
Efficient Substitution of Multiple Constant Multiplications by Shifts and
Additions using Iterative Pairwise Matching

Miodrag Potkonjak
C&C Research Laboratories, NEC USA, Inc., Princeton, NJ 08540

Mani B. Srivastava
AT&T Bell Laboratories, Murray Hill, NJ 07974

Anantha Chandrakasan
University of California, Dept. of EECS, Berkeley, CA 94720

ABSTRACT
Many numerical ly intensive appl icat ions have
computat ions that invo lve a large number of
multiplications of one variable with several constants.
A proper optimization of this part of the computation,
which we call the multiple constant multiplication
(MCM) problem, of ten resul ts in a s igni f icant
improvement in several key design metrics.

After defining the MCM problem, we formulate it as a
special case of common subexpression elimination.
The algorithm for common subexpression elimination
is based on an iterative pairwise matching heuristic.
The flexibil i ty of the MCM problem formulation
enables the application of the iterative pairwise
matching algorithm to several other important high
level synthesis tasks. All applications are illustrated
by a number of benchmarks.

1.0 Motivation and Problem Relevance
Computational transformations have recently

attracted much attention in the high level synthesis
community [Wal89, Rab91, Wal91, Ku92]. Transformations
have also been studied in areas such as algorithm design
for numerical and DSP applications [Bla85] and compilers
[Fis91].The main technical novelty of this use of
transformations in high level synthesis has been the
development of powerful optimization algorithms to
apply these transformations.

The exceptional ability of the human brain to
recognize and manipulate regularity, symmetry, and other
structural properties of computation has been used to
great advantage in the design of algorithms such as FFT
and DCT [Bla85]. Software compilers, on the other hand,
employ fast and relatively simple automatic techniques to
apply algorithm transformations on very large programs
[Fis91]. Compared to the approaches used in algorithm
design and software compilers, the high level synthesis
approach to t ransformat ions i s bet ter sui ted to
transformations that require handling of numerous details,
involve complex combinatorial optimization, and do not
require a large and sophisticated mathematical knowledge
bas e . Th i s paper addresses mul t ip le cons tant
multiplication, which is exactly such a transformation.

Mult iple constant mult ipl icat ion is a new
transformation closely related to the widely used
substitution of multiplications with constants by shifts and
additions. While the latter considers multiplication with
only one constant at a time, the new transformation
considers several different constant multiplication with
the same variable simultaneously.

Optimization of multiplication with a single
constant has for a long time been recognized as being
important for compilers and high level synthesis systems.
It has been used for improving area [Cha93] and power
[Cha92]. In ASICs as well as many microprocessors, it is
significantly less expensive to do additions, subtractions
and shifts, than it is to do a multiplication. The importance
of multiplication with constants is also indicated by recent
results [Cha92] showing an order of magnitude reduction
in power achieved by this transformation alone.

We formulate the MCM problem in such a way that
a minimum number of shifts is selected, and after which
the number of additions is minimized. The formulation
has several distinctive advantages. First, it enables one to
treat the problem of minimizing the number of additions
as one of common subexpression elimination in a
restricted domain. This al lows efficient and low
complexity algorithms to be used. Second, the formulation
enables an interesting theoretical analysis of the
effectiveness of the multiple constant multiplication
transformation, which leads to the surprising asymptotic
result that both the number of shifts and additions stay
bounded and finite regardless of the size of the problem.
Finally, our formulation also allows the MCM approach to
be applied to a number of high level synthesis tasks that
are based on common subexpression elimination.

2.0 Related work
Optimization of multiplications with a constant has

been studied for a long time, including pioneering work
by von Neumann and his coworkers [Bur47]. Later, several
schemes were proposed for minimizing the number of
operations after substitution of multiplication with
constants by shifts and additions were [Rob60]. This work
led to novel number representation schemes, such as the
canonical signed digit (CSD) representation [Rei60,

Hwa79] that is often used in DSP to reduce the number of
shifts and additions after a multiplication with a constant
i s rep lac ed b y sh i f t s and addi t ions . The CSD
representation is also sometimes used in high level
synthesis [Rab91].

Algorithms for optimizing the number of shifts and
additions have also been described in the software
compiler research [Ber86]. The minimization of number of
shifts is also a well studied topic in DSP, in particular in
the digital filter design community [Cat88].

While minimizing the number of shifts required for
multiplication with a constant is a thoroughly studied, not
much attention has been paid to the simultaneous
optimization of the multiplication of a variable by multiple
constants. Only recently Chatterjee et. al. [Cha93]
addressed this problem by presenting two optimization
approaches - greedy and simulated annealing-based - for
the minimization of the number of operations in vector-
matrix product representation of linear systems. Although
those two algorithms, based on a number spliting
technique, are theoretically interesting, the algorithm
proposed in this paper is superior in its simplicity,
effectiveness, and range of applications.

A problem closely related to constant multiplication
is that of computing a constant power of a variable by
using only multiplications. A lucid treatment of
techniques for this problem, covering work dating as far
back as two millennia, was done by Knuth [Knu81].

3.0 Problem Formulation and Examples
The examples shown in Figure 1 a-c introduce the

multiple constant multiplication problem (MCM).
Suppose the goal is to implement the computation in
Figure 1a, using only shifts and additions. The constants, a
= 815 and b = 621 can be represented in the binary form as
11001011112 and 10011011012 respectively. Note that
several of the shifts (first, third, fourth, sixth and tenth
from the right) can be shared during the computation of
the two different products as shown in Figure 1b. One
needs a total of only 7 shifts (no shift is needed for the
right-most digit) due to fact that both the constants are
being multiplied with the same variable. The second
important point is that many of intermediate results of
additions can also be shared. For example, a*X =
1000101101*X + 1100101111*X, and b*X = 1000101101*X +
1001101101*X share the common term 1000101101*X.

Next consider the example in Figure 1c. The binary
representation of all the constants is shown in Table 1.

a 815 1100101111
b 621 1001101101
c 831 1100111111
d 105 0001101001

Table 1: Binary representation of constants for
example from Figure 1c.

Obviously, now there exist an even greater number of
possibi l i t ies to share shif ts and addit ions while
multiplying the variable X with the multiple constants.
Table 2 shows the number of the identical shifts for all
pairs of constant multiplications. If additions are shared
between a and c, and between b and d, it is easy to see that
one will save 9 additions. While initially 21 additions were
needed, now only 12 additions are sufficient.

However, note that the optimization process can be
continued further, and that two shifts (first and sixth from
the right) are present in all multiplications. So if their sum
is computed first, this intermediate result can be shared
among all the constant multiplications, thus saving one
more addition.

If the sharing of shifts and additions is not used, the
example from Figure 1c requires 21 shifts (excluding shifts
by 0) and 21 additions. However, when intermediate
results in forming products are exploited, only 8 shifts and
11 additions are needed.

An interesting and intuitively appealing idea is to
employ canonical signed digit encoding, or some other
encoding which reduces the number of ones in the binary
representation of the constants, and then attempt sharing

a b c d
 a - 5 7 3
 b - 5 4
 c - 4
 d -

Table 2: Number of matching shifts between all pairs
of multiplication by constants for the example in

Figure 1c

* *

D

*

D

*

D

*

D

*

a b a b c d

(a) (c)

X X

>>2 >>3 >>5 >>9

+ + ++

+

+

>>1

>>8

>>6

+

D +

X

(b)

Figure 1: Motivational Examples: (a) multiplication with
two different constants; (b) after substitutions of
multiplication with shifts and additions; (c) more

complex example

of additions and subtractions. Table 3 shows the constants

for Figure 1c after one such encoding. Note that now only
7 shifts are needed. Table 4 shows the number of
intermediate resul ts that can be shared dur ing
multiplications by constants. Again, it is advantageous to
combine some of intermediate results. As is suggested by
Table 4, one will profit most if a and c are combined first,
followed by combining b and d. This reduces the number
of additions and subtractions to only 10.

We conclude this section by formally stating the
multiple constant multiplication problem: Substitute all
multiplications with constants by shifts and additions (and
subtractions), and use common subexpressions between various
multiplications to minimize the number of additions (and
subtractions). The next section describes a systematic
approach for accomplishing this.

4.0 Iterative Matching Algorithm
The analysis of the MCM problem in the previous

section indicates that a natural way to solve the MCM
problem is to execute recursive bipartite matching. Recursive
bipartite matching will match at each level all constants in
pairs, so that the payoff is maximized for each single level.
There are a number of very efficient algorithms for
bipartite matching [Cor90]. However, this approach has
several serious drawbacks, the most important of which is
illustrated by the following example. Suppose that one
needs to multiply a variable X with constants a, b and c,
such that a = 1111111111000002, b = 1111100000111112, and c
= 0000011111111112. Obviously, bipartite matching will
combine only two of these constants, and result in a saving
of 4 additions so that 23 additions are needed after the
application of the MCM transformation. However, if one
f i r s t fo rms n umbers d = 11111000000000 2 , e =
0000011111000002, and f = 0000000000111112, then by
noting that a * X = d * X + e * X, b * X = d * X + f * X, and c *
X = e * X + f * X one needs only four addition each for
computing d * X, e * X, and f * X, and 3 more for computing
a * X, b * X, and c * X, for a total of only 15 additions.

a 815 110011000N
b 621 1001101101
c 831 110100000N
d 105 0001101001

Table 3: Alternative representation of constants for
example from Figure 1c. N represents -1

a b c d
 a - 2 3 1
 b - 2 4
 c - 1
 d -

Table 4: Name shifts between all pairs of
multiplications by constant, when both additions and

subtractions are used

We can summarize the drawbacks of the bipartite
matching approach by pointing out that it is often
advantageous to form intermediate constants by
combining parts of more than two constants. Another
important bottleneck is that bipartite matching at one level
does not take into account how a particular match
influences matching at the next level.

In order to preserve the advantages of using
matching algorithms to solve the MCM problem while
addressing the drawbacks of bipartite matching, we
developed the algorithm described by the following
pseudo-code:

Iterative matching for the MCM problem:

Expre s s a l l c ons t an t s u s ing b inary (o r CSD)
representation;

Eliminate all duplicates of the same constants;
Eliminate all constants which have at most one nonzero

digit in their binary (CSD) representation;
Let CANDIDATES = Set of all constants in binary

representation;
Calculate Matches Between all elements of the set

CANDIDATES;
 while there exist a match between two entries in at least 2

binary digits {
Select Best Match;
Update the set CANDIDATES;
Update Matches by adding matches between new

entries and those already existing in the set CANDIDATES;
}

The first step is a simple conversion. The next two
steps are preprocessing steps, which in practice often
significantly reduce the run time of the algorithm. Of all
identical constants only one instance is included in the set
of candidates. At the end of the program, all constants
which had initially the same value as the some included
constants, are calculated using the same set of common
subexpressions. The third step is based on a simple and
obvious observation that only constants which have at
least two nonzero digits are suitable for common
subexpression elimination.

Match between two constants is equal to the
number of identical nonzero digits at the same position in
their binary representations, reduced by one (because n-1
additions are needed to add n numbers). The best match is
selected according to an additive objective function which
combines immediate saving and the change in likelihood
for later savings. The immediate payoff is equal to the
reduction in the number of operations when a particular
pair of constants is chosen. To estimate the potential future
savings after a particular match is selected, we estimate
the influence of the selecting this match on our future
ability to reduce the number of additions using matching
between the remaining constants. We do this by evaluating
the difference in the average of the top k (where we use
k=3 based on empirical observations) best bitwise matches
in the set CANDIDATES, and the average of the top k best

bitwise matches in the set CANDIDATES excluding the
two constants being considered for the current match. The
intuition behind this measure is that this average is a good
indicator of potential for matching the remaining
candidates among themselves.

The set CANDIDATES is updated by first removing
the two constants which constituted the best match, and
then adding the constant corresponding to the matched
digits, as well as the differences between the two matched
constants and this newly formed constant.

The algorithm works the same way whether only
additions are used, or both additions and subtractions The
only difference is how matches are computed. Suppose
that we have two numbers A and B such that both have
digit 1 on a identical binary positions, both have digit -1 on
b binary positions, A has digit 1 and B has digit -1 on c
binary positions, and A has digit -1 and B has digit 1 on d
positions number. The number of matches is computed as
sum a + b + max (0, c+d-1). This matching function is
based on the observation that we can always match all
identical digits, and that nonzero digits can be also
matched, but this type of matching will result in one less
saved operation.

The following theorem, which we state without
proof, clearly indicates the effectiveness of the MCM
approach on large instances of the problem.

Asymptotic Effectiveness Theorem: An arbitrarily
large instance of the multiple constant multiplication problem
can always be implemented with a bounded finite constant
number of shifts and additions irrespective of the problem size.

An important consequence of the asymptotic
effectiveness theorem is that as the size of the MCM
problem increases , the MCM transformat ion i s
increasingly more effective.

5.0 Numerical Stability and Relationship
with other Transformations
While the effectiveness of transformations in

improving implementation metrics is well documented,
the effect of transformations on word-length requirements
is a rarely addressed topic in high level synthesis and
compiler literature. The attitude toward numerical
stability issues varies significantly, ranging from denial of
the problem to avoidance of applying transformations.

One of the few transformations which is well suited
for a theoretical analysis of numerical stability is the MCM
transformation. An analysis by Golub and van Loan
[Gol90] indicates that if one additional binary digit is used,
one can apply an arbitrary combination of common
subexpressions without disturbing the correctness of the
answer. This analysis also indicates that even this
additional digit is statistically very unlikely to be needed.
We experimentally verified this claim on a 126 tap FIR
filter which is part of a PCM system developed by NEC

Japan. Figures 3a and 3b, show the transfer function of the
filter corresponding to double precision floating-point
arithmetic and finite precision fixed-point arithmetic with
the same word- length a f ter apply ing the MCM
transformation respectively.

It is also well known that the application of isolated
transformations is often not sufficient to achieve desired
results. The successive or simultaneous application of
several transformations is often much more effective due
to the ability of some transformations to increase the
effectiveness of others. On majority of the designs which
we examined, retiming was most often required to
effectively enable the MCM transformation. Figure 2
shows typical examples where retiming makes the MCM
transformation much more effective. Performing retiming
such tha t the payoff f rom apply ing the M C M
transformation is maximized is an involved combinatorial
problem. However, on all examples that we considered, it
was sufficient to adopt a simple retiming approach where
the delays were just moved from edges where they were
preventing the application of MCM transformations.

+

D

++

D

IN OUT
+

++

IN OUT

D

D

D

D

(a)

Figure 2: Applying Retiming to enable the MCM
transformation: (a) before retiming; (b) after retiming

(b)

Figure 3: Simulation Results for the NEC FIR filter before
(a) and after the MCM transformations

0.0 256.0 512.0 768.0 1024.0-150.0
-130.0
-110.0

-90.0
-70.0
-50.0
-30.0
-10.0
10.0
30.0
50.0

0.0 256.0 512.0 768.0 1024.0-150.0
-130.0
-110.0

-90.0
-70.0
-50.0
-30.0
-10.0
10.0
30.0
50.0

(a)

(b)

Furthermore, note that even this retiming is actually not
necessary - the shifts and additions in the MCM
transformations can be shared across delays by taking into
account that some of the intermediate results will be
utilized in future iterations of the ASIC computation
which is always done on semi-infinite streams of data.

6.0 Experimental Results
The iterative matching algorithm is very efficient

and compact - it required slightly more than 1000 lines of
C code. Table 5 shows the set of benchmarks examples on
which it was applied The benchmark examples are: 126

tap NEC FIR filter (N FIR), NEC digital to analog
converter (DAC), 100 and 123 FIR
 filters (M FIR1 and M FIR2), 64 tap FIR filter, 3 GE linear
controllers (Con4, Con5 and Mat) [Cha93], Linear power
controller [Power], 8th order direct form IIR [8IIR], and
two dimension 10X10 FIR video filter [2D FIR].

The performance of the i terat ive matching
algorithm on these examples is detailed in Table 5.
Average (Median) Reduction in number of shiftsby factor
of 8.71 (9.32). Average (Median) Reduction in number of
additions by factor of 1.71 (1.50).

Using the MCM algorithm to reduce the number of
operations also helps in reducing the implementation area
and power consumption. For example, in the case of
NEC’s 126-tap low-pass FIR filter, the estimates obtained
by using the HYPER high-level synthesis system [Rab91]
show factors of 2.76 and 2.55 reductions in area and power
respectively. The iterative matching algorithm took less
than 2 seconds for even the largest example (2D FIR filter).

7.0 Extensions to other High Level
Synthesis Tasks
At the heart of the MCM approach is the recursive

DES
IGN

INITIAL MCM INITIAL/MCM
of
>>

of +/
-

#
>>

of
+/ -

of
>>

of
+/ -

N FIR 160 202 17 138 9.41 1.46
DAC 349 416 98 277 3.56 1.50

M FIR1 177 231 19 158 9.32 1.46
M FIR2 138 170 15 125 9.25 1.36
64FIR 123 144 13 101 9.46 1.43
Con4 212 183 16 86 13.2 4.59
Con 5 383 358 25 137 15.3 2.61
MAT 83 74 14 49 5.93 1.51

Power 136 120 58 99 2.34 1.21
8IIR 184 200 15 102 12.3 1.96

2D FIR 804 807 141 377 5.70 1.56

Table 5: The application of the MCM Iterative
Matching algorithm on 11 examples

application of common subexpression elimination to
reduce the number of operations needed for a given
computa t ion . Th i s re la t ionsh ip wi th commo n
subexpression elimination allows the MCM approach to
be easily modified for a large number of important high
level synthesis optimizing transformation tasks.

A direct application of the MCM methodology and
software to a new high level synthesis task is to
multiplication-free linear transforms. The general form of
multiplication free linear transform is Y = A * X, where Y
and X are n-dimensional vectors and A is n × n quadratic
matrix. The matrix A has as entries only values 1, -1, and 0.

 We will introduce the application of the MCM
transform for the optimization of multiplication free
computations using Hadamard matrix transform. Figure 4
shows the Hadamard matrix of size 8 × 8.

The analogy with the MCM problem is apparent.
Matrix A corresponds to the binary representation of the
constants in the MCM problem, and elements of vector X
corresponds to the variable shifted by various amounts in
the MCM problem. While the direct computation of the

Hadamard transform requires 56 additions, the MCM
approach reduces this number to 24.

A

1 1 1 1 1 1 1 1
1 1− 1 1− 1 1− 1 1−
1 1 1− 1− 1 1 1− 1−
1 1− 1− 1 1 1− 1− 1
1 1 1− 1− 1− 1− 1− 1−
1 1− 1− 1 1− 1 1− 1
1 1 1 1 1− 1− 1 1
1 1− 1 1− 1− 1 1 1−

=

Figure 4: Hadamard Matrix of Size 8 X 8

G

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

=

Figure 5: Encoding matrix for (16,11) second-order
Reed-Muller code.

The encoding and decoding algorithms of many
error correcting codes can be represented as vector-matrix
product in the form c = d * G. c is vector of k encoded bits,
d is vector of m information bits, and G is m X k matrix,
which describes the used encoding algorithm. Figure 5
shows the matrix G for the second-order (16,11) Reed-
Muller code [Rhe89].

The analogy with the MCM transform is apparent.
If the columns of matrix G are interpreted as the elements
of the set of constants, the minimization of addition to
produce the set of constants (65535, 21845, 13107, 3855,
255, 4369, 1285, 85, 771, 51, 15) is equivalent to minimizing
the number of additions needed for encoding using the
Reed-Muller code.

Tab le 6 s hows the se t o f e r ror- cor rec t ion
benchmarks [Rhe89] on which we applied the MCM
approach. The average and median reductions in the
number of additions is by factors of 1.55 and 1.56.

The algorithms for the minimization of the number
of shifts and additions, with a slight modifications, were
applied on several widely used general linear transforms
shown in Table 7. Again, a very significant reduction in the
number of operations is achieved.

8.0 Conclusion
We formulated the multiple constant multiplication

(MCM) problem, and proposed an iterative pairwise
matching algorithm for solving it. The relationship of the
MCM transformation to other transformations is studied

Examples
Additions

I MCM I/MCM
Goppa 18 11 1.64

Hadamard 21 16 1.31
Reed-Muller 61 43 1.41

Hamming 105 66 1.59
Fire 44 29 1.52
BCH 183 99 1.85

Table 6: Benchmark examples for linear codes

Ex
of
bits

of >> # of + I
I M IN M I/M I/M

DC 8 308 72 300 94 4.2 3.2

DC 12 376 74 368 100 5.1 3.7

DC 16 529 107 521 129 4.9 4.0

DC 24 797 190 789 212 4.2 3.7

HV 8 122 91 119 95 1.3 1.2

HV 12 261 153 255 161 1.7 1.6

HV 16 367 211 361 226 1.7 1.7

HV 24 586 313 580 334 1.9 1.7

Table 7: Benchmark example for linear transforms:
DC- discrete cosine transform; HV - IEEE Human Vision

Sensitivity Transform; I - initial; M - after MCM.

A simple generalization of the problem was used to
significantly enlarge the application range of the proposed
approach. On a large set of industrial examples the MCM
approach yielded significant improvements in the number
of operations was achieved.

Acknowledgments

The authors would like to thank M. Cheong for help
in developing the final version of the MCM iterative
pairwise matching program.

9.0 References:
[Ber86] R. Bernstein: “Multiplication by Integer Constants”,

Software - Practice and Experience, Vol. 16, No. 7, pp.
641-652, 1986.

[Bla85] R.E. Blahut: “Fast Algorithms for Digital Signal Pro-
cessing”, Addison-Wesley, 1985.

[Cat88] F. Catthoor, et. al.: “SAMURAI: a General and Efficient
Simulated Annealing Schedule with Fully Adaptive
Annealing Parameters”, Integration, Vol. 6, 1988.

[Cha92] A. Chandrakasan, et. al.“HYPER-LP: A System for
Power Minimization Using Architectural Transforma-
tions”, IEEE ICCAD-92, pp. 300-303, 1992.

[Cha93] A. Chatterje, R.K. Roy, M.A. d’Abreu: “Greedy hard-
ware optimization for linear digital systems using num-
ber splitting and repeated factorization”, IEEE Tran. on
VLSI) Systems, Vol. 1, No. 4, pp. 423-431, 1993.

[Cor90] T.H. Cormen, C.E. Leiserson, R.L. Rivest: “Introduction
to Algorithms”, The MIT Press, Cambridge, MA, 1990.

[Fis91] C.N. Fischer, R.J. LeBlanc, Jr.: “Crafting a Compiler”,
Benjamin/Cummings, Menlo Park, CA, 1991.

[Gol89] G.H. Golub, C. van Loan: “Matrix Computation”, The
Johns Hopkins University Press, 1989.

[Knu81] D.E. Knuth: “The Art of Computer Programming: Vol-
ume 2: Seminumerical Algorithms”, 2nd edition, Addi-
son-Wesley, Reading, MA, 1981.

[Ku92] D. Ku, G.De Micheli: “Constrained Synthesis and Opti-
mization of Digital Circuits from Behavioral Specifica-
tions”, Kluwer Academic Publishers, 1992.

[Rab91] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak: “Fast Proto-
typing of Data Path Intensive Architecture”,IEEE
Design and Test, Vol. 8, No. 2, pp. 40-51, 1991.

[Rhe89] M.Y. Rhee: “Error-Correcting Coding Theory”,
McGraw Hill. New York, NY, 1989.

[Rei60] G.W. Reitwiesner: “Binary Arithmetic”, in Advances in
Computers”, Vol. 1, Academic Press, pp. 261-265, New
York, NY, 1960.

[Wal89] R.A. Walker, D.E. Thomas: “Behavioral Transformation
for Algorithmic Level IC Design” IEEE Transactions on
CAD, Vol 8. No.10, pp. 1115-1127, 1989.

[Wal91] R.A. Walker, R. Camposano: “A Survey of High-Level
Synthesis Systems”, Kluwer Academic Publishers, Bos-
ton, Ma, 1991.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

