
Microarchitectural Synthesis of VLSI Designs with High Test Concurrency

Ian G. Harris and Alex Orailo�glu

Department of Computer Science and Engineering

University of California, San Diego, La Jolla, CA 92093-0114

The testability of a VLSI design is strongly a�ected
by its register-transfer level (RTL) structure. Since
the high-level synthesis process determines the RTL
structure, it is necessary to consider testability dur-
ing high-level synthesis. A synthesis system composed
of scheduling and binding components minimizes the
number of hardware sharing conicts between tests in
the test schedule. Novel test conict estimates are
used to direct the synthesis process. The test conict
estimation is based on examination of the interconnect
structure of the partial design state during synthe-
sis. Test conict estimates enable our synthesis sys-
tem to select design options which increase test con-
currency, thereby decreasing test time. Experimental
results show that designs generated by this approach
are testable in a highly concurrent manner.

1 INTRODUCTION
The cost of chip testing has become a large fraction of the to-

tal chip production expenditure as other cost components have
improved. Furthermore, increasing gate-to-pin ratios limit the
feasibility of testing chips externally. The incorporation of test
structures into the design ameliorates the testability of hard-
ware which is not easily testable through external pins. The
Built-In Self-Test BIST approach ([2], [11]) tests chip compo-
nents using pseudo-random patterns which are generated on-
chip. Consequently, testing can be performed on-site with min-
imal additional testing equipment, and at chip speed. BIST
requires the placement of pseudo-random pattern generators
(PRPG) and multiple-input signature registers (MISR) on the
chip. PRPGs generate pseudo-random patterns to test the
combinational modules on the chip and MISRs compact the
results of the tests. All test registers are in a shift register
chain so that seeds to the PRPGs can be shifted in at the be-
ginning of testing, and compacted results can be shifted out of
the MISRs after testing.
High chip test time reduces chip production throughput and

increases chip production cost. In order to minimize test time,
as many tests as possible should be executed in parallel, yet
total parallelization is often impossible due to hardware shar-
ing conicts between tests. Hardware sharing conicts occur
because the test results of two di�erent hardware modules may
be forced to propagate through the same hardware in order to
arrive at a MISR. Such conicts occur as a result of the na-
ture of the interconnect structure between di�erent modules in
the datapath. Considering test concurrency during high-level
synthesis may greatly improve test time since the structural
representation is determined at that stage.
Previous research concentrates on the e�ect of self-loops and

sequential depth from test registers. Such approaches may
increase the testability of a design, but they only indirectly
address the problem of conicts between tests. It is the test
conicts which increase test time by requiring that tests be
executed sequentially. Since reduction of self-loops and se-
quential depth only resolves part of the test conict problem,
those approaches may degrade the datapath area and delay
characteristics, while providing little increase in testability. A
new metric for testability is needed which reects the conict
properties of the tests.
In this paper we present metrics for the estimation of the

number of test conicts in the �nal design, and we present

This work is supported by the Semiconductor Research Corporation

under contract number 93-DJ-538, the National Science Foundation

under grant number CDA-9314748, and a graduate fellowship from

Brooktree Inc.

a scheduling and binding algorithm which uses these metrics
to make intelligent high-level synthesis decisions. This novel
approach introduces the possibility of including test concur-
rency and test time issues in microarchitectural synthesis. The
proposed approach enables, for the �rst time, reasoning about
evolving test concurrency in tandem with the evolving microar-
chitectural design. The results of the described algorithm are
demonstrated.

2 PROBLEM DEFINITION

In this paper we describe a scheduling and binding algo-
rithm which produces microarchitectural designs with high lev-
els of test concurrency. The algorithm is applicable to a range
of Built-In Self-Test methodologies, such as Partial-Intrusion
BIST [1] and Full BIST [11]. The algorithm uses a testabil-
ity metric which minimizes test application time by reducing
hardware sharing conicts between tests.
Under the assumption used throughout this paper, ip-ops

are not necessarily placed at each control line, so random data
is not sent on these lines. It is the responsibility of the test
controller to select the mux con�gurations at each step of test-
ing. We use this assumption because control of the mux con-
�gurations allows hardware sharing conicts to be reduced by
enabling test data to be directed through non-conicting paths
of the datapath.
In order to test a module, each of its inputs must receive test

data from PRPGs, and its output must send test results to a
MISR. The test data may pass through a number of modules
between the output of the PRPGs and the input of the MISR.
The subgraph of the datapath through which test data ows
from PRPGs to MISRs in order to test a module is called
a test path. When two or more test paths share hardware,
they are said to conict. Conicts between test paths restrict
the test scheduling [6], thereby reducing the throughput. The
concurrency of conicting test paths is restricted di�erently
depending on the type of hardware being shared. The two
types of conicts are listed below.

+1

r1 r2

r3

+2

r5

r3 r4

TEST PATH 2TEST PATH 1

CONFLICT
ADD2

ADD1

PRPG4 R1

MISR1

ADD3

PRPG3PRPG2PRPG1 PRPG6PRPG5

PRPG7 PRPG8

MISR2

R2

ADD2

ADD5

ADD4

TEST PATH 1 TEST PATH 2

CONFLICT

(a) (b)

Figure 1: (a) Hard Conict (b) Soft Conict

Hard Conicts occur when one test path uses a register as
a MISR, while another test path uses the same register as a
PRPG. Figure 1a shows a hard conict between two tests paths
due to their sharing of register r3. Since a register with both
PRPG and MISR capabilities entails large area overhead, we
disallow this option. This assumption forces the two test paths
in �gure 1a to be executed in di�erent test sessions. All of the
test paths in one test session are executed concurrently with
one another, but each test session must be executed sequen-
tially. Additional test sessions increase test time.

1



Soft Conicts exist when two test paths share intermediate
registers, muxes, buses, or functional units at the same control
step. Soft conicts can be avoided by scheduling into di�erent
control steps, operations which conict. In the example of �g-
ure 1b, by scheduling the use of ADD2 in test path 1 to the
�rst control step, and the use of ADD2 in test path 2 to the
second control step, the conict has been avoided and the two
test paths can be executed in parallel. The work in this pa-
per assumes that test scheduling will be performed in a single
test session which contains no hard conicts. For this reason,
references to conicts in this paper refer to soft conicts.
We identify two goals which should be satis�ed during syn-

thesis to ensure testability: (a) each module should be cov-
ered (included in a test path), and (b) full coverage should
be achieved with as few test conicts as possible. Since test
paths are not de�ned until after the datapath is complete, it is
necessary at this stage of synthesis to design a datapath which
allows the de�nition of non-conicting test paths. It is obvious
that a module must be included in a test path in order to be
tested, making this goal minimally necessary in order to test
the chip. The number of conicts between tests is important
due to its e�ect on test time. Since all tests which share hard
conicts must be performed in di�erent test sessions, the max-
imum number of mutually conicting tests is a lower bound
on the number of test sessions. Soft conicts can be avoided,
but their avoidance often requires an increase in the number
of control steps required to perform a test. Both hard and soft
conicts can be avoided through proper datapath de�nition
during high-level synthesis. The e�ects of test conicts are
also apparent when testing is performed in a pipelined fash-
ion. During pipelined testing, test conicts must be avoided
between di�erent test paths, as well as di�erent instantiations
of each path. Consequently, soft conict consideration is cru-
cial to maximizing throughput during pipelined testing.

3 MOTIVATION

The work presented here attempts to: (a) cover each module
in a test path, and (b) achieve full coverage with the minimum
number of test sessions. Since every module must participate
in at least one test path, each module must be covered. Cov-
erage is reduced if a module's input port is reachable only by
registers which must act as MISRs, or if a module's output
port can only reach registers which must act as PRPGs. A
self-loop is perhaps an extreme case of a lack of coverage since
an input port and an output port cannot be independently
covered. Test time is greatly increased by reduced test concur-
rency caused by hardware sharing conicts between tests. The

I2 I3

I5

I4I1

R1

A1 S1 A2

IN1 IN2 M1

O2 O3O1

Conflict

I1R1

A1

A2

IN2 M1

O2 O3

I4

IN1

O1

S1

IN1

O1

I2 I3

TEST PATH 1 TEST PATH 2

CONFLICT

(b)(a)

Figure 2: (a) Datapath with Conict Problem (b) Con-

icting Test Paths

datapath in �gure 2a has a test conict because both modules
A1 and S1 must be observed through module IN1. The test
paths in �gure 2b show that the outputs of modules A1 and
S1 must both be connected to the input of IN1. This conict
forces A1 and S1 to be tested sequentially, in di�erent test
sessions, increasing test time.

Coverage and conict problems may be inadvertently cre-
ated during high-level synthesis unless care is taken to avoid
them. Evolving concurrency problems can be estimated during
high-level synthesis to determine which decisions will reduce
the probability of conicts. Scheduling and binding decisions
which do not consider the conicts between tests can limit the
testing options of many modules to single options which share
hardware. When the test options of two or more modules are
limited in this way, a conict is forced to occur which may
have been avoidable.

/

*

+

*

/

-

/

R1

R2R1

(a)

I1 I2

I3

I4

I6

I5

I1

I3

R1
R2

+ -

I6I4*

/ I5

I1 I2

(b)

PRPG

MISR

PRPG

PRPG

MISR

PRPG PRPG

/

*

+

*

/

-

/

I1 I2

I3

I4

I6

I5

I1

input of divider
Conflict on 

(c)

Figure 3: (a) Scheduling Which Allows Conict to be

Avoided (b) Datapath for Scheduling (c) Scheduling Re-

sulting in Minimum Two Test Sessions

We use �gure 3 to illustrate the necessity of considering test
conicts during scheduling. Two schedulings are shown for
the dataow graph in �gure 3. Dashed horizontal lines denote
clock cycle boundaries. In the scheduling in �gure 3a, at least
one binding exists as shown which results in the concurrently
testable datapath shown in �gure 3b. All functional units are
testable in a single test session through the test path which is
shown in dotted lines in �gure 3b. The scheduling in �gure
3c does not allow a binding to be generated that avoids a
test conict because the outputs of both the adder and the
subtracter are connected only to the right input of the divider.
In order for the subtracter and adder to be tested concurrently,
the divider's right input would need to receive input from both
the adder and subtracter at the same time. The scheduling in
�gure 3a allows binding to be performed without creating a
conict. Consequently, it is more advantageous, from a self-
test perspective, than the scheduling shown in �gure 3c.
Similarly, the example in �gure 4a illustrates the necessity

of considering test conicts during binding. Figure 4a shows
the dataow graph from which the datapath in �gure 2a was
generated. Node inc1 in �gure 4a has the option of being
bound to IN1 or IN2. With respect to interconnect, these
two options are equivalent, but from a testing standpoint, one
option causes the conict shown in 2a, and the other option
generates the conict-free datapath in �gure 4b whose test
paths (which are testable in one session) are shown in �gure
4c. Notice that there is no conict at the input of IN2 because
A2 may be observed through M1 as shown in �gure 4c.
Suboptimal scheduling and binding decisions can easily in-

crease test time as shown above, while reduced test time so-
lutions may exist which incur no additional interconnect over-
head. It is clear that an e�ort must be made during scheduling
and binding to avoid these conicts.

4 PREVIOUS WORK
The use of high-level synthesis as a technique which allows

fast exploration of microarchitectural design possibilities has



I2 I3

I5

I4I1

R1

A1 S1 A2

IN1 IN2 M1

O2 O3O1

(b)

M1

IN1

R1

I4

I1

I5

O1

A2
IN2

A1

I2 I3

O3

O2

TEST PATH 1 TEST PATH 2

(c)

-1

+1

inc2

+2

inc3 *1
S1

R1

A1 A2

M1

S1

I2 I3

I1

O1

IN2IN1

IN1 OR IN2

I4

I5

O2 O3

inc1

(a)

Figure 4: (a) Dataow Graph (b) Datapath without Con-

ict (c) Test Paths

been thoroughly studied. Recently, e�orts have been made
to incorporate new design constraints into high-level synthesis
such as fault-tolerance [7, 8] and testability. Testability con-
straints have been included into high-level synthesis in [10],
wherein synthesis is performed to reduce sequential depth be-
tween registers and primary I/O pins. Reduction of sequential
depth will reduce test time by reducing the number of patterns
necessary to control and observe each possible fault, but it does
not directly reduce the number of conicts between tests. In
[12], an algorithm is presented to perform register and oper-
ator binding to remove self-loops in the datapath which can
cause problems during testing. Work performed in [5] is an
initial attempt at incorporating test conict considerations in
conjunction with synthesis. Test conicts are removed in [5]
by modifying high-level synthesis binding decisions to rede�ne
RTL interconnect.
Various metrics have been used to estimate the testability of

a datapath. In [3], a metric is proposed to estimate the control-
lability/observability of chip modules based on adjacency to
registers and external pins. Chiu and Papachristou [4] present
metrics to estimate the fault coverage of circuit modules based
on the locations of test registers in the datapath.

5 DESIGN REPRESENTATION
It is necessary to maintain a representation of the partial

design state during synthesis in order to estimate the e�ect
of synthesis decisions on the testability of the design. While
performing binding, we model the design as a graph whose
nodes are functional units and registers with a number of in-
put ports, and a single output port. The edges of the graph
represent point-to-point connections between those ports.
During scheduling (before binding has been performed), no

distinction can be made between hardware modules with the
same functionality, so each node in the Scheduling Design Rep-
resentation corresponds to the set of all modules with the same
functionality. Each node in the scheduling design representa-
tion is annotated with an allocation value to indicate the num-
ber of modules with the corresponding functionality that will
exist in the �nal design. Each edge in the scheduling design
representation is annotated with a connection weight which is
the total number of connections which exist between the two
classes of modules that the edge spans. The Binding Design

Representation distinguishes each hardware module as a dif-
ferent node, and each connection between modules as a di�er-
ent edge with unit weight. Figure 5 shows an example of a
scheduling design representation and one binding design rep-
resentation to which it maps.

REG
A=3

ADD
A=2

MULT
A=2

reg1

+2+1

reg2 reg3

*1 *2

11 21

1

1

1 1

(a) (b)

Figure 5: (a) Scheduling Design Representation (b) Bind-

ing Design Representation

6 ALGORITHM OVERVIEW

The algorithm performs sequentially scheduling and binding
of a dataow graph under a clock cycle and clock duration
(performance) constraint and an allocation (area) constraint.
Synthesis is performed to minimize the estimated number of
test conicts in the �nal design.

The goal during scheduling is to selectively break connec-
tions between adjacent dataow graph nodes by scheduling
them to di�erent clock cycles. This causes the insertion of
a register between the functional units to which the dataow
graph nodes are eventually mapped during binding. In this
way, connections between functional units and registers are
distributed, to allow each operator to have su�cient conict-
free test options. During scheduling, test conicts can only be
avoided between groups of functional units of the same type.
It is not until the binding phase that conicts between indi-
vidual functional units can be examined. As was illustrated in
the example of �gure 3, unless scheduling creates a good dis-
tribution of interconnections between hardware types, it may
be impossible for binding to avoid a conict.

A scheduling decision is chosen by �rst �nding a connec-
tion in the scheduling design representation whose connection
weight should be increased. The connection is chosen using the
proposed test conict metric to evaluate the design represen-
tation as a result of increasing each connection individually.
Then a scheduling decision is selected which will cause the
weight of the chosen connection in the design representation
to be increased. The chosen scheduling decision is performed
and the e�ects of the decision on the design are propagated by
pruning design options which have been made infeasible due
to the scheduling decision. Scheduling decisions are selected
in this manner until scheduling is complete.

Binding decisions distribute interconnections over the mod-
ules to allow all modules to have a multiplicity of test options.
Operator and register binding are performed in an intertwined
fashion. At each decision step, all possible operator and vari-
able decisions are enumerated and evaluated. The options are
evaluated using the proposed test conict metric to evaluate
the testability of the binding design representation as a result
of each option. The selected binding option is then performed
and its e�ects are propagated throughout the design state to
prune away infeasible design options. Additional binding de-
cisions are selected until binding is complete.

The rest of the paper is organized as follows: Section 7 de-
scribes the test conict metrics which are used to guide syn-
thesis. Sections 8 and 9 describe the use of the test conict
metric during scheduling and binding. Experimental results
are discussed in section 10.



7 METRICS FOR TEST CONCURRENCY
We propose the following testability metrics which examine

an incomplete design and estimate the number of hardware
sharing conicts that will occur between tests in the �nal de-
sign. These metrics are used in the algorithm to evaluate the
testability of proposed scheduling and binding decisions, and
thus guide the algorithm towards designs with superior testa-
bility characteristics.
The two aspects that inuence test time are: (a) concur-

rency between tests, and (b) the number of patterns required
for each test path. The degree of chaining a�ects the number of
patterns for each test path. This issue has been explored previ-
ously in [13]. The research described here maximizes the test
concurrency by avoiding the creation of test hardware shar-
ing conicts in the structural representation. Consequently,
we propose metrics for modeling the number of test conicts
during high-level synthesis.

7.1 Metric De�nition

We identify two characteristics of the I/O ports of a module
that indicate the testability of that I/O port.

� Coverage Probability: The probability that at least
one of the incoming edges will be included in a test path
which connects it to LFSRs. If at least one of the incom-
ing edges is covered (included in a test path), then the
I/O port will be covered also.

� Conict Probability: The probability that a hardware
component will need to be multiply included in some test
path(s). Conict probability is only valid for the input
ports of a component, since an output port can fan out
to many di�erent modules, while an input port can only
select a single input.

To evaluate the testability quality of a datapath, we exam-
ine the ratio between the average coverage probability and the
maximum conict probability over all I/O ports. The average
coverage is maximized because all I/O ports are equally im-
portant since they must all be tested. The maximum conict
probability is used because the largest conict in any I/O port
determines the maximum degree of allowable concurrency. For
example, in the datapath of �gure 2a, although there is a con-
ict on the input of only a single module, IN1, that single
conict causes two test sessions to be the minimum number.

7.2 Coverage Calculation
The coverage of an I/O port is the probability that the port

will be contained in a test path which connects it to either an
LFSR or a MISR. The coverage probability of a port is a path
based metric which evaluates the paths between a port and a
test register. The coverage can be computed as a function of
the coverages of the neighboring edges and nodes.
Each input port i of a module m has a coverage Cin(m; i)

which is a function of the coverage probabilities of its incoming
edges. The output port is similarly associated with a coverage
probability Cout(m), which is a function of the output cover-
ages of the outgoing edges. Each edge has an input coverage
value, Cin(e), which represents the probability that it will be
needed by its predecessor module to send test data to a MISR.
Each edge also has an output coverage, Cout(e), which is the
probability that its successor module will need it to connect
to a PRPG. The formulas for Cin(e) and Cout(e) are shown in
equation 1,

Cin(e) =

iMaxY
i=0

Cin(mp(e); i)

OutDeg(mp(e))
; Cout(e) =

Cout(ms(e))

InDeg(ms(e); e)

(1)
where mp(e) is the predecessor module of edge e, ms(e) is the
successor module of edge e, iMax is the number of input ports
that module mp has, OutDeg(m) is the number of outgoing

edges of m, and InDeg(m;e) is the number of edges entering
module m at the input through which edge e is connected.
The input coverage probability of an input port is the prob-

ability that at least one of the incoming edges is covered. This
can be computed as shown in equation 2.

Cin(m;i) = 1�

0
@ Y

e2ein(m;i)

1� Cin(e)

1
A (2)

where ein(m; i) is the set of all edges entering module m at
input i.
The output coverage probability at an output port is com-

puted in a similar way and is shown in equation 3.

Cout(m) = 1�

0
@ Y

e2eout(m)

1�Cout(e)

1
A (3)

where eout(m) is the set of all edges exiting module m.

7.3 Conict Calculation
Since conicts can only occur on the inputs of a module, only

input ports have conict probabilities. The conict probability
X(m;i) for input port i of module m is the probability that
two incoming edges will need to be covered. This is modeled
in the binding design representation by �nding the probability
that the two incoming edges with the highest coverage proba-
bilities will both be covered. The coverage probabilities of two
edges are assumed to be independent, so the probability of
their coincident occurrence is modelled as the product of their
respective probabilities. In the binding design representation
the conict probability is calculated as shown in equation 4.

X(m;i) = Cin(eM1(m; i)) � Cin(eM2(m; i)) (4)

eM1(m; i) = e1 3 (e1 2 eList(m; i) \ (5)

Cin(e1) = max
e2eList(m;i)

Cin(e))

eM2(m; i) = e1 3 (e1 2 eList(m; i) \ (6)

Cin(e1) = max
(e2eList(m;i)[e6=eM1(m;i))

Cin(e))

where eList(m; i) is the set of edges entering module m at port
i.
Each edge in the scheduling design representation represents

as many connections in the datapath as the edge weight in-
dicates. The conict estimate must reect conicts between
edges in the actual datapath, so the conict estimate for the
scheduling design representation is formulated as shown in
equation 7.

X(m; i) =

(
Cin(eM1(m; i))�Cin(eM2(m; i))

if CW (eM1(m; i)) � 1
Cin(eM1(m; i))2 if CW (eM1(m; i)) > 1

(7)
In the equation above, CW denotes the connection weight of
an edge.

8 SCHEDULING FOR TEST CONCURRENCY
During scheduling, in order to minimize test conicts it is

necessary to distribute connections between di�erent hardware
types in such a way that all of the hardware types can be cov-
ered with minimal increase to the conict probability. It is
important that each hardware module participate in at least
one test path, but not two or more conicting test paths. The
scheduling algorithm distributes connections between di�erent
module types to minimize the probability that a single hard-
ware type is required to participate in multiple test paths.
Each node in the scheduling design representation corre-

sponds to the set of modules with a particular functionality.



The edge weight of each edge in the representation is the num-
ber of connections between the sets of modules represented by
the nodes adjacent to the edge. Before any scheduling deci-
sions have been performed, only the connections to constants
and architectural variables can be determined. Consequently,
the weights of the edges to the variable and constant nodes
in the representation are initialized with the number of con-
nections to variables and constants respectively. Since con-
nections to nodes other than variables and constants cannot
be determined before scheduling, the edges to these nodes are
initialized with zero weight.
The two types of scheduling decisions which may be per-

formed at each step are: (a) scheduling two adjacent nodes in
the same clock cycle, and (b) scheduling two adjacent nodes
in di�erent clock cycles. Adjacent pairs of nodes are scheduled
together so that at least one connection will be determined at
each step. An adjacent pair of nodes is simultaneously consid-
ered to ensure a well-de�ned e�ect on the interconnect de�ni-
tion in the structural representation.
Each scheduling decision increments the weights of edges in

the scheduling design representation. The quality of a schedul-
ing decision is measured by increasing the weights of the edges
which will be a�ected, and evaluating the resulting design us-
ing the proposed testability metric for estimating coverage and
conict probability. The algorithm applies one of the schedul-
ing options which most increases the coverage/conict ratio.
There may be many scheduling options which equally improve
the coverage/conict ratio. A scheduling option is chosen from
the set of candidate options which best preserves the degrees
of scheduling freedom of adjacent nodes.

9 BINDING FOR TEST CONCURRENCY
During binding, it is necessary to distribute connections be-

tween individual modules in such a way that all of the modules
can be covered, yet no single module is required to participate
in more than one test path. Each node in the binding design
representation corresponds to a unique module in the struc-
tural representation, and each edge corresponds to a point-
to-point connection between modules in the datapath. Before
binding has been performed, no module connections can be
determined, so the binding design representation contains no
edges.
The two types of binding decisions that can be made are: (a)

binding a node to a functional unit, and (b) binding a variable
to a register. Each binding decision necessitates the addition
of new edges to the binding design graph. The quality of each
binding decision is measured by adding edges to the design
representation which would need to be added if the binding
decision were performed, and using our testability metric to
evaluate the resulting design.
As a result of a binding decision, the binding options of the

remaining unbound nodes need to be restricted. No other op-
erations may be bound to a module if there is already a module
bound which is assigned to the same control step. The bind-
ing possibilities of each unbound node are updated to avoid
these hardware usage conicts. A similar algorithm is applied
for updating register binding possibilities; in this case, register
lifetimes are additionally considered.

10 EXPERIMENTAL RESULTS

The results are illustrated in two parts. We �rst show de-
tailed results for selected high-level synthesis benchmarks. We
then summarize extensive results in tabular form, applied to a
number of high-level synthesis benchmarks. To illustrate the
performance of this system in detail, we examine the design
results for the di�erential equation example [15] and the de-
sign of the 16 point elliptic �lter benchmark[9] (with chaining).
Chained execution of operations in a clock cycle is used in the
elliptic �lter design, but not in the di�erential equation design.
The di�erential equation dataow graph is scheduled and

bound by our system in 4 clock cycles, with 2 adders, 2 mul-
tipliers, and 1 relational operator. The resulting datapath is

shown in �gure 6. The rectangles in the datapath are architec-
tural registers used to store input and output variables, and
intermediate registers used to store intermediate values.

A0 A1 M0 M1 <0

R1 R2V8

V0 C0 C1 V2V7 V4V1

V6 V3 R0 V5

Figure 6: Di�erential Equation Datapath

The scheduling and binding enable each functional unit to
be tested in a single test session using the test paths shown in
�gure 7 (the test registers are shown shaded). Test conicts are
successfully avoided during synthesis by giving each functional
unit a non-conicting test option.

<0 A1
A0 M0 M1

TEST PATH 1 TEST PATH 2

V5 V8 V3 R2 R1

V1V0R0

V4 V7

Figure 7: Di�erential Equation Test Paths

We also explore a design for the elliptic �lter example in
�gure 8 which is scheduled and bound by our system. For
clarity we have only included the dataow operations and the
non-recursive edges in �gure 8. The full dataow graph and
signal ow graph can be found in [9]. Synthesis was performed
in 9 clock cycles, with 5 adders, and 2 multipliers, with chain-
ing. This example also enables test conicts to be avoided, and
testing to be performed in a single session. The non-conicting
test paths are shown in �gure 9. An interesting feature is that
chaining in a test path, which would cause an increased num-
ber of test patterns, is not necessary due to the range of test
options allowed by the structure of the design.
In addition to the two designs described above, we have gen-

erated multiple designs for the AR-�lter[14] the FIR-�lter[14],
the �fth-order elliptic �lter, and the di�erential equation ow-
graphs under various constraints. The results of these synthe-
sis experiments with di�erent allocations and clock cycle limits
are summarized in table 1. The Chain column indicates the
degree of chaining allowed during scheduling. The last column
of the table contains the number of test sessions in which each
design can be tested. In all experiments, the high-level syn-
thesis system achieved a single test session, independent of the
synthesis constraints given, or the existence of chaining in the
scheduling of the dataow graph.

11 CONCLUSIONS
The importance of test time as a component of chip cost has

caused test time to become a design attribute that needs to be
considered at the earliest stages of design. The strong e�ect of
test conicts on the test time of a design makes the use of a
test conict metric necessary in order to reduce test time dur-
ing high-level synthesis. The work presented here is the �rst
to integrate test conict information into scheduling and bind-
ing in this way. The use of the proposed test conict metric



+X5

*X7*X6

*X13

+X12

*X15

+X17

+X19+X18

+X16

+X10

+X1

+X3

+X4

+X33

+X31

+X30

*X27

+X26

*X22 +X23

+X34

+X32

*X28 +X29

+X20

+X24
*X25

+X21

+X9

+X14

+X11

+X2

+X8

0

1

2

3

4

5

6

7

8

A1

A2

M1M0

R1

A0

A3

R0

R2

R3

R2

R2

R2

R0

R0

R0

R1

R3

R3

R4

R4 R5

R5

R6

R7R6

R2

M0 M1

A1

A2

A2

A1

A0

A0 A1

A2

A4M0
M1

A4A3

A1 A0

A0

A1

M1 M0 A2

A4

A3A0

A1

Figure 8: Elliptic Filter Scheduling and Binding

A0 A1

V2V1

V0

V5 V15

M1 A3

C1

V6

R2

R4

A4

V11

V8R7

A2

V9 V3

V12

M0

C0 R3

R0

Figure 9: Test Paths to Test Datapath Derived from

Scheduling

enabled all of the designs which we generated in our experi-
ments to be testable with maximum test concurrency. We have
thus shown that highly testable designs with high levels of test
concurrency can be achieved by considering testability during
microarchitectural synthesis. Future planned extensions of this
work include utilization of the proposed test conict metric to
select testable registers in conjunction with selection of test
paths.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman. Dig-
ital Systems Testing and Testable Design. Computer Sci-
ence Press, 1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir. Built-In
Test for VLSI. Wiley-Interscience, 1987.

[3] C.-H. Chen, C. Wu, and D. G. Saab. BETA: Behavioral
Testability Analysis. Proceedings of the IEEE Confer-
ence on Computer Aided Design, pages 202{205, Novem-
ber 1991.

Clks + * > Chain Sess

AR 4 4 6 0 any pair 1
Filter 8 2 4 0 none 1

11 2 3 0 none 1

FIR 7 3 2 0 2 adders 1

Filter 9 2 2 0 none 1

11 2 1 0 none 1

Ellipt. 9 5 2 0 3 adders 1
Filter 14 4 2 0 none 1

15 3 2 0 none 1

Di�. 2 3 4 1 any pair 1

EQ 4 2 2 1 none 1

5 1 2 1 none 1

Table 1: Test Session Results for Various Designs

[4] S. Chiu and C. A. Papachristou. A Design for Testa-
bility Scheme with Applications to Data Path Synthesis.
Proceedings of the 28th Design Automation Conference,
ACM-IEEE, pages 271{277, June 1991.

[5] I. G. Harris and A. Orailo�glu. E�ective Test Path Def-
inition Assisted by High-Level Synthesis Modi�cations.
Proceedings of the Synthesis and Simulation Meeting and
International Exchange (SASIMI), pages 187{195, Octo-
ber 1993. Nara, Japan.

[6] I. G. Harris and A. Orailo�glu. Fine-Grained Concur-
rency in Test Scheduling for Partial-Intrusion BIST. Pro-
ceedings of the European Design Automation Conference,
pages 119{123, February 1994.

[7] R. Karri and A. Orailo�glu. Scheduling with Rollback Con-
straints in High-Level Synthesis of Self-Recovering ASICs.
In Proceedings of the 22nd International Symposium on
Fault-Tolerant Computing, pages 519{526, July 1992.

[8] R. Karri and A. Orailo�glu. Area-E�cient Fault Detection
During Self-Recovering Microarchitecture Synthesis. In
Proceedings of the 31st Design Automation Conference,
June 1994.

[9] S. Y. Kung, H. J. Whitehouse, and T. Kailath. VLSI and
Modern Signal Processing. Prentice-Hall, 1985.

[10] T.-C. Lee, W. H. Wolf, N. K. Jha, and J. M. Acken. Be-
havioral Synthesis for Easy Testability in Data Path Allo-
cation. Proceedings of the IEEE Conference on Computer
Design, pages 29{32, October 1992.

[11] E. J. McCluskey. Built-In Self-Test Techniques. IEEE
Design and Test, pages 21{28, April 1985.

[12] A. Mujumdar, K. Saluja, and R Jain. Incorporating
Testability Considerations in High-Level Synthesis. 22nd
Fault Tolerant Computing Symposium, pages 272{279,
July 1992.

[13] A. Orailo�glu and I. G. Harris. Test Path Generation and
Test Scheduling for Self-Testable Designs. Proceedings of
the IEEE Conference on Computer Design, pages 528{
531, October 1993.

[14] N. Park and A. C. Parker. Sehwa: A Software Package
for Synthesis of Pipelines from Behavioral Speci�cations.
IEEE Transactions on Computer Aided Design, 7(3):356{
370, March 1988.

[15] P. G. Paulin and J. P. Knight. Force-Directed Schedul-
ing for the Behavioral Synthesis of ASIC's. IEEE Trans-
actions on Computer Aided Design, 8(6):661{679, June
1989.


	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index




