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ABSTRACT 
The continuous improvement on the design methodologies and 
processes has made possible the creation of huge and very 
complex digital systems. Design verification is one of the main 
tasks in the design flow, aiming to certify the system functionality 
has been accomplished accordingly to the specification. A 
simulation based technique known as functional verification has 
been followed by the industry. In recent years, several articles in 
functional verification have been presented, focusing either on 
specific design verification experiments or on methods to improve 
and accelerate coverage reaching. In the first category, the 
majority of the papers are aimed to processors verification, while 
communication systems experiences were not such commonly 
reported. In the second category, different authors have proposed 
methodologies, which need an extensive and complex work by the 
verification engineer on tuning the acceleration algorithms to the 
specific design. In the present paper, we present a functional 
verification methodology applied to a Bluetooth Baseband 
adaptor core, described in SystemC RTL. Two techniques are 
considered, one following the traditional framework of applying 
random stimuli and checking functional coverage aspects; in the 
second one, a simple acceleration procedure, based on redundant 
stimuli filtering, is included. For both solutions, a hierarchical 
approach is adopted. We present several results comparing both 
solutions, showing the gain obtained in using the acceleration 
technique. Additionally, we show how results on a real testbench 
application environment correlate to the hierarchical verification 
approach taken.   

Categories and Subject Descriptors 
B.5.2 [Register-Transfer-Level Implementation]: Design Aids 
– optimization, simulation, verification 

General Terms 
Design, Reliability, Experimentation, Verification. 

Keywords 
Coverage Analysis, Functional Verification, Hierarchical 
Verification, Optimization, Verification Strategy. 

1. INTRODUCTION 
The continuous improvement on the design methodologies and 
processes has made possible the creation of huge and very 
complex digital systems, with a diversity of components and sub-
systems involved, spurring the facets of the known design 
productivity challenge [1]. One of the critical aspects in a 
complex system development is the assurance of design quality, 
which has a direct impact of in its success. One of the most 
crucial activities in the design flow is the design verification, the 
certification on the correctness of a circuit in respect to its 
specification, i.e., its intended behavior. In the context of 
Intellectual Property (IP) cores design, the verification is a key 
element for their success in being reused [2]. 

Design verification has been accomplished following two 
principal techniques known as formal and functional verification 
[2]. The functional verification, also known as simulation-based 
type, plays a major role in the current industrial practice. 
Functional verification is carried out by implementations of 
testbench models as the one shown in Figure 1, where results of 
simulating a design under verification (DUV) description are 
compared against the results of simulating a higher level reference 
model, also known as golden model. This traditional test 
framework makes simulation-based verification easy to manage, 
but system designers have reported it as the most resource and 
time consuming phase of the design flow. The reason is the 
generalized adoption of random stimulation as a mandatory 
approach in verification; in these cases, reaching high levels of 
confidence in automatic testbenches requires the execution large 
number of testcases until some coverage criteria is complied. 

Considering the importance of the functional verification and its 
weight in the design flows, there is a need for the development of 
new strategies that make possible to ease and accelerate this 
phase. One alternative in this direction is the coverage analysis 
technique, as reported by Rosenberg[3], where the testbench 
execution speedup is achieved by the identification of the less 
stimulated coverage aspects and, then, indicating the manner of 
changing the stimuli generation pattern. Since determining the 
correlation between applied stimuli and coverage aspects is not a 
trivial task, techniques natural from the artificial intelligence area 
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have been proposed to automate this analysis. Techniques based 
on genetic algorithms [4], Bayesian networks and Data Mining [5] 
have showed to reduce the stimuli application time, but needed an 
extensive and complex work by the verification engineer on 
tuning the acceleration algorithms to the specific design. 

In the present paper, we propose a simple method, based on 
redundant stimuli filtering. It allows reducing execution time of 
testbenches with random stimuli, without resorting to complex 
algorithms. This filtering technique is based on avoiding 
unnecessary RTL simulation whenever a testcase generated by a 
stimuli source is known to be redundant. 

We compared the proposed filtering method to the traditional 
verification framework[6] of Figure 1, by developing and 
executing testbenches on a complex design, a Bluetooth Baseband 
layer adaptor core, described in SystemC RTL. We opted for 
performing the functional verification on a network 
communication core in order to cover an application area with 
little verification results reported. For years, basically 
experiments on verification of general purpose processor had been 
published[4][7]; presently, the activities in other application areas 
has been also reported, but being only a few related to 
communication systems [8,9]. 

Besides focusing on the acceleration of the verification 
methodology of a Bluetooth Baseband adaptor core, a hierarchical 
approach is explored to increase the efficiency of the functional 
verification task. We present results on a verification process 
running large number of testcases, showing the advantages for 
easing of the bug finding and managing the circuit complexity. 
Regarding the quantitative analysis on the advantages of the 
proposed acceleration technique, numbers on coverage by 
execution time are obtained for all modules in the Bluetooth 
adaptor hierarchy, with time saving up to 66%. 

   
 

 

 

 

 

 

The subsequent sections are organized as follows: in the section 2, 
we present the functional verification methodology used here, 
with the two testbench techniques to be compared; in section 3, 
the Bluetooth adaptor core and its hierarchical composition is 
presented; in section 4, the verification strategy for the Bluetooth 
adaptor is presented, along with the results and discussion.  Then, 
in section 5, we present our conclusions. 

2. FUNCTIONAL VERIFICATION 

2.1 Basic Functional Verification Model 
In this section, we introduce some basic concepts on functional 
verification; more detailed description can be obtained in specific 
literature about this subject, as in [2]. The functional verification 
is based on the idea that some specification implemented at two 

different levels of abstraction may have its behaviors compared 
automatically by a tool called testbench. 

The testbench architecture used in this paper follows the model 
presented in the Figure 1, characterized for modularity and 
reusability of its components. The testbench model comprises all 
the elements required to stimulate and check the proper operation 
of the Design Under Verification (DUV); in the context of this 
work, the DUV is a RTL description. The stimuli source, in 
general based on aid tools, applies pseudo-random generated 
testcases to both the DUV and the Reference Model, also known 
as Golden Model, a module with behavioral description at higher 
level of abstraction. The Driver and Monitor are blocks aimed to 
convert transaction level data to RTL signals and vice-versa. 
Finally, in the Checker, outputs from the simulation performed on 
both the Reference Model and RTL modules are compared and 
figures on coverage are computed and presented. 

Being the functional verification an application dependent task, 
the designer must plan carefully aspects as the coverage model 
and the stimuli source. The stimuli can be classified in the 
following categories: directed cases, whose responses are 
previously known (e.g. compliance test); real cases dealing with 
expected stimuli for the system under normal conditions of 
operation; corner cases, aimed to put the system on additional 
stress (e.g.. boundary conditions, design discontinuities, etc.); and 
random stimuli, determined by using probability functions.  

The coverage is an aspect that represents the completeness of the 
simulation, being particularly important when random stimuli are 
applied. Coverage may be of different types as, for instance, code, 
structural, functional, etc.[10], depending on which different 
system characteristics are to be included. Functional coverage is 
usually considered the most relevant type because it represents 
directly the objectives of the verification process. However, since 
it is infeasible to explore all the functionality of a complex circuit 
through simulation, there is not a firm definition for the 
verification community on what amount of simulation on a 
testbench may correspond to an acceptable coverage. Sometimes 
the coverage is limited by project deadlines. 

Knowing which metrics should be included as coverage measure 
is dependent on the verification engineer expertise. To deal with 
the complexity of the problem, some generic steps may be 
followed, in an approach known as item functional coverage. 
First, a judicious selection must be made on a set of parameters 
associated to input and output data, for instance, the size of 
packets, words with specific meaning, as keys, passwords, etc.  
Then, for every selected parameter, the designer must form 
groups defined by ranges of values it may assume, following a 
distribution considered relevant. The 100% coverage level is 
established by a sufficient amount of items per group, i.e., 
testcases, whose corresponding applied stimuli and observed 
responses match the parameter group characteristics. The larger 
the number of items is considered, the stronger the functional 
verification process will be. 

2.2 Coverage Analysis 
Even though there is no standard method to perform the 
functional verification and every tool provider establishes its own 
approach, some main activities may be considered in the 
verification process. Hekmatpour[11] suggests that the functional 

Stimuli    
Source 

Reference Model   

Monit  or  DUV   

Testbench   

Checker 

Driver   

Figure 1. Basic testbench model 
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verification should be carried out by following several phases as 
planning, reference model implementation, coverage analysis, 
among others. The coverage analysis, to be done after or during 
the testbench application, is an important phase for certifying the 
testbench robustness. After the testbench application, in case of 
evidence of coverage holes, the stimuli generation should be 
redirected and the verification should restart until no missing 
coverage aspects are found. 

Coverage analysis activities may be done during the testing in 
order to speed up the coverage fulfillment. It is known that, under 
random stimuli, the coverage evolution, in terms of time, presents 
a fast growth in the initial phase of the testbench application, 
followed by a saturation tendency when higher levels of coverage 
are reached, due to increased occurrence of redundant stimuli. In 
this context, redundant stimulus is defined as a pattern that does 
not represent any increment to the defined coverage; for the case 
of item functional coverage, it is part of parameter groups, which 
have already reached 100% coverage  

The functional coverage saturation effect has motivated, in recent 
years, researches on using the information on functional coverage 
status to adjust the stimuli generation, in techniques known as 
“closed-loop testbenches” or “reactive testbenches”. The 
establishment of the relationship between the reached coverage 
and the stimuli generation for a DUV is a complex task, requiring 
the application of techniques natural of the artificial intelligence 
area, such as genetic algorithms [4], data mining and Bayesian 
networks [7]. Although these approaches have had excellent 
reported results regarding the testbench execution time, they also 
have showed to require an extensive work to be implemented and 
set up. 

2.3 Stimuli Filtering Technique  
In order to reduce the testbench execution time, under random 
stimuli, without resorting to complex methodologies, we 
developed a simple closed-loop technique based on stimuli 
filtering. This technique is based on the observation that 
simulating the Reference Model is much faster than performing it 
on the RTL model of the DUV. The long  RTL simulation may be 
avoided if it is known that redundant testcases were generated by 
stimuli source. This is accomplished as follows: first the reference 
model is executed and, then, by analyzing the results, it is verified 
if the coverage parameter groups associated to each testcase have 
already reached to the assigned total number of items. If the 
testcase is not a redundant one, the DUV is simulated. 

The implementation of this idea consisted in modifying the basic 
testbench model to the one presented in the Figure 2. Other than 
the inclusion of the filtering block, the only change needed on the 
original testbench model is the implementation of an early 
checking of the reached functional coverage.    

In the new model, the stimuli are applied to the Reference Model, 
whose outputs are analyzed by the Checker. The latter block 
sends the information about testcase´s redundancy back to the 
Filter, which, then, is responsible for blocking or allowing the 
RTL simulation. Actually, the fast Reference Model simulation 
and the slow RTL simulation are done serially. This method is 
very simple if compared to other closed-loop testbenches since 
there is no need to model the usually complex relationship 
between the coverage characteristics and the stimuli generation 
(source). 

3. BASEBAND LAYER ADAPTOR 

3.1 The Bluetooth Standard (version 1.1) 
Bluetooth is an established standard for short distance wireless 
communications developed by the Bluetooth Special Interest 
Group[12]. The Bluetooth Stack, shown in Figure 3, comprises 
the protocol layers from the high level SDP and RFCOM to the 
low level radio frequency. The Bluetooth standard operates at 2.4 
GHz in the ISM band (Industrial Scientific Medicine) and uses the 
GSFK modulation (Gaussian Frequency Shift Keying). The data 
transmitted has a symbol rate of 1 Ms/s. The FHSS (Frequency 
Hopping Spread Spectrum) technique is used to reduce the effect 
of radio frequency interferences on transmission quality. 

The Bluetooth devices sharing the same channel form a network 
called piconet, where only one of them acts as master while the 
rest act as slaves, up to maximum of seven. The channel 
represents a pseudo-random hopping of RF frequencies, being the 
sequence determined by the Bluetooth device address of the 
master. The Bluetooth protocol establishes a packet with a 72 bit 
access code, which identifies the Bluetooth receiver unit of the 
packet, a 54 bit header carrying information about the packet and 
the payload (variable number of bits), which are information for 
the upper layers. 

3.2 The Bluetooth core implementation 
The Bluetooth core described with SystemC® 2.0.1. at RTL level 
implements all the Baseband functionality required to establish 
Asynchronous Connection-Less (ACL) links. The core scheme is 
presented in Figure 4; there can be observed how the modules are 
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organized in a hierarchical manner according its functional 
affinity. 

Each module communicates directly with modules of the same 
level and with the module that contains it. The inner level of the 
hierarchy (less global) corresponds to the bit processing modules. 
The CRC module detects the presence of errors in the payload 
bits, the FEC module corrects errors in the payload bits, the 
FHEC module realizes the error detection and correction in 
header bits, the CIPHER module encrypts the payload bits and the 
WHITE module reduces the DC bias of the whole packet. 

At the stream level, the bit level modules are used in the 
STREAMPROC module to compose and decompose packet 
streams, the CORR module identifies the packets directed to the 
Bluetooth unit from all of those that come through the RF channel 
and send the access code to the other units and the BTCLOCK 
module set the clock references required to synchronize the 
Bluetooth unit according to the connection temporization. 

In the next level, the PACKETPROC module together with 
CORR and BTCLOCK modules insert the streams in to the 
Bluetooth timing requirements. Finally, the top level includes: the 
PACKETBUFFER which, stores the information required to the 
operation of the stream and bit processes, the SRAM that acts as 
the configuration memory of the core and the ACCESSCTL 
which deals with the interfacing with both the LEON2 processor 
and the radio driver RADIOCTL. In the present work, the core 
was designed to communicate with a LEON2 processor through 
an AMBA™ APB interface and to a radio controller for the 
Bluetooth transceiver Phillips™ BGB101. 

4. THE ADAPTOR VERIFICATION 

4.1 The Verification strategy 
In order to deal with the complexity of the whole verification 
process, the strategy was planned to match the Bluetooth adaptor 
features. Therefore, two aspects were considered for the 
functional verification: firstly, the development of different 
testbenches focused on the most relevant characteristics of the 
Bluetooth adaptor modules, such as the bit processing operations, 
the stream handling, the packet handling and the interfacing 
procedures; secondly, the testbenches application followed the 
hierarchical structure of adaptor implementation in a bottom-up 
way. Once less global (more local) modules have been debugged 
and the functionally classified as correct, the verification 
proceeded to more global modules.   

Although the main source of applied stimuli was random, we have 
also considered compliance test stimuli, found on the Bluetooth 
specification, and real cases stimuli; however, the latter ones were 
only applied for the CRC and FEC verification. The random 
sources were strongly considered because they allow the fast 
creation of large number of stimuli, what is desirable for 
exploring of the huge number of possible combinations of the 
Bluetooth adaptor functionality. 

BASEHW 

SRAM ACCESSCTR PACKETBUFFER

PACKETPROC 

STREAMPROC 
CORR

The coverage approach followed in this work was the item 
functional coverage, as described in Section 2.1. As examples of 
input coverage parameters for the CRC module, we may have the 
packet size or the CRC initialization value, and, of output 
coverage parameter, the parity bits. 

CRC FEC CIPHER 
WHITE BTCLOCKFHEC 

RADIOCTR 
Based on the above strategy, the verification was performed in 
two different batches with different objectives: 1) to compare the 
basic testbench and the filtering testbench models presented in 
Section 2; 2) to analyze the benefits of hierarchical verification 
for managing complexity, by applying testbenches with very large 
number of stimuli. 

Figure 4. Bluetooth Baseband core 

4.2 Results on Comparing Verification 
Models  
In order to compare the testbench model proposed for redundant 
stimuli filtering (closed loop) against the basic one (open loop), 
random stimuli based verification was performed on all RTL 
modules and sub-modules of the Bluetooth adaptor. Full coverage 
(100%) per group in each chosen parameter was set to a relatively 
medium number, 10,000 items, only for the purpose of this study. 
Results on a real testbench application environment, what took 
longer times, will be given in the next section.  

Table 1 shows a summary of the numbers we obtained in 
simulating all modules under both testbench models, considering 
100% coverage. Column 1 lists the tested DUVs; column 2 shows 
the total number of stimuli generated by the stimuli source in both 
models, while column 3 presents the number of redundant stimuli, 
which were filtered out with the acceleration method. In column 
4, we have the total number of items to be applied (input 
parameters) and observed (output parameters) in order to reach 
the established 100% coverage. The last 3 columns present data 
on execution time. Column 5 and 6 indicate the time consumed by 
the testbench application under the basic and filtering models, 
respectively. The last column shows the relative gains in 
execution time. The time measures presented in Table 1 were 
taken running both models on a PC with a Pentium IV HT 
processor and with 1GB of DRAM memory.   

From the last column in Table 1, we can see a strong relationship 
between the relative time gain and the ratio of the amount of 
blocked redundant stimuli in respect to the total number of 
generated stimuli. However, this relationship is discrepant in a 
few cases -StreamProc (interpret), Corr (correlate) and BaseHw- 
because the time gain by the filtering testbench model actually 
depends on the relative weight of the avoided unnecessary RTL 
simulation time compared to the execution times of the stimuli 
generation and of the reference model. The discrepant tendency is 
presented strongly when the reference model is complex, 
StreamProc (interpret) and BaseHw, or when the DUV operation 
is simple, Corr (correlate). 
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Table 1. Verification with basic and filtering testbench 
models, under random stimulation (10,000 items coverage) 

Design under 
Verification 

Total # 
Stimuli 

Total # 
Redund. 
Stimuli 

100% 
Cov. 

(Items) 
Time1 (s) Time2 (s)

Time 
Gain 
(%)

CRC (cod) 237,282 142,988 170,000 2,295.33 1,015.94 55 

CRC (decod) 212,055 117,210 170,000 4,708.78 2,116.47 55 

FEC (cod) 107,403 18,045 160,000 56.92 50.53 11 

FEC (decod) 106,576 17,143 160,000 72.46 52.99 26 

FHEC (cod) 267,562 173,558 250,000 247.79 101.08 59 

FHEC 
(decod) 81,792 1,793 160,000 44.47 43.28 3 

White 387,567 255,141 220,000 2,119.50 723.09 66 

Cipher 171,466 82,001 500,000 10,486.64 5,648.57 46 

StreamProc 
(compose) 75,971 12,378 300,000 19,951.62 17,733.48 11 

StreamProc 
(interpret) 124,984 55,870 300,000 37,021.93 24,302.70 34 

Corr 
(correlate) 53,612 10,864 200,000 5,941.51 4,914.27 17 

Corr (send) 40,497 223 120,000 130.79 129.24 1 

PacketProc 116,105 41,280 340,000 98,625.76 69,432.49 30 

BaseHw 117,998 43,210 340,000 186,882.31 131,953.00 29 

 

A second interesting observation from Table 1 is that there are 
cases where the gain is close to 50-60%, other ones about 25% 
and, finally, some below 10%, meaning there are relatively more 
redundant stimuli in some cases than others. This can be better 
understood with the help of figure 5, showing curves on number 
of redundant stimuli by (normalized) time, up to 100% coverage. 
It makes evident that there has been less redundant stimuli during 
the test of BaseHw module than during the verification of the 
CRC module. This fact is closely related to the amount of 
processing and data transformations involved, which are reflected 
to the modules output ports. Whenever the output data are highly 
correlated to the input data, the relative gain is smaller. This can 
be confirmed in cases like CRC, FHEC, White and Cipher, where 
the amount of processing is high. Another related issue is that the 
coverage parameters considered for a more local module will be 
left aside in the testbench development of a more global module 
which uses the first one. When disconsidering those parameters 
for more global modules, these ones tend to present simpler 
coverage aspects, less redundant stimuli and lower gains, as it is 
the case of modules at the bottom of the Table 1. 

The base for the filtering method is the elimination of 
unnecessary RTL simulation cycles, due to redundant stimuli. The 
RTL simulation applied to the DUV is the most time consuming 
task in the testbench application, so its weight has led us to some 
other observations. As expected, more complex modules, 
particularly the global ones, present longer simulations. As an 
example from Table 1, the number of stimuli applied to the CRC 
modules was higher than the total number applied to the BaseHw 

module, although the execution time for the last one was two 
orders higher. Another related aspect is the importance of 
considering RTL simulation time in absolute values. Although 
there may have a relative time gain reduction for more global 
modules, as shown in Table 1, the absolute time gain in those 
cases is very significant. While for more local modules the RTL 
simulation time has taken about minutes, for more global 
modules, the simulation has taken hours. These numbers turn to 
be more critical considering that, in real testbench application 
environments, the number of items are much higher - in next 
section, we show testbenches with 100% coverage set as 100,000 
items for each parameter group. Therefore, the absolute gain may 
be days and weeks in real test environments.  
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Figure 5. Redundancy comparison CRC and BaseHW 

Regarding the implementation time for the closed loop testbench, 
the first filtering module (the CRC module) took about one day to 
be developed and coded. Once this module was implemented, it 
took about half day for each additional module. This extra time is 
very small if compared to the time required to the development of 
each module under the basic open loop model. The inclusion of 
automation and design aids like templates may make this task 
even faster.      

4.3 Results on Testbench Application 
In this section, we present the results of functional verification 
with the basic testbench model, applied to the Bluetooth adaptor 
modules, following a bottom-up hierarchical approach. The 
verification was performed with stringent coverage restrictions: 
under the random stimuli application, the 100% coverage was set 
as 100,000 items for every parameter group. The results are listed 
in Table 2: column 1 lists the DUVs, column 2 shows the number 
of random stimuli applied, column 3 shows the number of found 
errors and, finally, in column 4, the time required for the 
development and execution of the testbenches is presented. For 
presentation purposes, only the cases with design errors detected 
are listed. It is important to notice that the small number of 
detected design errors is due to the fact before the execution of 
this random stimuli testbench, cases with compliance test and real 
cases stimuli had already been run. 
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Table 2. Verification results with basic testbench model, 
under random stimulation (100,000 items coverage)  

Module # Stimuli #Errors  Time (weeks) 

FEC (code and decode) 2,305,455 1 2 

StreamProc (compose 
and interpret) 1,161,392 4 4 

Corr (correlate and send) 538,133 1 2 

PacketProc 797,458 4 6 

BaseHw 797,458 2 6 

TOTAL 5,599,896 12 22 

The increasing complexity and execution time for more global 
modules makes evident the relevance of the hierarchical 
verification approach as a form to fight the complexity. Let us 
consider that finding and correcting one design error, as in the 
FEC, took 2 weeks for developing testbenches and applying 
2,305,455 stimuli; then, in order to find/correct the same design 
error using the whole adaptor as DUV, it would take a much 
bigger effort. As result, this strategy allowed speeding up the 
verification process, with errors detected in a faster and more 
accurate manner. The hierarchical approach also shows benefits 
on the coverage analysis aspect- as cited in previous section, the 
coverage parameters considered for a more local module will, 
eventually, be left aside in the testbench development of a more 
global module which uses the first one. It means less stimuli to be 
applied to the more global RTL module, reducing the time 
consumed by testbenches application and RTL simulation. None 
of the errors found during the any module verification occurred in 
the previously verified modules or had influence from them. This 
shows that the progressive scheme allows the designer to gain 
confidence on the behavior of the core as the verification evolves 
and, also, opens the possibility of reusing the inner modules for 
future implementations of cores.  

5. CONCLUSIONS AND FUTURE WORK 
The present work shows the importance of the conception of the 
functional verification strategy in the success of the verification 
process. From the coverage point of view, random stimulation it is 
a big source of redundant cases, i.e., stimuli that do not increase 
coverage. Consequently, the effective and appropriate use of 
random stimulation requires using techniques to modify the 
generation patterns according to the desired coverage. Techniques 
such as stimuli filtering, presented in this paper, show that 
important time saving can be achieved even without much 
computational expense or development effort. 

We have presented several results of a verification plan applied to 
a Bluetooth Baseband adaptor core, comparing the coverage 
evolution under two testbench models and also reporting results in 
found design errors. The results have showed us that techniques to 
increase functional verification efficiency must consider the 
functional and implementation characteristics of the design, as the 
hierarchical structure. 

As future work, the acceleration method presented in this paper 
should be compared to other closed loop methodologies. One may 
also develop verification tools as automatic verification modules 
generation in a template based fashion.  
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