
Abstract

In this paper, we propose a layout driven synthesis approach for
Field Programmable Gate Arrays (FPGAs). The approach attempts
to identify alternative wires and alternative functions for wires that
cannot be routed due to the limited routing resources in FPGA. The
alternative wires (in the logic level) that can be routed through less
congested areas substitute the unroutable wires without changing the
circuit’s functionality. Allowing the logic blocks to have alternative
functions also increases the flexibility of routing. The redundancy
addition and removal techniques are used to identify such alternative
wires. Experimental results are presented to demonstrate the useful-
ness of this approach. For a set of randomly selected benchmark cir-
cuits, on the average, 30%-50% of wires have alternative wires.
These results indicate that the routing flexibility can be substantially
increased by considering these alternative wires. Our prototype sys-
tem successfully completed the routing for two AT&T designs that
cannot be handled by an FPGA router alone. The proposed synthesis
technique can also be applied to standard cell and gate array designs
to reduce the routing area.

1 INTRODUCTION

Field programmable gate array (FPGA) consists of an array
of identical logic blocks and routing resources. In a Table
Look Up (TLU) architecture, each logic block can implement
anym-input Boolean function.

The traditional design flow for FPGAs consists of four
steps. In the first step, a logic optimizer performs technology
independent optimization on a circuit. Then, a technology
mapper [1] [4] [6] maps the circuit onto logic blocks to mini-
mize the number of lookup tables used. Placement and routing
then follow. During the physical design process, the logic
information of the circuit is no longer used. Only the topology,
typically represented as a graph, is retained. Because of the
limited routing resources available in FPGAs, routing may fail
in the congested area, even though there are routing resources
available in the non-congested area. When the routing fails,
there are no systematic ways to introduce incremental changes
and complete the routing. To make an unroutable circuit
routable, a user may change the placement by swapping or
duplicating some logic blocks to alter the topology of the cir-
cuit. Such changes, however, lead to unpredictable results and
quite often it is not clear how to alter the design. In this paper,
we propose a layout driven synthesis technique that performs
incremental transformations on the logic level (without chang-
ing the circuit’s functionality) to improve the routability of the
FPGA. According to the information fed back from the rout-
ing tool, the wiring topology is altered appropriately to com-
plete the routing.

Our synthesis method looks foralternative wires for each
wire that cannot be routed. The alternative wires of a target
wire are wires which can replace the target wire without
changing the circuit’s functionality.

For example, in the circuit depicted in Figure 1 (from [2]),
we can remove wireg7->g8 by simultaneously adding wires
g3->g8 and g5->g9. In our technique, we also allow adding
gates and/or changing the functions of logic blocks in the cir-
cuit when removing critical wires. Note that for table-lookup
FPGAs, adding a gate or a wire inside a lookup table can be
done by simply changing the truth table of the lookup table.

The use of alternative wires to replace unroutable wires
gives routing an additional flexibility. A closer integration of
this technique with routing can dramatically improve the
routability of FPGAs. We assign a higher priority to wires that
do not have alternatives and instruct the router to route high
priority wires first. If routing cannot be completed, the
unrouted wires are more likely to have alternative wires. The
router then interacts with the synthesis program to obtain their
alternatives. If any of such alternatives can be routed through
a non-congested area, that alternative will be used and routed.
The process continues until all unrouted wires are replaced by
their routable alternatives.

This alternative-wire technique has other applications as
well. Consider Figure 3. After placement, the routing length
of wires can be estimated. If an estimated long wire (target
wire t in Fig. 3) has a shorter alternative wire in logic domain
(wire a in Fig. 3), the long wire can be replaced by the short
wire to improve both area and performance. Based on the
same principle, we can apply this technique for timing optimi-
zation, as already pointed out in [2]. For another example con-
sider Fig. 4. A circuit shown there, is partitioned and placed
on two chips. The interconnection wires between chips typi-

c

b

d

e

c

d
a

b

f

g1

g2

g3

g4

g5

g6 g7
g8

g9 o2

o1

target wires
alternative
wires

Fig. 1: Example of alternative wires

c

b

d

e

c

d
a

b

f

g1

g2

g3

g4

g5

g6 g7
g8

g9 o

o

Fig. 2: Example of redundant wire

Layout Driven Logic Synthesis for FPGAs

Shih-Chieh Chang*, Kwang-Ting Cheng*, Nam-Sung Woo** and Malgorzata Marek-Sadowska*

** AT&T Bell Lab. Murry Hill
University of California Santa Barbara.

*Electrical and Computer Engineering Department,

cally cause long propagation delay. If an interconnection wire
between chips has alternative wires all within chips, it may be
replaced by them to reduce the critical path delay. Yet another
application is shown in Fig. 5. After partitioning a circuit, sup-
pose the pin constraint of a chip is violated. If an interconnec-
tion wire has an alternative wire inside a chip, we may reduce
the number of interconnection wires by using its (internal)
alternative wires. All the above applications explore the alter-
natives in logic domain to improve results in physical design.
Note that, in addition to FPGAs, the technique can be applied
to standard cell and gate array designs as well.

We have developed an efficient method to find alternative
wires of a target wire. The method is an extension from the
redundancy addition and removal techniques [2][3]. Two
experiments were performed to demonstrate the usefulness of
this technique. In the first experiment, our goal was to find the
percentage of wires that have alternative wires. We first
mapped several randomly selected MCNC benchmarks and
industry examples to 5-input lookup tables. For each wire in
the circuit, we checked if there exist alternative wires. We say
that a wire hasa triple-wire alternatives if it can be replaced
with 3 or fewer wires. The experiment showed that 30%-50%
of wires have triple-wire alternatives. In the second experi-
ment, we linked our synthesis tool to the AT&T ORCA [8]
router. Two circuits with unroutable wires were tried and were
successfully routed using our technique.

The remainder of this paper is organized as follows. Section
2 reviews the redundancy identification technique that forms a
core of our method. Section 3 details the proposed method of
finding alternative wires of a target wire. Section 4 discusses
the alternative function for a target wire. Section 5 describes
the algorithm for the integrated synthesis and routing process.
Section 6 shows some experimental results and conclusion
follows in Section 7.

2 Redundancy Identification Based on Mandatory
Assignments

The alternative wires, when added to the circuit, make the
target wire redundant. In a combinational circuit, a wire is
redundant if and only if the corresponding stuck-at fault is
untestable. We will review the idea in [3] that identifies redun-
dancies using the concept of mandatory assignments.

t

target wire (t)
alternative wire (a)

critical
path

Fig. 5: partitioning improvement

Fig. 4: timing optimization

Fig. 3: wire length reduction

a.

t

t

a a

a

a

chip 1 chip 2

t

Definition: The absolute dominators (dominators)[5] of a
wire W is a set of gatesG such that all paths from wireW to
any primary output have to pass through all gates inG. For
example, the dominators ofg1->g4 in Fig. 2 areg4, g8, and g9.

Definition: A gate is in thetransitive fanin(fanout) of a wire,
if there is a path from the gate to the wire (from the wire to the
gate).

Consider the absolute dominators of a wireW. Let side
inputs of a dominator be its inputs not in the transitive fanout
of the wireW. To generate a test for a stuck-at fault at wireW,
all side inputs of the wire W’s dominators must be assigned
their “non-controlling” values. The non-controlling value is 1
for AND(NAND) gate and 0 for OR(NOR) gate. For example,
in Fig. 2, to test wire (g1->g4) s-a-1, we must assign 1 toc, 0
to g7, and 1 tof.

When testing a wire stuck-at fault, the mandatory assign-
ments are the value assignments required for a test to exist and
must be satisfied by any test vector. Given a stuck-at faultf,
we compute the set of mandatory assignments[3] SMA(f) that
can be computed via implication [5][7] and recursive learning
[9]. If the mandatory assignments of a stuck-at fault test can-
not be consistently justified, the fault is untestable and there-
fore, the wire is redundant.

For example, we like to know whether wireg5->g9 can be
added in Fig. 2. We need to know whether g5->g9 s-a-1 is test-
able. The mandatory assignments for g5->g9 s-a-1 are g5=0,
g8=1, f=1,g1=0,g2=0,g4=0,g7=1,g6=1, g3=1,a=1,b=1,d=1,
andg1=1. Because the mandatory assignment of gate g1 can-
not be consistently justified, theg5->g9 s-a-1 fault is untest-
able and therefore wireg5->g9 is a redundant wire.

3 The Alternative Wires of a Target Wire

A wire to be removed is referred to as the target wire. The
corresponding stuck-at fault is called the target fault. In this
section, we will show a method of adding alternative wires to
make a target wire redundant. Basically, this method will find
and add redundant wires to cause inconsistent mandatory
assignment for the target fault. The idea is originally proposed
in [3]. However, the objective in [3] was to minimize the num-
ber of connections in a multi-level Boolean circuit while our
objective is to remove unroutable wires. Therefore, we allow
adding several wires (gates) to replace one unroutable wire.
Besides, we include new circuit transformations to remove a
target wire.

3.1 Single-Wire Alternative

We say that a wire w1 is a single-wire alternative of a target
wire if w1 can replace the target wire. This section describes a
procedure that finds single-wire alternatives of a target wire.

This procedure consists of three steps. In the first step, we
calculate the SMA of the target wire stuck-at-fault. Then, we
identify a set of candidate connection wires to be added. Each
candidate connection when added to the circuit will cause the
SMA to become inconsistent and thus make the target wire

redundant. However, adding such a candidate connection may
change the circuit’s behavior. Therefore, we need to check
whether the candidate connection is redundant or not. If a can-
didate connection is redundant, we conclude that the candi-
date connection is an alternative wire for the target wire. The
following example illustrates the process of finding single-
wire alternatives.

Example: Consider the circuit in Fig. 2. Letg1->g4 be the
target wire to remove. First, we compute the SMA(g1->g4
stuck at 1). We have SMA = {c=1, g1=0, g5=0, g2=0, f=1}.
Note thatg5 is outside the transitive fanins and transitive
fanouts of the target wire and has a mandatory value 0. If we
connectg5 to g9, a dominator, it will cause inconsistency in
mandatory assignment forg5. This is because if the new wire
g5->g9 is added,g5 becomes a side input of the dominatorg9.
It requires a non-controlling value 1 at g5 to propagate the
fault effect of the target fault to outputs. This additional
requirement causes conflict in the SMA. The process, thus,
suggests wireg5->g9 as a candidate connection. Finally, we
check whetherg5->g9 is redundant by examining the consis-
tency of the SMA for the s-a-1 fault at wire g5->g9. The SMA
of this fault is inconsistent and therefore, wireg5->g9 is an
alternative wire for wireg1 ->g4.

Given a target wire, Fig. 6 shows four different types of
candidate connections to be added to make the target wire
redundant. The doted wires in Fig. 6 are the candidate connec-
tions. We say a wirew is a fault propagating wire if there is a
path from the target wire to the wirew.

All candidate connections (gs gd), in Fig. 6, use the same
principle described as follows. The source gategs has a man-
datory assignment. The destination gategd is a dominator.
After making any transformation shown in Fig 6., the SMA of
the target wire becomes inconsistent. Type 0 and Type 1 in
Fig. 6, add a wire fromgs to the dominatorgd. Type 2 and
Type 3 add a new gategn to which all fault propagating wires
previously connected togd are reconnected togn and connect
a wire fromgs to gn. For example, in Type 2, letg1 be a fault
propagating wire. Becausegd is a dominator, the new added
gategn is also a dominator. Since gs is a side input to the dom-
inator gn, gs must be assigned a non-controlling value 1 which
causes a conflict with the original mandatory value 0. We can
also derive similar transformations when the dominator is an
OR gate.

Type 0.gs =0
gs

Type 1.gs =1
gs

gd

gd

Type 2. gs =0
gs

gd

g1
g2

g1
g2

g1

g2

Type 3. gs =1
gs

gd
g1

g2

Fig. 6: Types of transformations

new gate

gd is a dominator andg1 is a fault propagating wire in all types.

gn
gn

original circuit

gd
g1
g2

gs

new gate

Fig. 7 shows the pseudo code for finding all single-wire
alternatives of a target wire. For each candidate connection
(gs->gd), we consider all types of circuit transformations sug-
gested in Fig. 6.

3.2 Multiple-Wire Alternatives

If none of the candidate connections is redundant, there are
no single-wire alternatives for the target wire. In this section,
we describe a method to add several wires (gates) to remove a
target wire.

Fig. 8 shows the search process for a multiple-wire alterna-
tive of a target wire. Let wirewr be the wire to be removed.
Suppose there are 6 candidate connections,w0,..., w5, sug-
gested by the procedure of Fig. 7 (searching for single-wire
alternatives) and no candidate connection is redundant. Each
candidate connection wire is then considered as a new target
wire. In our example, we consider wirew3 as a new target
wire. The same procedure of finding single-wire alternative is
applied now forw3. Let wire w6, w7, w8 andw9 be the new
candidate connections for addingw3. If wire w6 is a redundant
wire, we conclude that we can add wirew6 so that wirew3 can
be added to the circuit without changing the circuit functional-
ity. Finally, we add wirew3 and wirew6 in the circuit and ver-
ify whetherwr is still a redundant wire. The reason that the
removal ofwr needs additional verification is explained as fol-
lows.

In searching for the single-wire alternatives, we know that
the addition of wirew3 guarantees the removal of wirewr and
the addition of wirew6 guarantees the addition of wirew3.
However, the addition of both wirew3 andw6 does not neces-

for (each gategi in the circuit){
if (gi has mandatory assignment) insertgi into the source_array.
if (gi is a dominator) insertgi into the destination_array.

for (eachgs in the source_array) {
for (eachgd in the destination_array) {

if(verify_redundant(gs, gd, type_0or 1)) return (gs, gd, type_0or1);

}

single_wire_ alternative(wire, stuck_type) {
compute_SMA(wire, stuck_type);

add_wire_gate(gs, gd, type_0or1);

rm_wire_gate(gs, gd, type_0or1);

if(verify_redundant(gs, gd, type_2or3)) return(gs, gd, type_2or3);

add_wire_gate(gs, gd, type_2or3);

rm_wire_gate(gs, gd, type_2or3);
}

}
}

Fig. 7: Pseudo code for finding single-wire alternative

target wire stuck-at fault (wr)

w0 w2 w3
w4

w5w1

w9w8w7w6
(redundant)

(not redundant)

Fig. 8: Identifying multiple-wire alternatives

If w3 added,

If w6 added,

wr. can be removed

w3 can be added.

sarily guarantee the removal ofwr although most of the time it
is the case. For example, in Fig. 1, the removal of g7->g8, sug-
gests the addition ofg3->g8. The addition ofg3->g8 suggests
the addition ofg5->g9. Becauseg5->g9 is a redundant wire,
we can addg5->g9 and, thus, addg3->g8 to the circuit.
Finally, we find g7->g8 is a redundant wire so it can be
removed.

4 Using alternative functions of look-up tables to remove
a target wire.

We now show how to apply the alternative wire technique
for lookup table architecture based FPGAs. One way is to
decompose a mapped FPGA into primitive gates and use the
technique described in the previous section to replace
unroutable wires. However, for lookup table based FPGAs,
the technique can be further generalized by consideringalter-
native functions of an unroutable wire. The generalized tech-
nique directly operates on the lookup table level without
decomposing the mapped LUT into primitive gates.

4.1 Alternative functions of lookup tables

A k-input lookup table can realize any of Boolean
functions. By replacing the Boolean function of a LUT by
another one among these functions, some wires may
become redundant.

Let Lo be a lookup table in a circuit andfLo(X) be its Bool-
ean function where X are the inputs of Lo. We denote the car-
dinality of X as |X|. Therefore, |X| <= k. We sayf ’ Lo(X’) is a
valid function if (1) replacingfLo(X) with f ’ Lo(X’) does not
change the functionality of the circuit and (2) |X’| <= k. Given
a target wirew to be removed, our objective is to find a valid
function of some lookup table such thatw becomes redundant.
We call such a valid function an alternative function of the tar-
get wirew.

Similarly to the procedure of finding alternative wires, the
process of finding alternative functions consists of three steps.
In the first step, we calculate the SMA of the target wire stuck-
at fault. In the second step, a set of candidate functions is gen-
erated. The procedure guarantees that each of these candidate
functions makes the target wire redundant. Finally, we check
whether these candidate functions are valid. Consider the cir-
cuit in Fig. 9 where each box represents a LUT. LetL1->L4 be
the target wire. First we calculate the SMA ofL1->L4 s-a-1. In
the second step, we findf ’ L8(L5, L7, f) = L5•L7•f (the original
function isf L8(L5, L7, f) = f•L7) is a candidate function (how
this candidate function is derived will be explained in the fol-

c

b
d

e
c
d
a
b
f

L1

L2

L3

L4

L5

L6 o2

o1

1

0

0
0

1

L7 L8

Fig. 9: Example of function alternative

22k

22k

lowing paragraphs). Finally, we verify that this candidate
function is valid and, therefore, it is an alternative function for
L1->L4. We call the new input to the lookup tableL8, L5, an
extra-input of the alternative function.

In the second step of finding candidate functions, we only
consider absolute dominators of the target wire. The function
of the dominator’s lookup table will be considered for chang-
ing if (1) the dominator has any unused input, or if (2) the
dominator has no unused inputs but it has an input with a
mandatory assignment. When the dominator has any unused
input, we connect to it a wire, an extra-input, which has a
mandatory assignment. In the example of Fig. 9,L8 is one of
the dominators and the extra-inputL5 has a mandatory value
0. The procedure for deriving the candidate functions is based
upon the following procedure.

After calculating the SMA of the target wire, suppose the
LUT Li is a dominator and a wirewx is one ofLi’s inputs
which has a mandatory valuev. Among those inputs toLi,
some inputs denotedX1 are in the transitive fanout of the tar-
get wire. Note thatwx is an input variable inLi. We define a
candidate function f ’Li by specifying the output of each input
vector as follows. Given an input vector, when thewx variable
is !v, we setf ’ Li = fLi and whenwx is v, f ’ Li is chosen to be any
function independent ofX1. If there is no input wire ofLi with
mandatory assignment, the new functionf ’ Li will be created
by connecting a wire with mandatory assignment to an unused
input.

Lemma: If we replacefLi with f ’ Li, a candidate function
from the above procedure, the SMA of the target wire stuck-
at-fault is inconsistent.

Continuing the example from Fig. 9, Fig. 10 illustrates the
lemma. SupposeL8 implements an AND function in Fig 10a
and for the given target fault, L5 has a mandatory value 0. We
assume the target wire is in the transitive fanin ofL7. There
are 4 candidate functions as shown in Fig 10(b,c,d,e). Each of
the four functions is the same as the original function(L7•f)
when L5 =1 and is independent ofL7 (which is in the fault
propagating path) whenL5 =0.

After obtaining these 4 candidate Boolean functions, we
need to check whether they are valid. First, we compare the
old function with each of candidate functions. For example, in
Fig. 10, the discrepancy between the original function (a) and

L5(0)
L8L7

f

L8
L7

f

L5 f ’ L8

L5 L7 f f ’L8
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0

L5 L7 f fL8
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

(a) (b)

L5 L7 f f ’L8
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

(c)

fL8

L5 L7 f f ’L8
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1

(d)

L5 L7 f f ’L8
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1

(e)
Fig. 10: The inconsistency between old function and candidate function

 must be don’t cares.

function (b) occurs in the minterm (L5, L7, f) =(0, 1, 1) as
highlighted in Fig 10(b). In order to maintain the circuit’s
functionality, the minterm (0, 1, 1) must be a “don’t care” for
the circuit, i.e.f ’

L8(0, 1, 1) can be assigned to either 0 or 1 and
the function of the circuit does not change. We show how to
check whether some minterm is a don’t care in the following
procedure.

Suppose we try to verify whether (v1, v2,...,vn) is a don’t
care cube in a functionfLm(L1,L2, ..., Ln). We set the manda-
tory assignment ofLi to the correspondingvi. Considering the
example in Fig. 9, to verify cube (L5, L7, f) = (0, 0, 1) inL8 is
a don’t care, we setL5=0, L7=0, f=1 to be their mandatory
assignments. Then, we calculate the SMA as described in sec-
tion 2.

Lemma: If the SMA cannot be consistently justified by the
above procedure, the cube (l1, l2,...,ln) in fLm(L1,L2, ..., Ln) is a
don’t care in the circuit.

The overall algorithm for finding an alternative function of
a target wire is summarized in Fig.11.

4.2 Decomposition into gates

To apply the approach described in Section 3 to lookup table
architecture, we can simply decompose each lookup table into
AND, NAND, OR and NOR gates. After decomposition, we
have two kinds of wires in the circuit. Anexternal wire con-
nects two lookup tables. Aninternal wire is inside a lookup
table. For an external target wire, we can obtain a set of multi-
ple-wire alternatives using the approach described earlier. In
the following, we discuss thecost of an alternative wire.

Let each alternative wire be expressed as (ws, wd) where
each of ws andwd represents a gate. We assign a cost to an
alternative wire based on the following rules. These rules try
to calculate the number of external wires added on the circuit
(Fig. 12 illustrates these rules):

•Rule 1: cost =0, ifws andwd are both inside the same lookup
table.

Lda
b

Ls

Step 2: Suggest candidate functionsf ’ Ld:

fun’Ld(Ls = v) = a function that is independent of

Step 3: Test if any candidate function is valid:

If all cubes that belong tof ’ Ld⊕fLd
are don’t cares, the candidate function is valid.

f ’ Ld

fun’Ld(Ls != v) = fLd

fault propagating wire

Let Ls have a mandatory assignmentv(0 or 1) andLd be a dominator.

Fig. 11: An algorithm to find alternative functions of a target wire

Step 1: Calculate the SMA of target wire stuck-at fault.

fault propagating inputs

•Rule 2: cost =1, if the lookup table ofwd has less than k
inputs andws is an output of another lookup table.

•Rule 3: cost = p, if the lookup table ofwd has less than k
inputs andws is inside a lookup table. Sincews is not the
output of a lookup table, we need to create a new(p-1) input
lookup table to duplicate the function that createsws.

•Rule 4: cost = infinite, if the lookup table containingwd has k
inputs andws is in another lookup table. Note that we may
use Shannon decomposition to create 3 new 5-input lookup
tables but we choose not to consider this substitution[6].

5 Integration of routing and synthesis

In previous sections, we have presented a synthesis tech-
nique to find the alternative wires of a target wire. To fully uti-
lize the alternative wire technique, we precompute the wire
alternative information and pass it to the routing tool before
routing starts. According to the wire alternative information
and timing information (obtained from other tools), a router
sets a priority for each wire. Then, it routes the wires in such

Rule 1: cost = 0 Rule 2: |wd| <k => cost = 1

Rule 3: cost = p, ifws is an internal

Assume k=5 and let (ws->wd) be an alternative wire.

ws

wd
wd

ws

wd

wd

wd

ws

ws

ws

Rule 4: |wd|=k => cost = infinite

wd

Fig. 12: Costs of alternative wires

wire; |ws|=p-1.

Placement

Alternative wires for all nets

Assign priorities for all nets
without alternatives ->high
with alternatives ->low

route all nets
high priority first

Alternative wires

unroutable wire

alternative wires

Fig. 13: The flow of layout driven synthesis

Estimate critical paths

an order that wires without alternatives and/or in timing criti-
cal paths are routed first. This arrangement makes unroutable
wires more likely to have alternatives. If a wire cannot be
routed and it has alternatives, the router tries to route those
alternatives one-by-one. If all alternative wires of an
unroutable wire can not be routed, we also try ripping up some
wires around the congested area. Figure 13 shows the flow of
the layout driven synthesis process.

6 Experimental Results

We have performed two sets of experiments to demonstrate
usefulness of the above approach. The first experiment is to
obtain the percentage of wires having alternatives in a circuit.
In this experiment, we assume a 5-input lookup table architec-
ture. A circuit is optimized to 5 input lookup tables first. For
MCNC examples, we used the SIS script [6]. For industry
examples, we used AT&T ORCA [8] technology mapper.
Then, we decomposed each lookup table into AND, OR gate
circuit as described in Section 4.2. For each external wire
(connecting two lookup tables), we search for multiple-wire
alternatives. In Table 1, the second column shows the number
of external wires in a circuit. The third column shows the
number of external wires that have single-wire alternatives.
The number in parenthesis shows the total number of alterna-
tives for single-wire alternatives. The forth column shows the
number of wires that have triple-wire alternatives and the
number in parenthesis shows the total number of triple-wire
alternatives. The cost of an alternative wire is defined in Sec-
tion 4.2. The fifth and sixth columns show CPU time running
on a SPARC 10.

In our second experiment, we linked our synthesis tech-
nique with AT&T ORCA router. Two unroutable circuits were
studied. The first circuit had 169 5-input lookup tables and
738 external wires. Among these external wires, we found that
121 wires had single-wire alternatives and 201 wires had tri-
ple-wire alternatives. If we run the router using the timing-
driven option, the router failed to connect 4 wires. We applied
our technique to this circuit and successfully completed the
routing. The second circuit had 495 5-input lookup tables and
1980 external wires. Totally 1115 wires had single-wire alter-
natives and 2001 wires had triple-wire alternatives. There was
one unroutable wire in the original design. By replacing the
wire by its single-wire alternative, the routing was success-
fully completed.

7 Conclusion

Due to the limited routing resources in FPGAs, completion
of routing for all wires may not be possible for some FPGA
designs, if we are not allowed to change the logic structures.
In this paper, we proposed a layout driven synthesis approach
that can efficiently identify the alternative wires and/or alter-
native functions for those unroutable wires. If the alternative
wires can be routed through a less congested area, the proba-
bility of successful routing will be increased. Our experimen-
tal results demonstrate the usefulness of the proposed
technique.

Acknowledgment. This work was supported in part by the
National Science Foundation under Grant MIP 9117328 and
in part by AT&T Bell Laboratories and Digital Equipment
Corporation through the California MICRO program.

8 Reference

[1] Shih-Chieh. Chang and Malgorzata Marek-Sadowska, “Technology Map-
ping via Transformations of Function Graphs”,Proc. IEEE Interna-
tional Conference on Computer Design, pp. 159-162, 1992.

[2] K.-T. Cheng and Luis A. Entrena, “Multi-Level Logic Optimization by
Redundancy Addition and Removal,”Proc. European Conf. on Design
Automation, pp. 373-377, Feb. 1993.

[3] Luis A. Entrena and K.-T. Cheng, “Sequential Logic Optimization By
Redundancy Addition And Removal”,Proc. International Conference
on Computer-Aided Design, pp. 310-315, Nov. 1993.

[4] R.J.Francis, J.Rose and Z.Vranesic, “Chortle-crf: Fast Technology Map-
ping for Lookup Table-Based FPGAs”,Proc. 28th Design Automation
Conf., pp. 227-233, June 1991.

[5] T. Kirkland and M.R. Mercer, “A Topological Search Algorithm For
ATPG,” Proc. 24th Design Automation Conf., pp. 502-508, June 1987.

[6] R.Murgai, N. Shenoy, R.K.Brayton, and A.Sangiovanni Vincentelli.
“Improved Logic Synthesis Algorithms for Table Look Up Architec-
tures.”Proc. International Conference on Computer-Aided Design, pp.
564-576, November 1991.

[7] M. Schulz and E.Auth, “Advanced Automatic Test Pattern Generation and
Redundancy Identification Techniques,”Proc. Fault Tolerant Comput-
ing Symposium, pp. 30-34, June 1988.

[8] “ORCA: A NEW Architecture for HIgh-Performance FPGAs”,AT&T
technical report.

[9] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive Alterna-
tive to the Decision Tree for Test Generation Digital Circuits”, inProc.
Int’l Test Conference, pp. 816-825, October 1992.

Circuit # of wires 1-w alt. 3-w alt cpu 1-w
(sec)

cpu 3-w
(sec)

f51m 136 25(48) 63(625) 68.1 1222.0
frg1 171 39(102) 85(439) 75.5 1151.2
apex6 854 139(321) 336(953) 348 4434.9
apex7 233 41(72) 75(305) 82.9 563.2
b9 193 28(37) 97(559) 29.0 244.4
misex1 47 8(28) 28(234) 3.0 40.4
mis2 122 53(84) 77(305) 43.0 218.9
rd73 63 3(4) 20(267) 8.7 386.5
sao2 220 57(157) 154(1802) 184.7 2405.8
x2 58 19(39) 38(193) 4.9 26.7
example2 376 60(221) 106(868) 345.1 2892.8
x4 34 5(9) 10(26) 0.8 6.5
industry 1 617 82(278) 238(3025) 81.7 997.9
industry 2 1011 113(324) 322(5574) 165.1 10991.4
industry 3 375 18(39) 141(2129) 20.1 837.0
industry 4 448 61(255) 178(7259) 61.1 2504.3
industry 5 486 61(328) 190(1721) 50.5 1287.6

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

