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Abstract

Regarding finite state machines as Markov chains facili-
tates the application of probabilistic methods to very large
logic synthesis and formal verification problems. Recently,
we have shown how symbolic algorithms based on Algebraic
Decision Diagrams may be used to calculate the steady-
state probabilities of finite state machines with more than
10% states. These algorithms treated machines with state
graphs composed of a single termanal strongly connected
component. In this paper we consider the most general case
of systems which can be modeled as state machines with
arbitrary transition structures. The proposed approach ez-
ploits structural information to decompose and simplify the
state graph of the machine.

1 Introduction

Finite state machines (FSMs), or their extensions, are often
employed to model real digital systems for formal verifica-
tion. As the complexity of those systems increases, proba-
bilistic approaches to design and implementation verifica-
tion become of interest; for example, verification of timing
properties is usually based on such kind of techniques. Be-
side formal hardware verification, other successful applica-
tions of probabilistic methods to finite state models can be
found in the field of logic synthesis: FSM re-encoding for
sequential low-power synthesis, gate-level timing analysis
and verification, ATPG, and so on.

The probabilistic behavior of a FSM can be analyzed by re-
garding its transition structure as a Markov chain [1, 2]; in
fact, it is sufficient to attach to the out-going edges of each
state a label which represents the probability for the FSM
to make that particular transition to obtain a finite state
model that matches the definition of discrete-parameter
Markov chain. Studying the behavior of a Markov chain
is then related to performing the reachability analysis of a
FSM.

Algorithms to analyze structurally complex Markov chains
based on very sophisticated theory [3] and accurate numer-
ical methods [4] have been used for systems with transition
structures of limited size. On the other hand, FSM traver-
sal procedures based on symbolic execution are currently
available to handle very large finite state systems [5].

In [6], we have shown how, using Algebraic Decision Dia-
grams (ADDs) [7], the two worlds can be merged; in fact,
we have proposed symbolic procedures to compute steady-
state probabilities for very large FSMs. That work mainly
focused on algorithms for the solution of systems of lin-
ear equations extracted from large, but structurally sim-
ple, state transition graphs; in particular, we considered
Markov chains with a single terminal strongly connected
component. This class of chains contains most of the ex-
amples normally encountered. However, as it will be shown
later in the paper, techniques capable of dealing with ar-
bitrary state graphs can be used to make large, structured
problems tractable by decomposition.
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Therefore, in this paper, we propose an algorithm which
faces the problem of computing state occupation probabil-
ities of a FSM in its generality. Our approach relies on
BDD-based structural analysis of the state graph for two
important aspects: The identification of the terminal com-
ponents, and the study of their periodicity. The knowledge
of the structure of the sequential system being analyzed al-
lows us to decompose and simplify it in such a way that the
solution methods we have presented in [6] can be applied
successfully.

2 FSMs and Markov Chains
A Finite State Machine , M, is represented as a 6-tuple

M =(%,0,5,5% A7),

where ¥ is the input alphabet, O is the output alphabet,
S is the finite set of states of the machine, S° is a set
of reset (initial) states, A(s,z) is the next state function
(A :5%x3 — §), and A(s, z) is the output function (A : 5%
¥ — 0). Thesets £, 0, S, and 5° are assumed to be non-
empty. A and A are multiple-output boolean functions,
that is, A = (61,82,...,8m) and A = (A1, Az,..., An); they
implicitly define the State Transition Graph (STG) of the
given FSM.

The Transition Relation, Tas : S X X x S — {0,1}, of M
describes all the pairs of states (z,y) € § X 5 connected
by an arc labeled w € ¥ in the STG of M; Tas is defined

as:
Tra(T1, ooy Ty Wiy e ooy Wiy Y1y - -, Y ) =
m —
Hi:l(yi =6i(z1,..., Cm, W1,...,Ws)),
where z1,...,Z, are the present state variables, w1, ..., wg

are the primary input variables, and z1, ..., Zm are the next
state variables of the FSM.

A Discrete-Parameter Markov Chain {X(t)|t € T} is an
Independent Stochastic Process such that the number of
possible states is finite and the parameter space T is dis-
crete. The successive observations of the state of the sys-
tem at different discrete time steps t = 0,1,2,..., define
the random variables Xo, X1, X2,... respectively, where,
by convention, X, is the initial state of the system.

The Markov property says that the random variable repre-
senting the future behavior of the system does not depend
on states reached in the past but only on the present state.
This property can be formally stated as follows:

P(Xn
P(X.

in|Xo =0, X1 =1,..., Xn_1 = in_1) =

7:'n.|X'n.—l = 'L'n.—l)-

Definition 2.1 The Discrete Density Function of a ran-
dom variable X, is the probability p;(n) = P(X. = j) of
the system to be in state j at time n.

Definition 2.2 The Conditional Discrete Density Func-
tion of a random variable X, is the probability p;r(m,n) =
P(X, = k|Xm =7), 0 <m < n of the system to be in state
k at time n given that it is in state j at time m.



In this paper we consider Homogeneous Markov Chains,
that is, Markov chains for which p;j(m,n) depends only
on the difference n» — m; this implies that the system’s
behavior is independent from =; in this case, the Markov
chain is said to have Stationary Transition Probabilities.
The notation pi;(n) = P(Xmin = j|Xm = i) is used to
indicate the n-Step Transition Probabilities, while the Ini-
tial Probability Vector p(0) = [po(0), -+, pn(0)] denotes the
discrete density function of the random variable Xj.

Definition 2.3 The Transition Probability Matrix P; of
a Markov chain is an n X n matriz such that Py ; = pi;(1).

Matrix P; can be seen as a STG description of the Markov
chain. In fact, a node labeled z in the Markov chain cor-
responds to a state ¢ in the STG, and Pi,; represents the
probability of being in state j at time n, being in state 2
at time n — 1. Therefore, since a FSM implicitly speci-
fies a STG, given a probability to every transition, a STG
can be transformed into a Markov chain. By definition,

every state in the STG has 2* outgoing edges, where k is
the number of primary inputs (PIs). Suppose that every
combination of PIs of the FSM is equiprobable; then, ev-

ery transition from state % to state j has probability 2.
Thus, given the transition relation Ta(y, w, z), the transi-
tion probability matrix P, can be obtained as follows:

P (z,y) = 27k ZTM(z,W,y)- 1)

If the input values are not equiprobable, the matrix is still
obtained from the transition relation, but its derivation is
slightly different, as will be shown in Section 4.

Also the initial probability vector can be determined from
the information we have about the FSM; in fact, given the
set of initial states of a FSM, X, = p(0) is obtained by
assigning an initial probability value to every state in the
set.

Given P; and p(0), the n-step probabilities are given by:

pi(n) = P(Xn=j)= ZPi(O)Pij(n)- (2)

As a direct consequence, the n-step probability matrix can
be obtained by taking powers of P;, that is, P; = P{. In
general, the probability distribution of the variable X; is
completely determined by the 1-step transition probability
matrix P, and the initial probability vector p,.

We conclude this section by showing how we use ADDs to
symbolically represent Markov chains. Given the STG of
the Markov chain of Figure 1-a, whose probability matrix
is presented in Figure 1-b, the corresponding ADD is the
one depicted in Figure l-c. z and y variables are used
to encode present and next states respectively; therefore,
each entry in the matrix is associated with a path in the
ADD leading to aleaf whose value represents the transition
probability between the two states.

Figure 1: Representing Markov Chains with ADDs.

For a detailed treatment of the theoretical foundations of
ADDs, as well as the definition of ADD operations such as
ITE, Apply, and Arithmetic Abstraction (indicated in the

following by \™), the reader may refer to [7].

3 Background on State Space Analysis

In this section we recall definitions and theorems related
to the analysis of the state space of a Markov chain which
are mostly taken from [1] and [2].

Definition 3.1 State j is transient if and only if there is
a positive probability that the process will not return to it.

Then, if a state j is transient, p;;(n) — 0 when n — co.

Definition 3.2 State j is recurrent if and only if, start-
ing from state j, the process eventually returns to it with
probability 1.

A set of transient states is called transient, and a set of re-
current states is called ergodic. Every STG has at least one
ergodic set, but it may have no transient set. If an ergodic
set contains a single state, that state is called absorbing.
The probability, v;, of a system to be in a particular state,
7, is called the Limit Probability of that state.

Definition 3.3 The Limit Probability of state j is:
v = lim pi(n) = lim 3 p:(0)pis(n).  (3)

Depending on the topology of the STG, the limit of Equa-
tion 3 may or may not exist, and if it exists its value may
or may not depend on the initial probability vector p(0).
Thus, different techniques are required to analyze the long-
run behavior of a general FSM.

Let G = (V, E) be a di-graph and let ¢ be the relation de-
fined over the set of vertices V' by vow if and only if there is
a path from v to w of arbitrary length; o is an equivalence
relation; therefore, it induces a partition in the set of nodes.
Every equivalence class is called a strongly connected com-
ponent (SCC) of G. The quotient graph obtained by rep-
resenting every SCC as a single node and preserving the
edge relations between SCCs from the original graph G, is
called the SCC graph of G, written Gsce = (V,€). Vis
obtained from V by representing every SCC by a unique
node, and £ is the relation between SCCs derived from E.
Gscc is an acyclic graph, otherwise the nodes involved in
a cycle would be in the same equivalence class. We will de-
note as terminal strongly connected components (TSCCs)
the sinks of the graph Ggcc. Clearly, once the system
reaches a TSCC, it will never leave it.

Lemma 3.1 Every TSCC of the STG is an ergodic set,
and every non-terminal SCC is a transient set.

Definition 3.4 For a recurrent state i, pii(n) > 0 for
some n > 1. The period of state i, denoted by d;, is the
greatest common divisor of the set of positive integers n
such that pii(n) > 0.

If a recurrent state 7 has period d; = 1, then it is called
aperiodic.

Definition 3.5 The period of a TSCC is the greatest com-
mon divisor of the length of all its closed paths.

Definition 3.6 A system is non-decomposable if every
state can be reached from every other state in a finite num-
ber of steps, that is, there exists an integer n > 1 such that
pij(n) > 0.

The matrix P; of a decomposable system can be put in
lower block triangular form.

Theorem 3.1 For any non-decomposable, aperiodic sys-
tem, the limiting probabilities v; = imn_, o p;(n) ezist and
are independent of the initial distribution p(0).

In the case of periodic systems, when n — oo the value

of pi;(n) does not converge. Instead, a periodic series of
vectors is obtained with period d, that is, p;(n) = pi(n+d).



Following the definitions above, sequential systems can be
classified as:

¢ Non-Decomposable: Systems having a unique SCC
(which is, obviously, a TSCC); they can be:

— Aperiodic: the limit probabilities are guaranteed to
exist.

— Periodic: when n — oo, the probabilities oscillate

with the period of the TSCC.

¢ Decomposable: Systems having more than one TSCC;
a preliminary analysis is done on the graph where every
TSCC is collapsed into a single node. The limiting prob-
abilities of the modified system reflect the probability of
the system to be in each TSCC. These probabilities are
used to normalize the solution obtained when computing
the limiting probabilities of every single TSCC, which is
now non-decomposable.

4 Computing the Limit Probabilities

In Section 3 we have seen that for non-decomposable, ape-
riodic systems, the v;’s are guaranteed to exist and they
can be obtained by means of Equation 3. In [6] we have
proposed efficient ADD-based algorithms to perform the
computation of those probabilities in this particular case.
Here, we extend our approach to deal with the most general
case of systems having state graphs of arbitrary structure;
therefore, we have to analyze non-decomposable, periodic
systems, as well as decomposable systems (which may con-
tain both aperiodic and periodic components).

Though most of the systems one encounters in practice are
non-decomposable [8], there is an important reason, be-
yond generality, to address decomposable systems. As will
be discussed in Section 4.8, the analysis of large decompos-
able systems can be profitably reduced to the analysis of
several non-decomposable systems. To do this, we need to
use reachability analysis, i.e., FSM traversal, to determine
both the structure of the system under examination and
the period of each single structural component.

We start this section by formally stating our problem.
Then we consider systems for which the primary inputs
are not equiprobable; this is a key issue when the tech-
niques we are developing have to be applied to model real
hardware devices. Then we briefly show how we handle the
conceptually simple, but computationally difficult, case of
non-decomposable, aperiodic systems; for a more detailed
treatment the reader can refer to [6]. Then we move to the
case of non-decomposable, periodic systems; in this case,
we first determine the period, d, of the Markov chain by im-
plicitly traversing its STG, and then we use the information
on the periodicity of the system to check whether the it-
erative calculation of the limit probabilities has converged
or not by comparing two probability vectors, p;(n) and
pi(n + d), whose temporal distance is d. Finally, we con-
sider the case of decomposable systems, and we show how
we can decompose them into simpler non-decomposable
systems which can be analyzed using the techniques men-
tioned above.

4.1 Problem Formulation

As mentioned in Section 2, by assigning different weights
to the edges, the STG of a FSM can be translated into a
Markov chain. Every node in the STG has 2™ out-going
edges, where m is the number of primary inputs of the ma-
chine. The 1-step probability matrix can be obtained from
the transition relation, in the case where all the primary
inputs are considered equiprobable, in the following way:

Pl(z7y): 2_m-\$T(z,’w,y) (4)

where the operator \gp represents the scan operation de-

fined as \JFPT(d) = (T4, op Ta, 0P ... op Tu,).

4.2 Case of Non-Equiprobable Inputs

Considering systems for which the primary inputs are not
equiprobable is a key issue when the techniques we are
developing have to be applied to model real hardware de-
vices. For signals like reset or load, for instance, usually
P(input; = 0) # P(input; = 1).

In the case that not all the primary inputs of a FSM are
equiprobable, the 1-step transition probability is obtained
by the algorithm in Figure 2. The function accepts three
parameters, the transition relation 7', a cube in the primary
inputs C, and an array II, where II[7] is the probability of
input 7z to be one. The procedure is similar to abstraction,
with the exception that when a variable in C is missing
from F, the result is added to itself. When a variable has
to be abstracted, a convex combination of the two sub-
functions 71 and 7T is taken instead. The algorithm uses a
table (not shown in Figure 2) to store previously computed
results as all the ADD procedures.

ComputeTM(T, C,II) {
if(T is constant or C = 1) return T;
if(top(T) > top(C)) return Compute TM (T, then(C), IT);
if(0p(T) = top(C)) {
T1 = ComputeTM(then(T), then(C),II);
Ty = ComputeTM(else(T), then(C), IT);
return Ty - II(top(T)) + To - (1 — I (top(T)));
} else {
T1 = ComputeTM(then(T), C, IT);
Ty = ComputeTM(else(T), C,II);
return ITE(top(T), T1,To);

3

Figure 2: Algorithm to Compute Conditional Transition
Probabilities from Primary Input Probabilities.

The possibility of setting some probabilities of the inputs to
values different from 0.5 may produce substantial changes
in the STG structure. In particular, forcing an input to
a fixed value in {0, 1}, that is, either p; = 0 or p; = 1,
implies deleting some edges from the original STG.

4.3 Non-Decomposable Aperiodic Systems

There are several numerical methods to calculate the limit
probabilities, but not all of them are suitable for ADD-
based computation. The limit probabilities can be cal-
culated by solving the system of the so-called Chapman-
Kolmogorov equations. One way to solve this system of
linear equations would be to use Gaussian elimination;
although the matrix of the coefficients may be regular,
this regularity may disappear when Gaussian elimination
is performed. Therefore, as we have shown in [6], direct
methods cannot be applied to very large systems, and it-
erative methods need to be used.

4.4 Structural Analysis of FSMs

In order to be able to treat arbitrary systems, some struc-
tural information needs to be extracted from the STG. The
first calculation we do is the set of reachable states. Since
the FSM has a set of initial states, only those reachable
from any initial state will be considered. The traversal
procedure is entirely based on BDDs.

The fact that only the edges between reachable states are
meaningful is used to reduce the size of the representation
of the transition relation. Then the TSCCs are determined
by applying the procedure presented by Matsunaga et al.
in [9] which calculates the transitive closure of a transition
relation.

In general, each TSCC may have a different period; there-
fore the computation of the period of each TSCC, necessary
to check the convergence when solving each sub-system of
equations, is done by traversing every single TSCC sep-
arately. The reset state of the TSCC being traversed is
picked as one arbitrary state inside the TSCC.



4.5 Non-Decomposable Periodic Systems

In general, the limit probabilities are not independent of
the initial probabilities (see Section 2). This is the case
for periodic FSMs. Figure 3 shows a FSM with period
d = 6. Depending on the initial probabilities p(0), the
series of vectors obtained by solving the system of linear
equations oscillates with a different period. If the system
shown in Figure 3 is solved with the initial probability
vector: p1(0) = 1,p2(0) = --- = po(0) = 0, then the series
oscillates with period 6. On the other hand, if an equiprob-
able initial probability vector is used, the solution obtained
has period equal to 2. In general, if the period of a circuit
is d, it is possible to find an initial assignment of probabil-
ities such that the computation oscillates with any period
that is a divisor of d.

Figure 3: Periodic FSM with Period d = 6.

In this case, for a non-converging sequence so, §1,..., a
sequence of averages can be formed, and taken as the new
sequence. The original sequence is said to be summable by
means of the averaging process. We will consider only the
following averaging method:

n—1

tn = %Zsi. (5)

=0

This expression is an average of terms of the sequence with
non-negative coeflicients whose sum is 1. If the sequence
to, t1,... converges to a limit ¢, then we say that the origi-
nal sequence is Cesauro-summable to t [1].

Theorem 4.1 If P is an ergodic transition matriz, then
the sequence P™ is Cesauro-summable to a limit matriz.

The theorem above says that, in the case of periodic sys-
tems, the sequence P™ has a limit; this implies that, even
though P-v* oscillates with period d, the limit of the aver-
aged series is constant. Hence, once the series is detected
to oscillate, the limit probability for every state is given

by:

d—1
1 k—j
pi = 1 'Zvi . (6)
§=0

The discussion above motivates the selection of a proper
initial guess for the solution of the system of linear equa-
tions. Two different strategies have been considered. If the
vector is chosen to have only one state with probability 1
and the remaining states with probability 0, the conver-
gence will be achieved after a large number of iterations
if the depth of the machine is large. On the other hand,
considering an equiprobable initial guess may produce also
large number of iterations if the solution is far from being
equiprobable.

Let us recall that a non-decomposable system, either ape-
riodic or periodic, has a unique SCC; hence, this SCC is
terminal. For systems of this type, the limit probability
vector does not have any zero entry, except those due to
numerical errors.

Figure 4 shows the pseudo-code of the algorithm to analyze
non-decomposable, periodic systems. It should be noticed,
however, that the same algorithm works also for aperiodic
systems, being an aperiodic system a periodic system with
period of length 1; the reason why we use ad-hoc solu-
tion methods for aperiodic systems (see [6]) has to do with
efficiency in the computation.

SolveSystem(P, InitG,d) {

Converged = false;

7 = 0;

Solution[i] = InitG;

while (not Converged) {
=1+ 1
z* = P - Solution[(i — 1)mod dJ;
if (iter > d)

Converged = Check(a:i, Solution[(1 mod d)]);

Solution[i mod d] = z*;

}

P =0;

for every Solution[i]
p = p + Solution[i];

return p/d;

Figure 4: Algorithm to Solve Periodic Systems.

Given the period d, the algorithm keeps the solution of
the last d systems in a sliding window. Whenever a new
solution is found, it is checked against the solution obtained

d steps before. If the norm ||z"T% —z*|| is less than a given
tolerance, convergence is reported. For every state, the
solution is the average probability through the period:

Solution=[§*,-.., 8% 1] (7
l+d—1

1 i
vi:E-ZSg,zZO---n (8)
i=l

4.6 Quasi-Decomposability

The notion of decomposability gives a way to analyze com-
plex systems in terms of smaller sub-systems. However,
in practice, it is not very common to find systems hav-
ing STGs with several TSCCs. Rather, it happens very
often that real systems have only one, large TSCC; this
sometimes makes the computation of the limit probabili-
ties numerically unstable and, therefore, convergence be-
comes difficult to achieve. One technique to reduce the
complexity of a system, is to fix some primary inputs to
specific boolean values. In terms of probabilities, this turns
into fixing the probability value of some inputs to either 1
or 0. This simplification is not far from the real behavior
of signals with very low probability of being in one of two
states.

Setting a given input, w;, to a fixed boolean value induces
a pruning on the edges of the STG associated to the sys-
tem under investigation; in fact, the predicates on some
edges may be no longer satisfiable, implying that those
edges of the graph will never be traversed, and therefore,
they can be pruned. The system obtained in this way may
be decomposable. In this case, we say that the system is
Quasi-Decomposable, reflecting the fact that some inputs
are responsible for making this system non-decomposable,
but when set to a specific value, the new system is decom-
posable. Since the analysis of the new system is reduced
to its TSCCs, a considerable reduction on the state space
might be achieved as well.

Clearly, limit probabilities of the system in which some
of the primary input signals have been set to either 1 or 0
differ from the ones of the system for which all the primary
inputs have non-fixed values; this is because the sets of
reachable states of the two systems are now different.



Let W = (wo, - -, ws) be the set of primary inputs of the
system, and let PI = (pio,...,pix) the input probability
vector, that is, each pi; is the probability of input ¢ to be
one. Let S the set of primary inputs which assume the fixed
value one, T the set of primary inputs which assume the
fixed value zero, and @ the set of primary inputs with non-
fixed value (clearly, S NT = @). Let I, be the original
system (i.e., the system for which § = @ and T = @), and
let T'yew be the system in which some of the primary input
signals have a fixed value). The limiting probabilities of
I‘om'g can be calculated starting from I'new by considering
the case where the pi;’s of the primary inputs 2 € S have
a value pi; — ¢ and the pz;’s of the primary inputs : € T
have a value pi; + ¢, being € > 0. Let us denote this new
system as '} oq.

By choosing a sufficiently small ¢, the solution of T'j .,
is close to the solution of I'new [3]. Once the solution of
['},ew is determined, a new system can be built by choosing
a larger €. The process may be repeated until the proba-
bilities of all the primary inputs match the ones given by
PI, that is, when the system solved is exactly T opsg.

4.7 Decomposable Systems

Figure 5-a represents a simple system which is decompos-
able, that is, it has more than one TSCC.

(a) (b) (c)

Figure 5: STG Having Two TSCCs (a), the Collapsed
Graph (b), and the Efficiently Collapsed Graph (c).

The concept of lumpability will be used to simplify this
kind of systems [1].

Theorem 4.2 Let A be a partition of the state space of a
STG C into N blocks (macro-states). Define the order N
matriz Q = [qrs] as

EiGAI Tibig
= ———,
EiGAI i

where pig = EjeAJ pi; and T is the vector of the sta-

tionary probabilities of C. Then Q is stochastic and non-
decomposable. Moreover, if Il is the stationary probability
row vector for Q, then Iy = EiGAI w; forI=1,...,N.

In general, the behaviors of the original and the lumped
system may differ. However, the following theorem gives
a necessary and sufficient condition to lump several states
while preserving the statistical behavior of the system.

Theorem 4.3 A homogeneous Markov chain is lumpable
with respect to a partition (Ai1,..., Ar) if and only if all
the gia; have the same value, W;, for everyi € A;, and
for any given A; # A;.

For a lumpable STG, the construction of the lumped graph
is simple. Each block of the partition (a macro-state) is a
state of the original STG and the gia; are the conditional
probabilities given by Theorem 4.2.

A TSCC can be considered a special case for the above the-
orem because there is no outgoing edge. Hence, by lumping
the states in a TSCC into a representative, an absorbing
node is created and the necessary condition of Theorem 4.3
holds. As a conclusion, every TSCC can be collapsed into
a single node without outgoing edges, and the new system
can be analyzed following the same technique. Further re-
duction could be achieved by detecting SCCs whose fanout

goes entirely to another SCC. By Theorem 4.3, both can
be collapsed. Figure 5-c depicts this special case. Notice
that the collapsed graph has as many ergodic sets as there
are TSCCs in the original system, and that the limit prob-
abilities will be different from zero only for the absorbing
states. Let us assume that the system can be decomposed

into ! different TSCCs, To,...,Ti—1, and let us denote the

limit probabilities of the absorbing states as vg,..., vy ;.
Given that every T} is collapsed, v7 denotes the probability
of the system being in any state inside 7j.

Thus, once the solution of the collapsed system has been
obtained, the limit probability for every state in every
TSCC still needs to be calculated. However, Ty, --,Ti—1
now can be analyzed as | independent non-decomposable
systems. If we denote by in; the limit probability for state
i obtained by analyzing the TSCC as an independent sub-
system, the limit probabilities for the global system are
obtained by the equation:

0<si <l

Vstatei € T;, wv;= ini/v;fr,

The collapsing procedure is shown in Figure 6.

collapseTSCC(TR, TC) {
EzternalEdges(z,y) = TC(z,y) - TC(y,z);
NoFanout(z) = 3y(ExternalBdges(z,y));
CollapsedTR(z,y) = TR(z,y);
indezSCC = table (representative,scc);
while(NoFanout Z 0) {
cube = Pick a minterm from NoFanout;
scc = Nodes reachable from cube with a cycle;
sccFI = Predecessors of scc outside scc;
add edges from sccFI to cube into CollapsedTR;
delete edges inside scc from CollapsedTR;
delete nodes in scc from NoFanout;
add the pair (cube,scc) to indezSCC;

}
return indezSCC,CollapsedTR;

}
Figure 6: Algorithm to Collapse the TSCCs in a STG.

5 An Application: The GCD Circuit

A circuit which computes the Greatest Common Divisor
(GCD) of two n-bit numbers ¢ and b works as follows.
The two numbers a and b are loaded in two registers, A
and B; a third n-bit register R is initialized to 1. At each
clock cycle, the LSBs of A and B are examined. If A and
B are both even, then R is shifted left. If A is even and B
is odd, A is shifted right; if B is even and A is odd, B is
shifted right. If both A and B are odd, |A — B| replaces
the largest of A and B. Termination occurs when A =

or when one of the two registers equals R. The result is
the product of the smaller of A and B, and R. Figure 7-a
represents one possible implementation of this scheme.

The cycle time of the circuit will typically be determined
by the time taken by the subtractor. Suppose we are inter-
ested in estimating the increase in speed that would derive
from doubling the clock frequency and allowing the sub-
tractor two cycles to complete. Such an estimate can be
obtained by computing the probability for the circuit to be
in a state where the LSBs of A and B are both one. This
in turn can be obtained from the state probabilities by first
cofactoring the limit probability vector with respect to the
LSBs and then summing over all the other state variables.
Since the GCD algorithm only considers the LSB of each
operand, a simplified model could be built considering only
these two bits (see Figure 7-b). The limit probabilities
of the simplified system are voo = 0, o1 = w10 = 0.25,
v11 = 0.5. The interpretation of this result is that a sub-
traction is performed every two cycles, thus if the clock
frequency is doubled, the average speed would increase by
25%. However, in reducing the system, the implicit as-
sumption that the two numbers have an infinite number



of digits has been made. Therefore, the analysis of the
simplified system may lead to an erroneous solution.

In Section 6 we report results for two GCD circuits with 14
and 26 state variables. In the case of gcd4, experimental
data show that the probability of being in a state where
no subtraction is performed is 0.81. If the frequency of the
clock is doubled, only the transitions that do not involve a
subtraction will contribute to increase the average speed.
Therefore, a 40% increase on the average speed will be
achieved. On the other hand, when the number of bits of
the operands is doubled the circuit is expected to execute
more subtractions and this probability may change. In
fact, for gcd8 (which has operands with length double than
gcd4), the experiments show that with double frequency
the system would increase its speed by 36%.
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Figure 7: Circuit Implementing the GCD Algorithm (a),
and the Simplified System (b).

6 Experimental Results

The experimental results obtained by applying the tech-
niques described in this paper are reported in Table 1. For
every circuit, the total number of states, the number of
states whose limit probability is different from zero, the
number of iterations and the execution time needed to cal-
culate the limit probabilities are shown. Time is in seconds
on a DEC-Station 5000/200 with 80 MB of memory.

| Circuit | States | Non-zero | Tter | Time |
s444 2.1e+6 469 17 2.93
s953 5.37e+8 504 58 127.22
mmonr 1.34e+8 512 2 0.12
mma30nr 1.23e+27 1.07e+9 2 8.54
gcd4 16384 487 29 5.72
gcd8 6.7le+7 90311 84 1336.43
mltpl 1.68e+7 70913 920 20.96
multl6a 65536 55952 16 15991

Table 1: Experimental Results.

Circuits 5444 and 5953 from the IscAs’89 benchmarks [10]
are non-decomposable, aperiodic systems. In this case no
simplification is done, and the circuit is solved as a whole.
The minmax circuits [5] (mm9nr and mm30nr) are examples
of quasi-decomposable systems. In this case the reset sig-
nal was set to probability zero, and both circuits turned
into decomposable systems with a unique TSCC. This is a
special case of decomposability, because when applying the
collapsing technique, only a sink node is produced; thus,
the solution of the simplified system is trivial, with proba-
bility equal to 1in the state representing the unique TSCC.
The greatest common divisor circuits (gcd4 and gcd8) were
discussed in more detail in Section 5. Circuit mltpl is an
example of decomposable system. It has several TSCCs,
some of them aperiodic and others with different periods.
The number of iterations reported are those to solve the
collapsed system and the set of TSCCs. The fact that a
TSCC is periodic forces the number of iterations to solve
the circuit to be at least as large as the period. The case
of the circuit multl6a is a circuit with 64435 states in a
unique TSCC, and every state has a different probability.
For that reason the ADDs barely have any recombination
and therefore, execution time is large.

7 Conclusions and Future Work

Probabilistic analysis of the behavior of finite state ma-
chines can be very useful in the verification and synthesis
of sequential circuits.

Markov chains have been used extensively in the quantita-
tive study of sequential systems. Their application to large
systems has been made possible by sophisticated numeri-
cal techniques and skillful modeling. Until today, however,
the direct analysis of systems with very many states (108
or more) has remained problematic at best.

In [6], we have proposed symbolic procedures to compute
the limit probabilities for very large FSMs having non-
decomposable, aperiodic transition structures, that is, ma-
chines with state graphs composed of a single terminal
strongly connected component.

In this paper we have generalized our approach by mak-
ing it able to handle systems having state graphs of ar-
bitrary structure; therefore, we have considered the case
of non-decomposable, periodic systems, as well as decom-
posable systems (that may be contain both aperiodic and
periodic components). We have used symbolic reachability
analysis techniques to perform both decomposability and
periodicity investigation, and we have exploited the infor-
mation calculated during this step to increase the efficiency
of the iterative methods of solution of large systems of lin-
ear equations. Experimental results are very promising;
in fact, by applying our techniques we have been able to
calculate the limit probabilities for systems whose corre-
sponding finite state models have more than 1027 states.
As future work, the simplification technique based on col-
lapsing states in the same TSCC, although effective, can
be exploited in more depth by considering sets of states
not necessarily in the same TSCC. In that sense, there
is Markov chain theory to support this approach, namely
aggregation and decomposition and a closer look at it is be-
ing considered. Additional improvements are also needed
in the numerical algorithms. In that direction, a new data
structure derived from ADDs is being studied. The method
presented here has a constant matrix P, and a variable
vector of states. This situation is suitable for a more spe-
cialized code to perform matrix multiplication.
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