
Placement and Routing For A Field Programmable Multi-Chip
Module

Sanko Lan Avi Ziv Abbas El Gamal

Information Systems Laboratory, Stanford University, Stanford, CA 94305

Abstract | Placement and routing heuristics for a Field
Programmable Multi-Chip Module (FPMCM) are pre-
sented. The placement is done in three phases; partition-
ing, chip assignment and iterative improvement. The rout-
ing is done in two phases; global routing followed by de-
tailed routing. Detailed routing involves new channel rout-
ing problems denoted by Exact Segmented Channel Rout-
ing (ESCR) and K-ESCR. A very fast K-ESCR heuristic is
described. Experimental results show that the placement
heuristic achieves high gate utilization, and that the K-
ESCR heuristic performs surprisingly well over wide range
of channel sizes.

I. Introduction

Using multiple recon�gurable Field-Programmable Gate Ar-
rays (FPGAs) for logic emulation and rapid prototyping is
becoming increasingly popular [9]. Di�erent approaches for
combining multiple FPGAs on a substrate have been proposed.
First generation emulation machines employed an array of FP-
GAs mounted on printed circuit boards and, a �xed wiring
network among the FPGAs. Inter-chip routing is done using
both the �xed wires as well as the FPGAs themselves. The use
of FPGAs for routing results in low FPGA utilization and poor
performance. To improve FPGA utilization and performance,
newer generations of emulation machines use a combination of
FPGAs and dedicated routing chips interconnected via a �xed
wiring network [2]. Inter-chip routing is done using the routing
chips and the �xed wires.
Recently Dobbelaere el al. [1] proposed an alternative

approach called a Field Programmable Multi-Chip Module
(FPMCM) which integrates the logic of an FPGA with the fast
interconnection of a routing chip. This is done by surrounding
the logic core of an FPGA with a programmable interconnec-
tion frame. The frame supports fast through-chip routing as
well as connections into the logic core. By using an MCM sub-
strate with ip-chip bonding instead of a conventional PCB, a
higher pin-to-gate ratio can be supported. As a result, an or-
der of magnitude higher gate density and performance can be
achieved using the proposed FPMCM than existing emulation
machines.
To test the proposed FPMCM architecture we are devel-

oping an experimental CAD system for mapping large designs
onto an FPMCM. The CAD system consists of two major mod-
ules, the MCM level module and the FPGA level module [5].
Since the proposed FPMCM can use an existing FPGA core

The work was partially supported by FBI contract J-FBI-89-101

and its accompanying FPGA CAD tools, we are focusing on
the development of the MCM level tools. The MCM level tools
accept as input an FPMCM description �le which provides the
details of the architecture of the FPMCM to be used, and a
netlist for the design to be emulated. The system then places
the design, i.e. �nds an assignment of the design components
into the chips, routes the inter-chip nets using both the �xed
wiring network and the interconnection frames, and generates
the information needed to program the frame switches.
In this paper we describe the MCM-level placement and

routing system. The FPMCM placement problem is divided
into three phases; partitioning followed by chip assignment and
iterative improvement. The netlist is �rst partitioned among
the available chips using a modi�ed Fiduccia-Mattheyses par-
titioning heuristic [3]. The partitions are then assigned to the
FPGAs on the FPMCM so as to minimize routing cost. In the
iterative improvement phase, components from di�erent chips
are moved around to improve a cost function of the routing.
Routing is invoked after placement has been completed, and

is divided into two phases, global routing followed by detailed
routing. The global router replaces each net by a set of hor-
izontal or vertical two-point connections. Global routing of a
single net is modeled as a Steiner tree problem [10]. To solve it
we use a heuristic that combines a known heuristic for the gen-
eral Steiner Tree Problem [8], with improvements that exploit
the grid structure of the FPMCM.
To complete the routing, each connection must be assigned

to one or more of the �xed wires. This task is broken into
independent assignments for horizontal and vertical routing
channels. We denote the problem of assigning connections to
�xed wires in a channel by Exact Segmented Channel Routing
(ESCR). The ESCR problem is similar to that of segmented
channel routing [7], with a number of key di�erences that pre-
vent us from using the heuristics reported in [7]. We describe
a greedy ESCR algorithm that is simple and fast but gives
surprisingly good results.
It is important to note that the placement and routing

described in this paper, although developed speci�cally for
FPMCM, can be easily adapted to any multi-FPGA connected
by a �xed interconnect network.
The rest of the paper is organized as follows. In Section II

a detailed description of the FPMCM routing architecture is
given. Section III presents the two phases of the placement. In
Section IV we present heuristics for global routing and detailed
routing, and formally de�ne the ESCR problem. Experimental
results using an ESCR heuristic are also given. In Section V
placement and routing results for benchmark designs mapped
into two experimental FPMCMs are presented.

II. Routing Architecture

The FPMCM consists of an array of modi�ed FPGAs
mounted on a substrate and interconnected by a �xed wiring
network. The logic core of the modi�ed FPGA is assumed



to be an SRAM-based FPGA core, although specialized func-
tions such as memories, processors, etc., may also be used.
The core is surrounded by an SRAM-programmable intercon-
nection frame.
The I/O terminals of the FPGA core are connected to

the programmable interconnection frame via core pins. The
I/O terminals of the programmable interconnection frame are
called frame pins. Frame pins on di�erent chips are connected
to each other via frame wires in the �xed wiring network.
Other frame pins may be connected to external pins. The in-
terconnection frame may be programmed to interconnect pairs
of frame pins, resulting in fast through-chip interconnections.
As shown in Figure 1, the interconnection frame comprises

four switch boxes placed at the corner regions of the chip. The
switch boxes are SRAM programmable and are assumed to
have complete exibility, i.e., any horizontal frame wire may
be connected to any vertical frame wire. Permutation boxes
are placed between switch boxes. Again the permutation boxes
are assumed to have complete exibility; any two frame wires
entering the box from opposite sides may be interconnected.
Interconnections between the frame and the core pins are pro-
vided so that any signal entering a chip may be routed to the
core and any signal leaving the core may be routed to a frame
pin.

FRAME

CORE

permutation
box

switch

frame
pin

switch
box

core pin

core
connections

Figure 1: Programmable interconnection frame structure.

To simplify the routing problem as well as to decrease the
average wire length, we restrict the �xed wiring network to
consist of two-terminal horizontal or vertical �xed wires only.
We also assume the pattern of the �xed wires terminating at
any chip is independent of the location of the chip. At the
edges of the array of chips this is done by \wrapping around"
the �xed wires.
There are two types of paths through the interconnection

frame, I-paths and L-paths as illustrated in Figure 2. Three
types of L-paths are possible. Between the chip and its neigh-
bor, the near-far type wastes two additional frame pins, while
the far-far type wastes four.

III. Placement

The goal of the MCM level placement is to assign all compo-
nents of the design to the chips without violating chip gate or
pin capacities and such that all inter-chip nets can be routed
using the available routing resources. To achieve MCM level

CORE

FRAME

far-far turn near-far turn

near-near turn

L-pathI-path

Figure 2: Making turns in the interconnection frame.

routability the placement attempts to minimize the number
of connections to be routed. This is done by minimizing the
number of inter-chip nets, reducing the number of chips each
inter-chip net has to connect, and discouraging inter-chip nets
from connecting chips that are not either on the same row or
on the same column.
The placement is done in three phases; partitioning, chip

assignment and iterative improvement. In the partitioning
phase, we use a modi�ed Fiduccia-Mattheyses partitioning
heuristic [3] to minimize the number of inter-chip nets. In the
chip assignment phase, we collapse components in the same
partition into a node and merge nets that go to the same set
of partitions into a weighted edge. Since our data show that
only 1% of nets eventually go to more than 2 chips, hyperedges
are removed for simplicity. We then assign the nodes to the
chips on the MCM.
We start with a random placement and improve the place-

ment using a simulated annealing heuristic [4]. The total rout-
ing cost is the sum of the routing cost for each edge. The rout-
ing cost of each edge is the weight of the edge multiplied by the
cost of routing a net between the corresponding pair of chips.
If the horizontal and vertical distances between the two chips
are �x and �y respectively, the cost of routing a net between
them is the sum of Net2Wire(�x) and Net2Wire(�y), where
the function Net2Wire(�) computes an estimate of the number
of frame wires that are needed to route a connection, which is
a number between 1 and 2 because of our restriction on the
frame wires that each connection is allowed to use.
After the chip assignment is completed, we improve the

placement using a simulated annealing-based iterative im-
provement heuristic. The set of components considered at
any iteration are those connected to at least one inter-chip
net, which we denote by frontier set. At each iteration, we
randomly pick a component in the frontier set, i.e. a frontier
component, select a new destination chip for it, and evalu-
ate the routing cost function. The acceptance or rejection of
the move is then determined using the acceptance probabil-
ity. The routing cost is again calculated using the Net2Wire(�)
function, that gives a rough estimate of the number of frame
wires needed to route the net.

IV. Routing

Routing in the FPMCM is done in two phases, global rout-



ing followed by detailed routing. Global routing is performed
after placement is completed; thus it is assumed that each
component in the design is assigned to a chip on the MCM.
The global router replaces each net by a set of two-terminal
connections and assigns each connection to a horizontal or ver-
tical channel. As shown in Figure 3, there are two channels
per row or column of chips. In the detailed routing phase the
connections are assigned to speci�c �xed wires in the channels.

Horizontal Channel

Horizontal Channel

Figure 3: Two horizontal channels on the same row of chips

A. Global Routing

Global routing using frame wires is done one net at a time.
We pick an inter-chip net at random, route it, and update the
routing resources and costs.

Figure 4: Modeling the routing problem as a Steiner tree problem.
The squares denote chips and the empty circles denote nodes repre-
senting groups of frame pins. Full circles denote nodes representing
groups of core pins.

Global routing of a single net can be formulated as a Steiner
Tree Problem (STP) [10]. Each chip is represented by eight
frame nodes, one for each of the eight groups of frame pins
located at the outer two sides of the four switch boxes. Chips
connected by the net have an additional core node located at
the center, representing the core pins to one of which the signal
must be connected. Figure 4 shows a 3� 3 grid of chips with
3 core nodes at coordinates (1; 1); (2; 3) and (3; 2).
The edges of the graph represent the possible interconnec-

tions of frame nodes or core nodes to frame nodes. Associated
with each edge is its cost. Since routing resources including
frame pins and �xed wires are limited, the edge cost is a func-
tion of the frame pins used and the availability of frame wires.
however, only estimates of these resources are available during
global routing. There are three types of edges in the graph:

� Internal edges. If a net has a terminal at a particu-
lar chip, it must be connected to the core of that chip
through a frame-to-core connection. Such a connection
is represented by an internal edge. An internal edge is
assigned a unit cost since it uses a single frame pin. In
Figure 4 internal edges are shown as dotted lines.

� Switching edges. A chip that is not connected by the
net may still be used to connect �xed wires in the �xed
wiring network. The types of interconnections possible
include switching edges for L-paths and I-paths. The
cost assigned to a switching edge is 2, since in making
such an interconnection we must use two frame pins. In
Figure 4 switching edges are shown as dashed lines.

Switching edges represent all types of turns in the frame
as a combination of I-path edges and L-path edges. For
example, a far-far turn which costs 6 frame pins is im-
plemented with two I-path edges and an L-path edge.
Since making a turn costs 2, 4, or 6 frame pins, it is
correspondingly discouraged.

� Routing edges. These edges represent all possible hor-
izontal and vertical interconnections among chips. Fig-
ure 4 shows a subset of the routing edges as solid lines.

The cost given to a routing edge is determined by two
factors: the length of the edge and an estimate of the
availability of frame wires for realizing the edge. Be-
cause the global router does not assign �xed wires to
connections, it can only estimate the contributions of
these factors to cost.

Routing a net with minimal cost is equivalent to solving the
Steiner tree problem on the graph described above, with the
net terminals at core nodes. Figure 4 shows the graph as well
as a global routing, in bold lines.
The heuristic we use to route a net consists of two phases. In

the �rst phase, we use Takahashi and Matsuyama's [8] heuris-
tic. In the second phase, the result is improved by repeated
corner ipping, � to T conversion and leaf chip adjustment
until no more improvement is possible. Examples of these im-
provements are given in Figure 5.

to T Conversion(b)Π(a) Corner Flipping (c) Leaf Chip Adjustment

Figure 5: Single net grid improvements. The squares denote chips
and the lines connections. Filled-in squares contain pins of the net.

B. Detailed Routing

To complete the routing, each connection must be assigned to
one or more frame wires. This assignment is performed by
the detailed router. As a result of the complete exibility of
the switch and permutation boxes and also assuming complete



exibility in core pin assignments it is easy to see that de-
tailed routing reduces to independent Exact Segmented Chan-
nel Routing performed for all horizontal and vertical channels
independently The inputs to ESCR are the channel structure
and the channel connections.

De�nition 1 The channel structure is a set of frame wires
F = f(F s

1 ; F
t

1); (F
s

2 ; F
t

2); : : :g; where frame wire Fi connects
the right (or bottom) side of chip F s

i
to the left (or top) side

of chip F t

i
; respectively.

De�nition 2 The channel connections are a set of connec-
tions C = f(Cs

1 ; C
t

1); (C
s

2 ; C
t

2); : : :g where connection Ci con-
nects the right (or bottom) side of chip Cs

i
to the left (or top)

side of chip Ct

i
; respectively.

Note that connection (i; j) is di�erent from (j; i) in a wrap
around channel structure because they connect di�erent pairs
of frame nodes. We now formally de�ne the Exact Segmented
Channel Routing (ESCR) problem.

Problem 1 The Exact Segmented Channel Routing prob-
lem is to cover the channel connections C with disjoint sub-
sets of the set of frame wires F ; such that a valid cover
of Ci by fFi1

; Fi2
; : : : ; Fik

g is one where Cs

i
= F s

i1
; F t

i1
=

F s

i2
; : : : ; F t

ik�1
= F s

ik
; F t

ik
= Ct

i
; and the spans of the Fij do

not intersect.

In Problem 1, the number of frame wires used per connec-
tion is unlimited. This may result in unacceptable delays. By
restricting the maximum number of frame wires allowed to
cover a connection to an integer K, delays may be better con-
trolled. We denote this version of the ESCR problem as the
K-wire Exact Segmented Channel Routing (K-ESCR) problem.

Problem 2 The K-wire Exact Segmented Channel Routing
problem is an ESCR problem with the additional constraint that
at most K frame wires can be used to cover each connection.

The ESCR problem has been proved to be strongly NP-
Complete [6]. In [6] Lan and How also proved that the general
K-ESCR problem is strongly NP-complete when K � 3, and
that a variation that prohibits track-permutation is strongly
NP-complete for K � 2. The complexity of 2-ESCR is still an
open problem.
However, in practice, the number of chips in a channel is

bounded by a small constant (on the order of 16) which in
turn imposes an upper bound on K. The ESCR with bounded
channel length can be solved in polynomial time [6], but is too
time-consuming in practice.

C. ESCR Heuristic

The heuristic we use to solve the ESCR problem routes each
connection using no more than two frame wires, i.e., K = 2:
The algorithm consists of a greedy constructive phase followed
by several iterations of a reroute phase; once a connection is
routed, the reroute phase may alter this routing, but will never
unroute the connection. In each successive reroute iteration,
the heuristic searches more and more thoroughly for possible
routings for the fewer and fewer remaining unrouted connec-
tions.
Since frame wires between the same pair of frame nodes

are interchangeable in ESCR, we treat them as a single wire
bundle. The capacity of a wire bundle is denoted by Cap(wire
bundle). Similarly, a connection group consists of connections

between the same pair of frame nodes. With the constraint of
at most two frame wires per connection, a connection of length
l can be routed in l di�erent ways.
Assume the probabilities of routing the connection in each

of these l ways are the same. Then, for each wire bundle, we
can compute the expected number of connections that will use
this wire bundle, denoted by Exp(wire bundle). We de�ne
the cost of using a frame wire in a wire bundle to be Exp(wire
bundle) - Cap(wire bundle), unless Cap is zero in which
case the cost is de�ned to be in�nity. In addition, we de�ne
the cost of routing a connection to be the maximum of the
costs of the wire bundles used.
In the greedy constructive phase, we attempt to route as

many connections as possible, one by one. To route a connec-
tion of length l, we compute the cost of each of its l possible
routings. If a least �nite cost routing exists, we select it as the
routing for the connection and update Cap and Exp. Oth-
erwise, we skip the connection and leave it for the reroute
iterations.

Example: Consider an ESCR problem with connections
(Cs

1 ; C
t

1) = (0; 3); (Cs

2 ; C
t

2) = (1; 2); (Cs

3 ; C
t

3) = (2; 0) and
(Cs

4 ; C
t

4) = (1; 0) and frame wires (F s

1 ; F
t

1) = (0; 1); (F s

2 ; F
t

2) =
(1; 2); (F s

3 ; F
t

3) = (2; 3); (F s

4 ; F
t

4) = (3; 0); (F s

5 ; F
t

5) = (0; 2);
(F s

6 ; F
t

6) = (2; 0); (F s

7 ; F
t

7) = (1; 3) and (F s

8 ; F
t

8) = (3; 1); as
shown in Figure 6. The initial values of Exp; Cap and Cost
are shown in Table I as Exp0, Cap0, and Cost0. As an exam-
ple of the calculation of these numbers, consider the value of
Exp for F2; which is 3

2
because C2 will use F2 with probability

1 and C4 will use F2 with probability 1

2
:

To route C1, we can use either F1 and F7 or F3 and F5.
The costs for either alternatives is zero, so the router may pick
either one; here we choose F1 and F7 and show the updated
values in Table I as Exp1, Cap1, and Cost1. To route C2,
the router can only use F2; the updated values are shown in
Table I as Exp2, Cap2, and Cost2. Finally, to route C3, we
can use either F3 and F4 or just F6: Once again both costs are
zero, so the router may pick either one; here we choose the �rst
again and show the updated values in Table I as Exp3, Cap3,
and Cost3. Since the costs of using F2 and F6 or F4 and F7

for C4 are both in�nity, C4 will not be routable. Consequently
C4 must be left for the reroute phase to complete.

0 1 2 3 0

C1
C2

C3
C4

F8 F7 F8

F5 F6

F1 F2 F3 F4

Figure 6: ESCR example.

Let L be the channel length. Computing Exp for all the wire
bundles requires O(L3) time, because we have O(L2) connec-
tion groups and O(L) time is required to compute the contribu-
tion of each connection group to Exp: After Exp is computed,
for each connection we need O(L) time to decide how to route
this connection and O(L) time to update Exp and Cap: Since
L is a constant, the overall computation time is O(n), where
n is the number of connections.
The Ith reroute iteration tries to route each unrouted con-

nection by rerouting up to 2I other connections. Thus from



F1 F2 F3 F4 F5 F6 F7 F8

C1
1

2

1

2
1

2

1

2

C2 1

C3

1

2

1

2
1

2

C4
1

2

1

2
1

2

1

2

Exp0
1

2

3

2
1 1 1

2
1 1 0

Cap0 1 1 1 1 1 1 1 1

Cost0 �
1

2

1

2
0 0 �

1

2
0 0 -1

Exp1 0 3

2

1

2
1 0 1 1

2
0

Cap1 0 1 1 1 1 1 0 1

Cost1 1
1

2
�

1

2
0 -1 0 1 -1

Exp2 0 1

2

1

2
1 0 1 1

2
0

Cap2 0 0 1 1 1 1 0 1

Cost2 1 1 �
1

2
0 -1 0 1 -1

Exp3 0 1

2
0 1

2
0 1

2

1

2
0

Cap3 0 0 0 0 1 1 0 1
Cost3 1 1 1 1 -1 �

1

2
1 -1

Table I: Initial values for Exp, Cap and Cost, and their values after
C1 � C3 are routed.

one reroute iteration to the next, we increase the solution
search depth. The algorithm is given in Figure 7.

Example: Consider again the ESCR problem depicted in Fig-
ure 6, and let I = 2: C4 remains the only unrouted connection.
It has two possible routings, using either F2 and F6, or F7 and
F4.

Avail(F2) will be called �rst to see whether F2 may be
made available by rerouting other connections. The answer is
obviously no, because C2 which is using F2 cannot be rerouted.
Thus the �rst alternative for routing C4 fails.
The router will then try to see whether F7 and F4 are

both available. It will �rst call Avail(F7) which will deter-
mine whether F7 can be released by rerouting C1. Rerouting
C1 requires F5, which is obviously available, as well as F3,
which is currently occupied by C3: Therefore the answer from
AvailByRerouteNet(C1,1,2) depends on whether or not F3

can be freed from implementing C3: Since C3 can be routed
using F6 which is currently available, Avail(F3) will return
yes. Thus the router concludes that F7 is available by �rst
rerouting C3 using F6 and then rerouting C1 using F5 and F3.
The router will then check whether F4 is available. Since F4

was freed when C3 was rerouted, Avail(F4) will return yes.
Thus C4 can be routed with F7 and F4; and the router has
found a solution for this example.

By storing the values of the Avail function, we can avoid
repeated determinations of whether a wire bundle is avail-
able. Since there are at most L2 wire bundles, we will per-
form Avail at most L2 times. In the worst case, each Avail

calls AvailByRerouteNetO(L) times, where each such call will
need at most O(L) trivial determinations of whether a wire

bundle is available. Consequently we require O(L4) time to
determine if other connections can be rerouted to route a par-
ticular unrouted connection, and the overall time required is
O(L4n) = O(n); where n is the number of connections.
This heuristic can be extended to the general K-ESCR prob-

RerouteUpto(I) f

For each unrouted connection

For each routing (s1,s2)

If (Avail(s1,0,I) && Avail(s2,0,I)) f

Reroute routed connections

Route unrouted connection

g

g

Avail(bundle,Dep,I) f

If (bundle has unused) Return yes
If (Dep � I) Return no
For each group using this bundle

If (AvailByRerouteNet(group,Dep+1,I)) f

Record the group

Return yes
g

Return no
g

AvailByRerouteNet(group,Dep,I) f

For each routing (s1,s2) of group

If (Avail(s1,Dep,I) && Avail(s2,Dep,I)) f

Record how to reroute

Return yes
g

Return no
g

Figure 7: ESCR reroute iterations.

lem. With bounded K and channel length, the complexity is
still linear in the number of connections. If we relax the bound
on channel length, the order of this heuristic increases with K.

D. Results

In order to determine the quality of the proposed heuristic for
the ESCR problem, we measured its performance on instances
of randomly generated channel connections. The heuristic was
executed for a channel with 8 chips and 50 pins on each side of
each chip. The length of the frame wires were from 1 to 4. The
number of frame wires per chip of each length are 20, 15, 10,
and 5 respectively. The connections are randomly generated
with the left edge of each connection uniformly distributed
over the chips and the length of each connection independently
distributed according to a geometric distribution.

The heuristic is executed for di�erent connection densities,
de�ned as the ratio between the number of connections and
the number of frame wires. For densities of less than 0.55 the
heuristic succeeded every time. When the density is above 0.6
the success ratio drops sharply. The heuristic achieves high
channel utilization, de�ned as the ratio between the number
of frame wires used for the routing and the overall number
of frame wires. For the maximum connection density with
success probability of 1 the average channel utilization is 0.8.
The average running time on a SPARC IPX workstation for
successful routing is less than 30ms for densities of 0.6 or less.
The average running time for failed attempts is less than 100ms
for the densities between 0.55 and 0.6. Similar results are
achieved for channels of di�erent lengths and widths.



V. Placement and Routing Results

We tested the MCM level placement and routing system, us-
ing several designs from the Partitioning93 benchmarks [11].
We placed and routed the designs on two experimental FPM-
CMs. FPMCM9 has 9 chips, in a 3 � 3 con�guration; while
FPMCM25 has 25 chips, in a 5 � 5 con�guration. Table II
gives the main parameters of both FPMCMs. All designs were
successfully placed and routed on both FPMCMs. Tables IV{
V describe the placement and routing results for the S38584
design, the largest design in the Partitioning93 benchmarks.
The parameters of the design are given in Table III.

FPMCM9 FPMCM25
Chips on MCM 9 25
Core size (gates) 4000 1600
Number of core pins 360 320
Number of frame pins 360 320

Table II: FPMCM parameters

Number of gates 33353
Number of components 22449
Number of nets 20719

Table III: S38584 design parameters

Table IV summarizes the results after placement and both
phases of the routing. Table V presents the distribution of the
number of connections used by the nets in the design. The
�gure shows that about 97% of the nets in the design are local
nets, and do not use MCM resources for routing. Only less
than 1% of the nets use more than 2 connections.

FPMCM9 FPMCM25
Total inter-chip nets 601 624
Avg. core pins per chip 152 61
Max. core pins per chip 229 143
Number of connections 1189 1574
Avg. connections
per inter-chip net 1.97 2.52
Avg. �xed wires
per connection 1.00 1.13
Avg. frame pins per chip 264 144
Max. frame pins per chip 294 186

Table IV: Placement and routing results for S38584

Connections used FPMCM9 FPMCM25
0 97.10% 96.99%
1 0.81% 0.14%
2 1.74% 2.34%
3 0.12% 0.11%

> 3 0.23% 0.43%

Table V: Distribution of connections used by nets in S38584

VI. Conclusions

A placement and routing system for the FPMCM proposed
in [1] has been described. We demonstrated that using our
system an FPMCM can implement designs of sizes at least
one order of magnitude higher than those of single FPGAs
with the same core utilizations. The placement and routing
system can also be easily adapted to any multi-FPGA system
with a �xed wiring network by routing directly through the
FPGAs.
The results of mapping large Partition93 benchmark designs

show that only 3% of the nets are inter-chip nets and less than
1% of the nets need more than 2 connections.
We formally de�ned the ESCR and K-ESCR problem.

Heuristics for both global routing of a single net and the K-
ESCR problem were presented. We demonstrated experimen-
tally that the K-ESCR heuristic performs surprisingly well.
We plan to perform logic replication [3] after placement to

further reduce the number of inter-chip nets.

Acknowledgments

The authors would like to thank Dana How for setting up
a software development environment for this project and his
valuable comments on the manuscript, and Jim Hwang for
providing the partitioner source code and the netlist parser.

References

[1] I. Dobbelaere, A. El Gamal, D. How and B. Kleveland, \Field
Programmable MCM Systems { Design of an Interconnection
Frame," CICC '92, Boston, MA, May 1992, pp. 4.6.1{4.6.4.

[2] R. Guo et al., \A 1024 Pin Universal Interconnect Array with
Routing Architecture,"CICC '92, Boston, MA, 1992, pp. 4.5.1{
4.5.4.

[3] J. Hwang and A. El Gamal, \Min-Cut Replication in Partitioned
Networks," IEEE Trans. on CAD, in press.

[4] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, \Opti-
mization by simulated annealing," Science, Vol. 220, May 1983,
pp. 671{680.

[5] S. Lan, \Partitioning, Placement, and Routing for FPMCM,"
Class Report for Integrated Systems Laboratory, Stanford Uni-
versity, May 1991.

[6] S. Lan, and D. L. How, \Complexity of Exact Segmented Chan-
nel Routing," unpublished.

[7] V. Roychowdhury, J. Greene and A. El Gamal, \Segmented
Channel Routing," IEEE Transactions on Computer Aided De-
sign 12, pp. 79{95, January 1993.

[8] H. Takahashi and A. Matsuyama, \An Approximate Solution for
The Steiner Problem in Graphs,"Math Japonica 24, pp 573{577,
1980.

[9] S. Walters, \Computer-Aided Prototyping for ASIC-Based Sys-
tems," IEEE Design and Test of Computers, June 1991, pp.
4{10.

[10] P. Winter, \Steiner Problem in Networks: A Survey,"Networks
17, pp. 129{167, 1987.

[11] ACM/SIGDA Benchmark Newsletter, June 1993.


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




