
New Techniques for Efficient Verification with Implicitly Conjoined BDDs �

Alan J. Hu
Department of Computer Science

Stanford University

Gary York
Cadence Labs

Cadence Design Systems, Inc.

David L. Dill
Department of Computer Science

Stanford University

Abstract — In previous work, Hu and Dill identified a common
cause of BDD-size blowup in high-level design verification and
proposed the method of implicitly conjoined invariants to address
the problem. That work, however, had some limitations: the user
had to supply the property being verified as an implicit conjunc-
tion of BDDs, the heuristic used to decide which conjunctions to
evaluate was rather simple, and the termination test, though fast
and effective on a set of examples, was not proven to be always
correct. In this work, we address those problems by proposing
a new, more sophisticated heuristic to simplify and evaluate lists
of implicitly conjoined BDDs and an exact termination test. We
demonstrate on examples that these more complex heuristics are
reasonably efficient as well as allowing verification of examples
that were previously intractable.

I. INTRODUCTION

Formal design verification is attracting increasing interest as a tool to
deal with the ever increasing cost and complexity of hardware designs
and protocols. Binary decision diagrams (BDDs) [3] have enabled
much of the recent progress in this area, starting from the early work
applying BDDs to verification [1, 6, 5, 11, 24] and continuing through
the current work of many researchers.

Current research on automatic formal hardware verification has
focussed mainly on gate and transistor-level design. We believe that
automatic formal verification also has an important role at the very
highest levels of design, for example, in checking communicationsand
consistency-maintenance protocols in a very large system. Verification
of high-level, abstract specifications can catch conceptual errors early
in the design cycle, when they are easier and cheaper to correct.

The attractions of BDD-based approaches for high-level design
verification are threefold. First, they can conceivably handle large,
real-world designs. Second, most of the proposed algorithms pro-
vide counterexamples if the verification attempt fails. Third, these
approaches can be highly automatic, requiring minimal user effort.
Minimizing user effort, in particular, is crucial to the economic jus-
tification of formal verification; performing verification makes sense
only if the cost and effort required to use the verifier is small compared
to the cost and effort saved by catching errors during verification.

With a few notable exceptions (e.g., [21, 7, 9]), however, BDD-
based approaches have largely failed to achieve these objectives for
high-level design verification. The straightforward algorithms appear
generally unable to handle designs much more complex than dining
philosophers or rings of mutual exclusion elements, and behind the

�This research was supported in part by the Stanford Center for Integrated
Systems’s Multi-Module Systems Thrust. Much of this work was done while
the first author was a summer intern at Cadence Design Systems. Some of this
work was done using equipment donated by Sun Microsystems.

rubric of “automatic” formal verification lurks considerable human
labor invested in the minutiæ of preventing BDD-size blowup. In-
deed, in our own research on large, real examples (e.g., industrial
directory-based cache-coherence and link-level protocols), a brute-
force approach that stores states explicitly in a hash table [13] has
generally out-performed BDD-based approaches. Clearly, new tech-
niques are needed to realize the potential advantages of BDDs at this
high level of verification.

Implicitly conjoined invariants [17] is a recently-introduced tech-
nique, designed specifically to address some commonly-occurring
causes of BDD-size blowup in high-level verification. The basic idea
is that in high-level verification, we frequently encounter functions for
which the BDD is huge, but which we can represent as the conjunction
of small BDDs. By using these implicitly conjoined lists of BDDs
instead of building the huge BDD, we can expand the set of problems
for which BDD-based automatic verification is feasible.

Some problems, however, remain to be solved. (For instance, the
method is not proven to terminate.) In this paper, we start from that
result and introduce two new techniques for manipulating implicitly
conjoined lists of BDDs: a heuristic for shortening an implicitly con-
joined list of BDDs by searching for good (i.e., reduces memory usage)
conjunctions to evaluate explicitly, and an exact termination test based
on an efficient heuristic for comparing two implicitly conjoined lists
of BDDs. These new techniques further expand the range of prob-
lems that can be verified, which we demonstrate by verifying some
examples that are intractable by other means.

II. BACKGROUND

We consider a verification paradigm that, though simple, has proven
adequate for debugging a wide range of high-level designs [13]. In-
tuitively, we are verifying that every reachable state of the system
satisfies a specified property. (Equivalently, we are model-checking
CTL formulas of the form AGp only.) Formally, we model the sys-
tem being verified as a single non-deterministic finite-state machine.
(Such a finite-state machine is easily generated from a higher-level
description. We are using the Ever verifier, which supports higher-
level constructs using BDDs [18].) Non-determinism is important for
high-level verification both to model non-determinism in the environ-
ment and also to abstract away implementation details, allowing us to
postpone making low-level decisions until we’ve finished high-level
verification. Let the machine have state space Q, transition relation
� : Q�Q! f0; 1g, and a set of start states S � Q. The verification
task is, given the set of “good” statesG � Q that satisfies the property
being verified, to determine if there exists a path starting from a state
in S and leading to a state not in G, and, if such a path exists, to output
it as a counterexample to the property being verified.

1



A. Image Operators

Before we proceed, we need a bit of notation:

Definition 1 Given a set Z � Q, define the following operators:

Image(�;Z) = fvj9u[u 2 Z ^ �(u; v)]g

PreImage(�;Z) = fuj9v[v 2 Z ^ �(u; v)]g

BackImage(�;Z) = fuj8v[�(u; v) ) v 2 Z]g:

Intuitively, Image gives the set of states that can be reached in one
transition from a state in Z , PreImage gives the set of states that in
one transition can reach a state in Z , and BackImage gives the set of
states that in one transition must end up in Z .

These image operators form the basic operations of BDD-based
verification algorithms. If Z and � are both represented by small
BDDs, these operations can be done directly using BDD opera-
tions [6, 5, 24]. If the BDD for � is too large to build (a common
problem), a number of techniques are available to compute these
images without building the BDD for � [4, 18]. Also, note that
BackImage(�;Z) = :PreImage(�;:Z), so if Z is represented by a
small BDD, computing either of these two images is equally fast for an
efficient BDD implementation (where negation is constant-time) [2].

What happens if the BDD for Z is also too large to build (also a
common problem for high-level design verification)? The following
theorem enables computing the BackImage of an implicit conjunction
of a list of BDDs without building the BDD for the conjunction [17].
(Dually, we can compute the Image and PreImage of implicit disjunc-
tions without building the BDD for the entire disjunction.)

Theorem 1

BackImage(�; Y ^ Z) = BackImage(�; Y ) ^ BackImage(�;Z):

Proof: BackImage(�; Y ^ Z) is defined as 8v[�(u; v) ) (Y (v) ^
Z(v))], which equals 8v[(�(u; v) ) Y (v)) ^ (�(u; v) ) Z(v))],
which equals 8v[�(u; v) ) Y (v)] ^ 8v[�(u; v) ) Z(v)], which is
defined as BackImage(�; Y ) ^ BackImage(�;Z): 2

Using these image operators, it’s easy to explain the standard ap-
proaches to our verification problem.

B. Verification Approaches

One standard algorithm we call “forward traversal.” The intuition is
that we iteratively compute the setRi of states that can be reached in i
or fewer transitions from the start states. Mathematically, we initialize
R0 = S, and compute Ri+1 = R0 _ Image(�;Ri). If Ri ever goes
outside the set of good states (Ri 6� G), then we have a violation, and
it’s easy to produce a counterexample trace. Otherwise, the sequence
will eventually converge to the set of reachable states, meaning that the
verification succeeds. Details of this approach are available elsewhere
(e.g., [11, 5, 8, 24, 4]).

The other standard algorithm we call “backward traversal.” The
intuition here is that we iteratively compute the set Gi of states such
that all paths of length i or less starting inGi must remain within the set
of good statesG. Mathematically, we initializeG0 = G, and compute
Gi+1 = G0 ^ BackImage(�;Gi). If we reach a point where Gi does
not contain all of the start states (S 6� Gi), then there exists a sequence
of i transitions from a start state to a violating state. Otherwise, the
sequencewill converge, meaning the verification succeeds. Details for
this approach are also available from several sources (e.g., [6, 23, 14]).

C. Implicitly Conjoined Invariants

The method of implicitly conjoined invariants [17] is built on the back-
ward traversal. As mentioned already, this method is predicated on
the observation that in high-level design verification, we frequently
encounter the situation where the Gi’s in the backward traversal re-
quire huge BDDs, but could be expressed as the implicit conjunction
of small BDDs. Suppose the set G of states that satisfy the property
we are verifying is actually specified as the implicit conjunction of
small BDDs: G = G[1] ^ � � � ^G[n]. Can we perform the backward
traversal algorithm keeping all the Gi’s in this form, never building
the huge BDD required to represent the conjunction?

In the original paper [17], the answer is a qualified yes. Clearly, the

violation check S
?
6� Gi can be broken down into individual checks

S
?

6� Gi[j] for each j. Similarly, Theorem 1 allows us break down
the BackImage computation: BackImage(�;Gi[1] ^ � � � ^ Gi[n]) =
BackImage(�;Gi[1])^ � � � ^BackImage(�;Gi[n]): Thus, computing
the BackImage of an implicitly conjoined list of n BDDs results in
another implicitly conjoined list of n BDDs. This phenomenon leads
to a problem: On each iteration, we AND the n BDDs representing
G0 into the current implicit conjunction; if we just add thesen BDDs
to the current list, the length of the implicitly conjoined list will grow
on each iteration. Thus, we need some way of deciding which of the
implied conjunctions to actually evaluate (i.e., actually build the BDD
for the conjunction of two BDDs, reducing the length of the list by
one). Furthermore, the BDD for X ^ Y can be smaller than the BDD
for X plus the BDD for Y , so evaluating some conjunctions might
even reduce the amount of memory used. The other crucial problem
is how to determine termination. Since an implicitly conjoined list of
BDDs is not a canonical form (unlike single BDDs), testing whether
Gi = Gi+1 is not trivial.

Another important point is that an implicitly conjoined list of BDDs
gives us an opportunity to perform don’t-care optimizations. The cor-
rectness of the backward traversal algorithm relies on computing the
Gi correctly, not on the particular representation used. Therefore, if
we represent Gi as an implicitly conjoined list of BDDs, the specific
BDDs in the list don’t matter, as long as the implied conjunction rep-
resents the correct set. Thus, each conjunct defines a care set for the
other conjuncts, since when any one conjunct is false, the entire con-
junction is false. Suppose we have an operator BDDSimplify(f; c)
that takes BDDs f and c and performs care-set simplification (return-
ing a smaller BDD that agrees with f whenever c is true). We can
apply such an operator freely to any implicitly conjoined list of BDDs,
reducing the sizes of the BDDs in the list. Much of the efficiency of
implicitly conjoined invariants derives from these simplifications, but
determining the best way to apply simplification is an open problem.

The original paper addressed these problems with some simple
heuristics. The details of these heuristics do not concern us here,
(See [17].) except to point out the key weaknesses. First, the evalua-
tion policy is simple, making no effort to adapt to different problems
or seek out particularly good conjunctions to evaluate. Second, the
termination test given, while fast, simple and successful on several ex-
amples, isn’t proven to be correct — it could conceivably fail to detect
convergence. Most importantly, the heuristics used require the user
to supply the property being verified as an implicit conjunction. Fail-
ure to do so reduces the algorithm to the ordinary backward traversal
with BDDs. Since we seek to minimize user effort and sophistication
required to use formal verification, such a requirement is undesirable.

2



III. NEW TECHNIQUES

The new techniques given here address the preceding problems. We
present a new evaluation and simplification policy that attempts to find
good conjunctions to evaluate and also attempts automatically to form
implicitly conjoined lists of small BDDs, relieving the user of this
burden. We also present an exact termination test that determines if
two implicitly conjoined lists of BDDs are equal. While the exact test
requires exponential time in theory, some examples will show that the
exact test is frequently not too time-consuming in practice.

A. Evaluation and Simplification Policy

On each iteration of the backward traversal algorithm, we compute an
implicitly conjoined list of BDDs forGi+1 = G0^BackImage(�;Gi).
We seek to find an equivalent list of BDDs that is smaller overall.
More abstractly, given function X expressed as implicit conjunction
of BDDs X1 ^ � � � ^Xn, we want to find an implicit conjunction with
smaller overall size Y = Y1 ^ � � � ^ Ym, such that X = Y .

We are using the BDD simplification operator proposed by Coud-
ert, Berthet, and Madre [11], generally known as Restrict [10] or
Reduce [20]. While this operator doesn’t always reduce the size of the
BDD it is applied to, it seems generally effective, so we first simplify
each BDD Xi by every other BDD Xj that’s smaller than it. (Sim-
plifying a small BDD by a large BDD, in our experience, does little
good.) The remaining problem is simply to decide which conjunctions
to evaluate to minimize the total size of the implicitly conjoined list.

At first glance, this problem appears an ideal combinatorial opti-
mization problem. For every subset of the BDDs in the list, we can
replace that subset by the single BDD that’s the conjunction of all the
BDDs in the subset. Thus, we arrive at a set-covering problem:

Let X be a set of n conjuncts X = fX1; : : : ;Xng.
For every subset s � X , define the cost of that subset
c(s) to be the size of the (single) BDD that represents
the conjunction of all conjuncts contained in s: c(s) =

BDDSize
�V

Xi2s
Xi

�
: Find the minimum cost set S of

subsets that covers all the conjuncts in X , i.e., find the S
that minimizes

P
s2S

c(s) subject to 8i9s 2 S[Xi 2 s].

Unfortunately, this approach yields an instance of Minimum Weight
Cover, and Minimum Weight Cover is clearly NP-hard by reduction
from Minimum Cover [15], even if restricted to subsets of three or
fewer conjuncts. (The constraints on the cost function imposed by
BDD properties, however, might make this problem easier than Min-
imum Weight Cover in general.) If we restrict ourselves to pairwise
subsets only, we can solve the problem in polynomial time:

Theorem 2 Finding the min cost pairwise cover is polynomial time.

Proof: Draw a complete graph with a vertex for each conjunct. Label
each edge with the size of the BDD for the conjunction of the BDDs on
the two incident vertices. Next, make a copy of each vertex. Connect
each original vertex to its copy; label that edge with the minimum of
the size of the BDD at that vertex and the labels of all other incident
edges. (This edge indicates the cheapest way to include this conjunct
ignoring all the other conjuncts.) Connect all the copy vertices to each
other with weight 0 edges. Minimum weighted matching, which is
polynomial time (e.g. [22]), on this graph gives the optimum cover.2

Even this result is of limited practical value because in reality, for
efficient BDD implementations, BDD sizes do not add, since all BDDs

Conjunction Evaluation:
Let GrowThreshold = 1:5.
Build a table P of all pairwise conjunctions: Pij := Xi ^Xj .
Loop

Find the i; j (with i 6= j) that minimizes the ratio:
r = BDDSize(Pij)=BDDSize(Xi; Xj)

Note: BDDSize(Xi; Xj) takes node-sharing into account.
If rmin > GrowThreshold, then exit.
Replace Xi and Xj with Pij .
Update P to reflect the modified conjunct list.

EndLoop

Figure 1: This algorithm is a greedy algorithm to find a good set of conjunctions
to evaluate in an implicitly conjoined list of BDDs. We have arbitrarily set
the GrowThreshold to 1:5 with satisfactory results. Additional tuning could
improve results further: a smaller threshold holds BDD size down, but can
get caught in a local minimum, whereas any threshold greater than 1 could
theoretically allow us to build exponentially-sized BDDs.

in the system can share nodes with each other [2]. Using a complex
“optimum” algorithm for a rough approximation to a problem makes
little sense. Thus, we turn to a greedy heuristic.

The heuristic we propose is fairly simple, yet accounts for some
degree of node sharing among different BDDs. The intuition is to
find the pair of BDDs for which evaluating the conjunction gives the
greatest savings over not evaluating the conjunction. We replace the
pair of BDDs with the single BDD for the conjunction and repeat the
process. The process terminates when the best conjunction to evaluate
doesn’t give sufficient savings. The algorithm is given in Figure 1.

B. Exact Termination Testing

Deciding termination in the verification algorithms requires testing
whether the iteration has converged — is Ri = Ri+1 or Gi = Gi+1?
(Actually, checking implication suffices since these sequences are
monotonic. The current implementation does not exploit this opti-
mization.) The termination test proposed in the original paper relied
on the structure of the original simple evaluation policy to provide a
good chance of operating correctly [17]. Given that the evaluation
and simplification technique proposed in the preceding section can
extensively modify an implicitly conjoined list of BDDs, a method to
compare two arbitrary implicitly conjoined lists of BDDs seems nec-
essary for reliable termination testing. Furthermore, verification, by
nature, should favor a method that is guaranteed correct, but possibly
slow, over a method that is fast, but possibly wrong. Thus, we look
for an exact test of equality for arbitrary implicitly conjoined BDDs.

Suppose we have two implicitly conjoined lists of BDDs X =
fX1 ^ � � � ^Xng and Y = fY1 ^ � � � ^Ymg. Our task is to determine
whether or not X = Y , without building the BDDs for X or for Y ,
since those BDDs are presumably too big to build. We proceed by
decomposing the problem. First, note that X = Y if and only if
X ) Y and Y ) X , so we can check each implication separately.
For brevity, we’ll describe the X ) Y case only. Next, note that
X ) Y if and only if (X ) Y1) ^ � � � ^ (X ) Ym). Again, we
can check each case separately. Again, all the cases are identical, so,
for brevity, we’ll describe only the X ) Y1 case. Checking whether
X ) Y1 is true is equivalent to checking whether :X _ Y1 is a
tautology, which is actually checking whether:X1_ � � � _:Xn _Y1

is a tautology. Thus, we have reduced the problem of checking the

3



equality of two implicitly conjoined lists of BDDs to the problem of
checking whether the disjunction of a list of BDDs is a tautology.

We can’t simply build the BDD for this disjunction, as that would
still blow up, so we further decompose the problem into smaller, more
manageable pieces. Our strategy here is to look for easy special cases
first, and if that fails, to perform a Shannon expansion on the implicit
disjunction. Specifically, we perform the following steps in sequence:

1. If any BDD in the list is the constant True, the whole disjunction
is a tautology. If any BDD is the constant False, discard it.

2. If any two BDDs in the list are complements, the whole disjunc-
tion is a tautology. (Recall that negation is fast in efficient BDD
implementations.) If any two BDDs are identical, discard one.

3. If the disjunction of any two BDDs is the constant True, the
whole disjunction is a tautology.

4. If all else fails, choose a BDD variable from a BDD in the list,
perform a Shannon expansion, and check tautology recursively
on both cofactors. (The positive and negative cofactors will each
be an implicitly conjoined list of BDDs.) For simplicity, we are
currently selecting the top BDD variable of the first BDD in the
list as the variable to cofactor on.

We further optimize Step 3 using the following theorem:

Theorem 3 If the Restrict or the Constrain operator [10] is used for
BDDSimplify, then for any Boolean functions a and b, the disjunction
a _ b is a tautology if and only if BDDSimplify(a;:b) is a tautology.

Proof: We give the proof for Restrict; the proof for Constrain is almost
identical. The proof is by induction on the size of the supports of the
BDDs. The base case, when either a or b is either the constant True or
the constant False, is easy to verify. The inductive step relies on the
recursive definition of Restrict, which defines Restrict(f; c) in terms
of the Shannoncofactors fx, fx̄ , cx, and cx̄, wherex is a BDD variable
in f or in c: (The exact definition of x is irrelevant here.)

Restrict(f; c) =

8>>><
>>>:

Restrict(f; cx _ cx̄) if fx = fx̄

Restrict(fx; cx) if cx̄ = False
Restrict(fx̄; cx̄) if cx = False
(x ^ Restrict(fx; cx))_

(x̄ ^ Restrict(fx̄; cx̄)) otherwise

In the first case, Restrict(a;:b) is a tautology iff
Restrict(a; (:b)x _ (:b)x̄) is a tautology iff
a _ :((:b)x _ (:b)x̄)) is a tautology (inductive hypothesis) iff
(ax _ bx) ^ (ax̄ _ bx̄) is a tautology (in this case a = ax = ax̄) iff
(a _ b) is a tautology.
The other cases are similar. 2
Since we are using Restrict as our BDDSimplify function, this theorem
means we get the effect of Step 3 automatically if we simplify each
BDD in the list by all the other BDDs, and then repeat Step 1 to handle
any resulting constant True’s and False’s in the list.

IV. EXPERIMENTAL RESULTS

The preceding algorithms clearly require non-trivial computations.
Whether they are justified in practice can be demonstrated only by
experimentation. We must establish that the performance cost of these
algorithms is reasonable, or that these algorithms are more powerful,
verifying examples that were previously intractable, or, ideally, both.

Comparisons of different algorithms for verification with BDDs
can be problematic. Runtime comparisons are meaningful provided
the different methods run on the same machine type with the same
BDD implementation. Memory requirements are harder to quantify.
The total memory used during verification is probably the most real-
istic measure of how memory-efficient a particular algorithm is, but is
highly sensitive to details of the BDD implementation used. Vagaries
of garbage collection and caching policies, for example, can easily ac-
count for a factor of two difference in reported memory usage. On the
other hand, reporting the number of BDD nodes required to represent
specific portions of the verification process is implementation indepen-
dent, but fails to account for the various intermediate data structures
and BDDs that can consume substantial memory. In this paper, we
report the runtime on a Sun 4/75, the total memory used during the
verification process, as well as the largest number of BDD nodes re-
quired to represent any of the Ri (for forward traversals) or Gi (for
backward traversals). We are using David Long’s BDD package [20].

A. Performance Penalty vs. Previous Results

First, let’s tackle the question of performance. How much more time
and memory do the algorithms we propose require over earlier and
simpler methods? We use three examples, all previously used to
demonstrate the efficacy of the original implicitly conjoined invariants
approach and described thoroughly in that paper [17].

The first example is a typed FIFO queue. These data structures
frequently occur in high-level design verification either to represent
actual queues in the system or to delay data going from one part of the
model to another. The specific example is 8 bits wide,with the bitslices
interleaved (a standard variable-ordering heuristic for datapaths [19]).
The data going into the queue obeys a type constraint: each item must
be between 0 and 128 inclusive. We verify for various queue depths
that all items in the queue always obey the type constraint.

The second example is an abstraction of a group of processors
communicating via a shared network, again, a common occurrence in
high-level design verification. We have a set of processors that non-
deterministically issue requests into a non-message-order-preserving
network. Each request carries only the requester’s ID as a return ad-
dress. A server non-deterministically pulls requests out of the network
and sends acknowledgments back to the originating processor. When
a processor issues a request, it increments a local counter of outstand-
ing requests. When it receives an acknowledgment, it decrements
the counter. We verify, for various numbers of processors, that each
processor’s counter correctly indicates the number of message it has
outstanding in the network. (We assume that n < 16, so IDs are 4
bits each. The network is modeled as ann-element array of messages,
each of which carries a valid bit, a req/ack flag, and a return address.)

The third example is a moving-average filter, a common DSP al-
gorithm. We compare an implementation using a pipelined tree of
adders against a combinational specification. See Figure 2. The sam-
ples being averaged are always 8 bits. We verify filters of depth 4, 8,
and 16. In the original paper, no method could verify the larger fil-
ters. Carefully adding user-defined “assisting invariants” (essentially
spelling out lemmas to help the verifier prove the property being ver-
ified), however, allowed successful verification. In this section, we’ll
verify with the assisting invariants (specifying that the average of each
layer of the adder tree must equal the corresponding entry in the delay
FIFO of the specification); in the next section, we’ll reconsider this
example without the user-defined assistance.

4



8-Bit Samples

Average

Specification
Add

Add

Add

AddAdd

Add

Implementation

3-Bit Discard

?

Add

Figure 2: Diagram of Size 8 Moving Average Filter. The verification task is to
prove that the implementation using a pipelined tree of adders gives the same
result as the specification, which is the average computed directly and then
delayed in a FIFO to match the pipeline depth of the implementation.

Table 1 summarizes results on these examples. Clearly, the ad-
ditional time and space overhead of the more complex algorithms
proposed in this paper is minimal. Also, both methods using implicit
conjunctions of BDDs manage to avoid the exponential BDD-size
blowups afflicting the conventional forward and backward traversals.

B. New Examples

Now, let’s look at the question of power. Do the more sophisticated
methods proposed in this paper enable verification of examples that
are otherwise intractable? We consider two examples: a continuation
of the preceding moving-average filter example, and a simple model of
the register-bypass and branch-stall aspects of a pipelined processor.

The previous results for the moving-average filter required user-
supplied assisting invariants to complete the verification. Since our
goal is automatic formal verification, what happens if we attempt the
example without the user-supplied help, if we simply give the descrip-
tion of the filter and ask the verifier to prove that the implementation
and specification agree? Results for this case, summarized in Table 2,
show that only the algorithms proposed in this paper can handle the
larger filters. Interestingly, comparing the results here to the results in
Table 1 that rely on user assistance,we find that the new evaluation and
simplification algorithm is actually deriving the assisting invariants,
fully automatically, at minimal cost in memory and runtime.

Our second example is to verify a simple pipelined processor against
a non-pipelined specification. To reduce the size of the model, and
since we’re only concerned with the processor, we will abstract away
the memory. Instead, both versions of the processor will execute the
same non-deterministically-generated stream of instructions. Instruc-
tions are encoded as a 3-bit opcode, followed by fields specifying the
source and destination registers, followed by a field for specifying
immediate data values. There are eight instructions: NOP, BR, LD,
ST, ADD, SUB, MOV, and SR. NOP performs no operation. BR
models a branch instruction. Since the instruction stream is generated
non-deterministically, we do not model a program counter, so the BR
instruction essentially performs no operation. (It does, however, stall
the pipeline, as we’ll discuss later.) LD loads the specified destination
register with the contents of the immediate field. ST is a no-op, since
we aren’t modeling memory. ADD adds the contents of the specified
source register into the specified destination register. SUB subtracts
the source register from the destination register. MOV copies the
source register into the destination register. SR shifts the contents of
the specified destination register right by one bit.

Size Meth. Time Iter Mem BDD Nodes
Example: 8-Bit Wide Typed FIFO Buffer

5 Fwd 0:03 6 936K 543
Bkwd 0:01 1 936K 543
ICI 0:00 1 552K 41 (5� 9 nodes)
XICI 0:00 1 556K 41 (5� 9 nodes)

10 Fwd 5:37 11 13048K 32767
Bkwd 1:56 1 10008K 32767
ICI 0:03 1 1016K 81 (10� 9 nodes)
XICI 0:03 1 1020K 81 (10� 9 nodes)

Example: Processors Sending Messages Through Network
4 Fwd 0:04 9 1264K 1198

Bkwd 0:02 1 1136K 994
FD 0:13 9 1028K 41
ICI 0:02 1 1008K 245 (4� 62 nodes)
XICI 0:02 1 1008K 245 (4� 62 nodes)

7 Fwd 11:53 15 29324K 88647
Bkwd 2:15 1 14412K 61861
FD 3:20 15 2652K 169
ICI 0:14 1 3152K 1086 (7� 156 nodes)
XICI 0:22 1 3660K 1086 (7� 156 nodes)

Example: 8-Bit Wide Moving Average Filter
4 Fwd 0:54 3 10976K 11267

Bkwd 0:04 1 1248K 490
ICI 0:03 1 832K 146 (102, 45)
XICI 0:03 1 832K 146 (102, 45)

8 Fwd Exceeded 60MB.
Bkwd Exceeded 40 minutes.
ICI 0:25 1 3880K 638 (390, 169, 81)
XICI 0:28 1 3880K 638 (390, 169, 81)

16 ICI 3:26 1 27416K 2558
(1501, 629, 290, 141)

XICI 3:41 1 27416K 2558
(1501, 629, 290, 141)

Table 1: Performance vs. Previous Methods. See the text for descriptionsof ex-
amples. “Meth.” indicates the verification method used: “Fwd” is conventional
forward traversal, “Bkwd” is conventionalbackward traversal, “FD” is forward
traversal exploiting user-specified functional dependencies [16], “ICI” is back-
ward traversal using the original implicitly conjoined invariants method [17],
and “XICI” is the implicitly conjoined invariants method extended with the
techniques in this paper. Time is in minutes and seconds. “Iter” gives the
number of iterations before convergence. “Mem” shows total memory used by
the verifier. “BDD Nodes” shows the largest number of BDD nodes used to
represent the set of states computed at an iteration (Ri or Gi). The numbers
in parentheses are the sizes of the individual BDDs in the implicit conjunction,
with “(i � j nodes)” indicating i BDDs of j nodes each. (Numbers don’t
always add up because of node sharing.) Examples were run on a SUN 4/75,
using a BDD package developed at CMU by David Long [20].

The pipeline is three stages deep. The first stage fetches the next
instruction from the non-deterministic instruction stream. The second
stage decodes the instruction, fetches the appropriate values from the
register file (or the immediate field for a LD) and computes the result.
The last stage writes the result back into the register file. There are,
of course, some complications. First, if one instruction relies on the
result of the preceding instruction, the result won’t be written back by
the Writeback stage in time for the Execute stage to fetch the correct
value, eg.:

; assume r0=0 and r1=0
LD r1, #1 ; make r1=1
ADD r0, r1 ; add r1 to r0

5



Size Meth. Time Iter Mem BDD Nodes
4 Fwd 0:52 3 6880K 11267

Bkwd 0:04 1 1248K 490
ICI 0:04 1 1248K 490
XICI 0:03 2 932K 146 (45, 102)

8 Fwd Exceeded 60MB.
Bkwd Exceeded 40 minutes.
ICI Exceeded 40 minutes.
XICI 0:31 3 5676K 638 (61, 169, 390)

16 XICI 5:45 4 28544K 2558
(141, 290, 629, 1501)

Table 2: Moving Average Filter without Assisting Invariants. Previously,
we verified the moving-average filter example with the aid of user-supplied
assisting invariants — additional properties that guide the verifier in partitioning
intermediate results into implicit conjunctions. In this experiment, we simply
give the verifier the description of the filter and ask it to verify that the output of
the implementation agrees with the output of the specification. Column labels
and test conditions are the same as in the preceding table.

?

Branch StallInstruction Fetch

Execute

Register File

Non-Deterministic Instruction Stream

Register Bypass

Implementation

Fetch-Execute-Writeback
Non-Pipelined

Instruction Delay

Instruction Delay

Register File

Specification

Register Writeback

Figure 3: Diagram of Pipelined Processor Example. A pipelined and a non-
pipelined version of a processor execute the same non-deterministically gen-
erated stream of instructions. The verification task is to prove that the register
files of the two versions always agree.

After executing this code fragment, r0 should be equal to 1. As
described, however, the pipelined processor would not have updated
r1 to be 1 in time for the ADD instruction. The standard solution
to this problem is to add a “register bypass path” to the pipeline: If
the Execute unit detects that the current instruction needs the result
of the previous instruction, it bypasses the register file and gets the
value needed directly from the Writeback unit. Our example includes
such a register bypass path. Another complication occurs because of
branches. In a real machine, the Instruction Fetch unit does not know
where the next instruction will be until the Writeback unit updates the
program counter. For our example, we adopt a standard solution —
the branch stall. If any stage in the pipeline contains a BR instruction,
the pipeline is forced to stall. (We implement the stall by forcing NOP
instructions into the Fetch unit until the BR clears the Writeback unit.)

The verification task is to show that the register files of the pipelined
and non-pipelined processors always agree when executing the same
sequence of instructions. In order to keep the two descriptions syn-
chronized, the non-pipelined processor buffers incoming instructions
for two cycles to match the pipelined processor. Also, a branch stall in
the pipeline will also stall the non-pipelined processor. This example
is summarized in Figure 3.

Table 3 summarizes the results for this verification example for

Size Meth. Time Iter Mem BDD Nodes
2 R, 1 B Fwd 5:11 4 49644K 284745

Bkwd 0:27 4 4080K 10745
ICI 0:27 4 4080K 10745
XICI 0:31 4 4084K 10745

2 R, 2 B Fwd Exceeded 60MB.
Bkwd Exceeded 60MB.
ICI Exceeded 60MB.
XICI 1:48 4 7316K 8485 (45, 441,

1345, 6657)
2 R, 3 B XICI 13:35 4 59480K 57510 (189, 2503,

9591, 45230)
4 R, 1 B Fwd Exceeded 60MB.

Bkwd Exceeded 60MB.
ICI Exceeded 60MB.
XICI 7:06 4 24156K 12947 (45, 849,

1290, 10767)

Table 3: Results for Pipelined Processor Example. We are verifying that the
register files of a pipelined and a non-pipelined version of a simple processor
always agree. The pipelined version includes a register bypass path as well as
a stall for branch instructions. “R” indicates the number of registers in each
processor. “B” indicates the width of the datapath. Column labels and test
conditions are the same as in the preceding table.

various numbers of registers and datapath sizes (the bit-width of the
registers and the immediate field). Clearly, the techniques of this pa-
per expand the range of problems that can be verified automatically.
It’s worth noting that, as in the moving-average filter example, care-
fully hand-constructed assisting invariants give better results than the
automatic techniques presented here. (For example, we can verify
the 2-register, 3-bit datapath example in only 2 iterations, 6:19, using
25592K of memory and with the largest Gi using only 6602 BDD
nodes.) That clever human intervention can improve the efficiency
of a verification problem is not, however, surprising, and does not
diminish the importance of minimizing the amount of human effort
and sophistication required to use formal verification.

V. FUTURE RESEARCH AND CONCLUSIONS

While the techniques presented are certainly not the last word in formal
verification — it’s quite easy to find examples that still cannot be
verified automatically — they are definitely a step forward, increasing
the applicability of automatic verification with BDDs. However, as
always,progress seems to raise at least as many questions as it answers,
and there are many avenues for further research.

Obviously, considerable performance and heuristic tuning can still
be done. We have not, for example, investigated finding the best
GrowThreshold in the evaluation algorithm, or experimented with
choosing the best variable to use for cofactoring in the termination
test. Another obvious direction for improvement is in algorithms for
BDD simplification. Methods using implicitly conjoined BDDs rely
on simplification for their efficiency, so any improvement in simplifi-
cation will pay-off immediately.

Another BDD-simplification effect is more subtle. In our experi-
ments, we frequently encounter a situation where we wish to simplify
a BDD f by two other BDDs c1 and c2. Simplifying f by either c1 or
c2, however, results in a several-fold increase in the size of f , and then
simplifying the large resulting BDD by the other c shrinks the final

6



result to something much smaller than the original f . Why not discard
the result of the first simplify, since it’s bigger than f? Unfortunately,
this approach results in no simplification at all: the first simplify blows
up the BDD and is discarded, and the second simplify also blows up
the BDD and is discarded. We really wish to simplify by c1 ^ c2,
which gives a smaller care-set, but we can’t afford to build the BDD
for c1^ c2. What’s needed, therefore, is a routine that simplifies using
multiple BDDs simultaneously.

Another issue also involves BDD-size blowups in intermediate
computations. In our algorithm for choosing conjunctions to eval-
uate, we are building all pairwise conjunctions even though we’ll be
using only a few of them. Furthermore, before we build the BDD for
any conjunction, we already have a limit on how large it can be and
still be useful: if the conjunction becomes significantly larger than the
size of the two conjuncts, we know we won’t use that conjunction.
Hence, it would be useful to have the capability to compute the size of
a result without actually building the BDD for that result, and to abort
any of these operations if the size exceeds a specified bound.

Finally, a comparison of the moving-average filter and pipelined
processor examples suggests that there is still considerable room
for improving the simplify-and-evaluate algorithm. For the moving-
average filter, the new algorithm was able to derive the same assisting
invariants as were human-generated. For the pipelined processor ex-
ample, however, the derived BDDs were clearly inferior to the human-
generated assisting invariants (e.g., 57510 vs. 6602 BDD nodes for 2
registers, 3-bit datapath). How can we close this gap?

Additional research along these lines should further expand the en-
velope of problems that can be verified automatically. As the human
time and expertise required to successfully use formal verification de-
creases, verification will become increasingly practical and valuable.
For the long term, we need to make automatic formal verification truly
automatic, thereby maximizing its beneficial impact.

ACKNOWLEDGMENTS

We would like to thank Eric Torng for his construction in Theorem 2
and David Long for fast and responsive BDD package support.

REFERENCES

[1] S. Bose and A. Fisher, “Automatic Verification of Synchronous Circuits
Using Symbolic Logic Simulation and Temporal Logic,” IMEC-IFIP
International Workshop on Applied Formal Methods For Correct VLSI
Design, Luc J.M. Claesen, ed., North Holland, 1989.

[2] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant, “Efficient Im-
plementation of a BDD Package,” 27th ACM/IEEE Design Automation
Conference, 1990, pp. 40–45.

[3] Randal E. Bryant, “Graph-Based Algorithms for Boolean Function Ma-
nipulation,” IEEE Transactions on Computers, Vol. C-35, No. 8 (August
1986), pp. 677–691.

[4] J.R. Burch, E.M. Clarke, and D.E. Long, “Symbolic Model Checking with
Partitioned Transition Relations,” VLSI ’91: Proceedings of the IFIP TC
10/WG 10.5 International Conference on Very Large Scale Integration,
Edinburgh, Great Britain, 1991.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, and David L. Dill, “Sequential
Circuit Verification Using Symbolic Model Checking,” 27th ACM/IEEE
Design Automation Conference, 1990, pp. 46-51.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,
“Symbolic Model Checking: 1020 States and Beyond,” Proceedings of
the Conference on Logic in Computer Science, 1990, pp. 428–439.

[7] Massimiliano Chiodo, Thomas R. Shiple, Alberto Sangiovanni-
Vincentelli, Robert K. Brayton, “Automatic Compositional Minimization
in CTL Model Checking,” IEEE International Conference on Computer-
Aided Design, 1992, pp. 172–178.

[8] Hyunwoo Cho, Gary Hachtel, Seh-Woong Jeong, Bernard Plessier, Eric
Schwarz, and Fabio Somenzi,“ATPG Aspects of FSM Verification,” IEEE
International Conference on Computer-Aided Design, 1990, pp. 134–
137.

[9] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMil-
lan, and L.A. Ness, “Verification of the Futurebus+ Cache Coherence
Protocol,” in L. Claesen, ed., 11th International Symposium on Com-
puter Hardware Description Languages and their Applications, North-
Holland, 1993.

[10] Olivier Coudert and Jean Christophe Madre, “A Unified Framework for
the Formal Verification of Sequential Circuits,” IEEE International Con-
ference on Computer-Aided Design, 1990, pp. 126–129.

[11] Olivier Coudert, Christian Berthet, and Jean Christophe Madre, “Verifi-
cation of Synchronous Sequential Machines Based on Symbolic Execu-
tion,” Automatic Verification Methods for Finite State Systems, J. Sifakis,
ed., Lecture Notes in Computer Science Vol. 407, Springer-Verlag, 1989.

[12] Olivier Coudert, Christian Berthet, and Jean Christophe Madre,“Verifica-
tion of Sequential Machines Using Boolean Functional Vectors,” IMEC-
IFIP International Workshop on Applied Formal Methods For Correct
VLSI Design, Luc J.M. Claesen, ed., North Holland, 1989.

[13] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang, “Protocol
Verification as a Hardware Design Aid,” IEEE International Conference
on Computer Design, October 1992.

[14] Thomas Filkorn, “Functional Extension of Symbolic Model Checking,”
Computer-Aided Verification: Third International Workshop, July 1–4,
1991, K.G. Larsen and A. Skou, eds., Lecture Notes in Computer Science
Vol. 575, Springer-Verlag, published 1992.

[15] Michael R. Garey and David S. Johnson, Computers and Intractability,
W.H. Freeman and Company, 1979, p. 222.

[16] Alan J. Hu and David L. Dill, “Reducing BDD Size by Exploiting Func-
tional Dependencies,” 30th Design Automation Conference, 1993.

[17] Alan J. Hu and David L. Dill, “Efficient Verification with BDDs using
Implicitly Conjoined Invariants,” Computer Aided Verification: Fifth
International Conference, 1993, published in Lecture Notes in Computer
Science Vol. 697, Springer-Verlag, 1993.

[18] Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang, “Higher-
Level Specification and Verification with BDDs,” Computer-Aided Veri-
fication: Fourth International Workshop, July 1992, reprinted in Lecture
Notes in Computer Science Vol. 663, Springer-Verlag, published 1993.

[19] S.-W. Jeong, B. Plessier, G.D. Hachtel, and F. Somenzi, “Variable Order-
ing for FSM Traversal,” Proceedings of the International Workshop on
Logic Synthesis, MCNC, Research Triangle Park, NC, May 1991.

[20] David E. Long, personal correspondence.

[21] K. L. McMillan and J. Schwalbe, “Formal Verification of the Gigamax
Cache-Consistency Protocol,” Proceedings of the International Sympo-
sium on Shared Memory Multiprocessing, Information Processing Soci-
ety of Japan, 1991, pp. 242–251.

[22] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Opti-
mization, Prentice-Hall, 1982, p. 262.

[23] Carl Pixley, “A Computational Theory and Implementation of Sequential
Hardware Equivalence,” Computer-Aided Verification: Second Interna-
tional Workshop,1990, published in Vol. 3 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1991, pp. 293–320.

[24] Herve J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto
Sangiovanni-Vincentelli, “Implicit State Enumeration of Finite State Ma-
chines using BDD’s” IEEE InternationalConference on Computer-Aided
Design, 1990, pp. 130–133.

7


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




