)
A non-robust test that can tolerate more timing variation.

We define the robustness of a non-robust test as its slack.
Notice that the robustness ranges from -∞ to ∞. For a robust test,
its robustness is infinity. For a vector pair which is neither a robust
nor a non-robust test, the robustness is defined as -∞.

4. Generating Non-robust Tests with High Robustness

In this section, we describe an algorithm for generating
non-robust tests with large slacks.

To non-robustly test a path delay fault, all off-inputs must
have a non-controlling value under v 2 and a transition must be
created at the source of the path under V. We first find all these
mandatory assignments [15] and their implications. We then com-
pute the earliest arrival time of each signal restricted to these man-
datory assignments. Notice that given a Set of Mandatory Assign-
ments (SMA), certain vector pairs may produce values violating
the given assignments at certain signals. The earliest arrival time at
a signal f under a given set of mandatory assignments SMA is the
earliest arrival time at f among all vector pairs not violating SMA.

We then identify all non-robust off-inputs NI i , i = 1 , 2 ,... ,m.
We attempt to convert the non-robust off-inputs to become robust
off-inputs one at a time (by assigning proper values at these off-
inputs) in a proper order. The order of the non-robust off-inputs
for processing is determined in the following way. For each of NI i ,
we compute the difference, denoted as D i , between the arrival time
of the corresponding on-input and the earliest arrival time of NI i .
We choose the NI i with minimal D i and convert it into a robust
off-input by assigning a proper value to it. A non-robust off-input
with a smaller D i has a higher probability of masking its on-input
transition than one with a larger D i .

The conversion process is best illustrated by an example.
Consider an AND gate in the target path. If the on-input has a fal-
ling transition and an off-input f s has a value of X1, f s is a non-
robust off-input. If we can assign f s to a stable 1 without causing
any conflict, this off-input is converted into a robust off-input.
Once we assign a stable value at NI i , implications of the assign-
ment are performed. If the assignment leads to a conflict, the
assignment at this off-input is recovered to its original non-robust
value. E.g., if assigning a stable 1 at NI i in the above example
causes a conflict in SMA, it will be backtracked and leave the
value at NI i as X1. On the other hand, if the assignment causes no
conflict, the earliest arrival time at every signal is updated incre-
mentally (the earliest arrival times for certain signals may change
due to the augmented set of mandatory assignments). For either
case (the conversion succeeds or fails), the next non-robust off-
input with the smallest D i is then selected for conversion. The
conversion process continues until all non-robust off-inputs are
processed once. This process results in a partially assigned vector
pair T.

For a non-robust off-input NI i that cannot be converted into
a robust one, transitions at NI i cannot be avoided under T. I.e., all
possible vector pairs covered by T will create transitions at NI i . To
minimize the probability of the on-input transition being masked by
the transitions at NI i , we try to find a test that the arrival time of
the transition at NI i is the earliest possible. To achieve this, we use
the calculated earliest arrival times to guide test generation. To jus-
tify a transition at the output of a gate, we choose an input, among
all inputs which could have a transition under current partial test,
with the earliest arrival time and assign a transition at this input and
assign stable non-controlling values at all other inputs. This back-
ward justification process continues until primary inputs are
reached or a conflict is occurred. For the latter case, we backtrack
to the last decision point and justify the transition at the input with
the next earliest arrival time. This justification and backtracking
processes are very similar to those used in a typical test generation
algorithm.

In this test generation process, we gradually assign values at
the internal signals and primary inputs. Therefore, those non-robust
off-inputs that are processed later will have a smaller search space
than those processed first. That is why we process the most critical

off-inputs (with large D i’s) first.

5. Generating Validatable Non-Robust Tests

In this section, we describe a method of generating tests for
validatable non-robustly (VNR) testable faults.

A set of two-pattern tests S is called a validatable non-
robust test for a path P if and only if no element of S is a robust
test for P and if the circuit passes all tests in S it can be concluded
that the desired transition propagates along path P in the time
allowed [9]. To obtain a high quality test for a robustly untestable
fault, the first attempt should be to generate a validatable non-
robust test because the quality level of a validatable non-robust test
is the same as that of a robust test.

Example (a validatable non-robust test): Consider the cir-
cuit given in Fig. 3(a). Path {bcef, rising} is robustly untestable but
non-robustly testable. The test T1=<10, 11> is a NR test for path
{bcef, rising}. If the partial path {bd, rising} is faulty (and, thus,
path {bdf, rising} is faulty), it will invalidate the test. Test T2=<00,
01> shown in Fig. 3(b) is a robust test for path {bdf, rising}. If the
circuit passes both tests, we can conclude that the path {bcef, ris-
ing} is fault-free. Therefore, these two tests form a validatable
non-robust test for the path.

f

a

c

d

e
1->1

b

(a) A non-robust test for
path {bcef, rising}

(b) A robust test for

0->0

fb

a

c

d

e
1->1

path {bdf, rising}

Fig. 3: A validatable non-robust test for path {bcef, rising}.

We are interested in finding such a set of two-pattern tests
for a non-robustly testable fault, if exists. There may exist many
validatable non-robust tests for a fault. We are interested in finding
the set with minimum cardinality.

For each robustly untestable but NR testable fault, we first
convert NR off-inputs to robust ones and obtain a non-robust test T
with a minimum number of non-robust off-inputs left. This is done
in a similar fashion to the procedure described in the last section.
I.e., we start with a minimally specified non-robust test. We then
convert the non-robust off-inputs to robust ones one at a time. If
the conversion of non-robust off-input NI i causes a conflict, NI i
will be backtracked to its value before conversion (i.e. X0 or X1).
We then proceed to the next NR off-input and repeat the process.

We call the partial test obtained after processing all non-
robust off-inputs (either successfully converting them into robust
off-inputs or leaving them as X1 or X0) as a semi-robust test. The
semi-robust test has don’t cares at some primary inputs. We
specify these don’t cares in such a way that the transitions at the
primary inputs are minimized. I.e., a X1 is specified as 11, X0 is
specified as 00, and XX as 00 or 11. We denote the final non-
robust test as T. The implications of T are then performed. We
then examine the non-robust off-inputs and identify the paths that
need to be robustly tested to validate T. Suppose the target path is
{g 1 , f 1 , g 2 , f 2 , , g o} where g 1 is a primary input and g o is a
primary output. Suppose s i is a non-robust off-input and its
corresponding on-input is f i . We denote the partial path from s i to
g o as p i . Because T is a non-robust test and s i is a non-robust off-
input, T must sensitize one or more partial paths from primary
inputs to s i . We denote these partial paths as q i 1

,.., q i m
. Under T,

the arrival time of s i is determined by the propagation delays of
these paths. If we can robustly test the concatenated paths, q i 1

-p i ,
..., q i m

-p i , and the circuit passes these tests, it can be guaranteed
that, under T, the transition arrived at s i will not be late. For each

non-robust off-input s i , we identify the set of paths, S i , that needs
to be robustly tested to validate T. If all of them are robustly
testable, test T along with the robust tests for these paths form a
validatable non-robust test for the target path.

In developing test T, we minimize the number of transitions
at primary inputs. Therefore, typically only a very small number of
partial paths that end at a non-robust off-input are sensitized. Thus,
only a small number of off paths need to be examined. This not
only reduces the computational complexity but also reduces the
size of the validatable non-robust test.

There is a possible extension to this algorithm to identify
more VNR testable paths. For those sensitized partial paths (from
primary inputs to non-robust off-inputs), instead of having them
been robustly tested, we can relax the condition to have them VNR
tested. However, if we adopt this extension, the following situation
may occur: In generating a VNR test for path A, we require path B
to be VNR testable and in generating a test for path B, we require
path A to be VNR testable. For such a case, neither of these two
paths is VNR testable. In our prototype program (described in the
next section), we did not implement this extension.

6. Experimental Results

We have implemented a path delay fault test generator for
generating (1) validatable non-robust tests and (2) non-robust tests
of large slacks. We ran the program for four circuits: a two-bit
adder, two ISCAS85 benchmark circuits c432 and c880 and a
MCNC benchmark finite state machine styr. Circuit styr is syn-
thesized by our FSM synthesis system and uses AT&T 0.9 µm
CMOS standard cell library. These circuits are randomly picked
from the example pools available to us. For adder, we consider all
paths. For c432, c880 and styr, we chose 53217, 2441 and 210
longest paths (propagation delays between 45 to 49.6 ns., 38.8 to
46.8 ns., and 30.0 to 42.8 ns. respectively). Table 3 shows results
for VNR test generation. The third column shows the number of
robustly testable faults. The fourth column shows the number of
NR testable faults among the robustly untestable faults. Among the
NR testable faults, we show the number of faults identified as VNR
testable. The last column shows the average number of vector-pairs
required for testing such a VNR fault (i.e. the number of off paths
that needs to be robustly tested plus one). For example, for c880,
we identify 111 out of 135 NR testable faults are VNR testable.
Each of the 111 VNR testable faults only requires exactly one other
path to be robustly testable to validate its NR test. Therefore, for
each of these 111 faults, its validatable non-robust test consists of
exactly two two-pattern tests. Among the paths we consider for
c432, none of them is robustly testable or VNR testable.

_ __
Table 3 - Test generation results for validatable non-robust tests_ ___ __

of paths # of # of NR VNR testable
consid- robust test- # of ave. # of

2-pttn tests
Ckt

ered testable able paths
per path_ __

adder 60 20 12 2 2.0
c432 53217 0 760 0 -
c880 2441 2014 135 111 2.0
styr 210 145 36 22 2.0_ __

For each of the NR testable paths that are robustly unte-
stable, we attempt to generate a NR test with a large slack. Table 4
shows the results for NR test generation. The second column gives
the number of NR testable faults for this experiment. The third
column shows the average slack of these NR tests using our test
generation algorithm. For comparison, we generate two other sets
of NR tests. One set is obtained by simply generating a NR test for
each path. After a two-pattern NR test is generated, we randomly

fill in 0 and 1 for those unspecified bits. Instead of randomly fil-
ling in the unspecified bits, the other set is obtained by filling in the
unspecified bits in a way to maximize the transitions at the primary
inputs and, thus, at the internal signals for the NR test of each path.
We measure the slack of each of the NR test in both sets of tests.
The fourth and fifth columns show their average slacks. For adder,
the average slack for randomly filled NR test is negative. This
result implies that for the fault-free instance, the desired transition
cannot be created at the output because the non-robust off-inputs
have transitions arriving later than the on-input transitions and will
mask them. For all four test cases, our test generator increases the
average slacks and thus our test set will allow larger timing varia-
tions at the non-robust off-inputs.

_ __
Table 4 - Results for non-robust tests_ ___ __

of NR Average slack (ns.)ckt testable ours random max. transitions_ __
adder 12 0.16 -0.91 -1.33
c432 760 13.56 6.15 1.08
c880 135 7.99 5.81 5.51
styr 36 12.85 5.63 1.39_ __

We then compare these three test sets on their capability of detect-
ing delay defects. We construct 5 test sets for a set of chosen long
paths. Test set 1 consists of a robust test for each of the robustly
testable paths in the set of chosen paths. Test set 2 consists of a
NR test for each of the robust or NR testable paths with randomly
filled don’t cares. Test set 3 consists of test set 1 and a NR test for
each of the NR testable path with randomly filled don’t cares. Test
set 4 consists of test set 1 and a NR test for each of the NR testable
path where the don’t cares are filled to maximize the transitions at
the primary inputs. Test set 5, which is our best test set, consists of
test set 1, VNR tests for VNR testable paths, and a NR test with
maximum slacks for each of the remaining NR testable path. We
prepare these five test sets for both c880 and styr and apply them to
556 and 5825 delay-defective instances as generated by the pro-
cedure described in Section 2. These instances are verified as
defective by a timing analyzer that reports the longest sensitizable
path for a given instance. Table 5 shows the results. For c880, Set
1 detects 378 out of 556 defective instances. The VNR tests along
with the NR tests generated by our tool intended for large slacks
uncover 12 additional defective instances (390 vs. 378) while the
NR tests intended for maximum transitions does not detect anyone
more (378 vs. 378). If we use NR tests with randomly filled don’t
cares for all robustly and NR testable paths, it uncovers 25 less
defective instances than set 1 (353 vs. 378). Notice that for styr, the
quality of test set 2 is much worse than test set 1.

_ ___
Table 5 - Comparison of different test sets_ __ ___

of Set 1 Set 2 Set 3 Set 4 Set 5
faulty (rand. (R + (R+ (R+VNR
inst- rand. worst + best

ckt

ances
(R)

NR)
NR) NR) NR)_ ___

c880 556 378 353 382 378 390
styr 5825 2103 139 2137 2106 2230_ ___

A large number of defective instances still cannot be
detected by our tests. One of the main reasons is that our test set
does not include tests for functional sensitizable paths and thus will
miss some defective instances.

7. Conclusion

We conducted experiments to show that, among all possible
NR tests for a NR testable path, some NR tests are better than oth-
ers in defecting delay defects. A good NR test allows a larger

timing variation (slack) at the off-inputs than a poor NR test.

We describe a method for generating validatable NR tests.
We also present an algorithm for generating NR tests with large
slacks. Our results show that different NR tests may have very dif-
ferent slacks. By carefully selecting those tests with large slacks,
the quality of a NR test set can be improved. This claim is justified
by comparing several sets of NR tests on their capability of detect-
ing defective instances which are generated to mimic process varia-
tion. Our future work includes searching for efficient methods to
test paths that are not NR testable but functional sensitizable.

REFERENCES

1. K. D. Wagner, ‘‘The Error Latency of Delay Faults in Com-
binational and Sequential Circuits,’’ Proc. Int’l Test
Conference, pp. 334-341 (Nov. 1985).

2. J. A. Waicukauski, E. Lindbloom, B. Rosen, and V. Iyengar,
‘‘Transition Fault Simulation,’’ IEEE Design and Test,
pp. 32-38 (April 1987).

3. J. P. Lesser and J. J. Shedletsky, ‘‘An Experimental delay
test generator for LSI logic,’’ IEEE Trans. on Computers,
pp. 235-248 (March 1980).

4. G. L. Smith, ‘‘Model for Delay Faults Based upon Paths,’’
Proc. IEEE Int’l Test Conf., pp. 342-349 (Nov. 1985).

5. C. J. Lin and S. M. Reddy, ‘‘On Delay Fault Testing in
Logic Circuits,’’ IEEE Trans. on Computer-Aided Design,
pp. 694-703 (Sept. 1987).

6. B. Konemann et al, ‘‘Delay Test: The Next Frontier for
LSSD Test Systems,’’ Proc. Int’l Test Conf., pp. 578-587
(Sept. 1992).

7. K. Fuchs, F. Fink, and M. H. Schulz, ‘‘DYNAMITE: An
Efficient Automatic Test Pattern Generation System for Path
Delay Faults,’’ IEEE Trans. on CAD CAD-10, pp. 1323-
1335 (Oct. 1991).

8. K.-T. Cheng and H. C. Chen, ‘‘Delay Testing For Non-
Robust Untestable Circuits,’’ to appear in Proc. Int’l Test
Conf. (Oct. 1993).

9. S. M. Reddy, C. J. Lin, and S. Patil, ‘‘An Automatic Test
Pattern Generator for the Detection of Path Delay Faults,’’
Proc. Int’l Conf. on CAD, pp. 284-287 (Nov. 1987).

10. H.-C. Chen and D. H.-C. Du, ‘‘Path Sensitization in Critical
Path Problem,’’ IEEE Transactions on Computer-Aided
Design 12-2, pp. 196-207 (Feb. 1993).

11. S. Patil and S. M. Reddy, ‘‘A Test Generation System For
Path Delay Faults,’’ Proc. Int. Conf. Computer Design
(ICCD-89) , pp. 40-43 (Oct. 1989).

12. S. Devadas and K. Keutzer, ‘‘Synthesis of Robust Delay-
Fault Testable Circuits: Theory,’’ IEEE Transactions on
Computer-Aided Design 11-1, pp. 87-101 (Jan. 1992).

13. A. Pramanick and S. M. Reddy, ‘‘On The Design of Path
Delay Fault Testable Combinational Circuits,’’ Proc. 20th
Fault Tolerant Computing Symp., pp. 374-381 (June 1990).

14. N. K. Jha, I. Pomeranz, S. M. Reddy, and R. J. Miller,
‘‘Synthesis of Multi-Level Combinational Circuits for Com-
plete Robust Path Delay Fault Testability,’’ Proc. Int’l
Symp. on Fault-Tolerant Computing, pp. 280-287 (July
1992).

15. T. Kirkland and M. R. Mercer, ‘‘A Topological Search
Algorithm For ATPG,’’ Proc. 24th Design Automation
Conf., pp. 502-508 (June 1987).

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

