
Comparing Two Testbench Methods for Hierarchical
Functional Verification of a Bluetooth Baseband Adaptor

Edgar L. Romero Marius Strum Wang Jiang Chau
Polytechnic School - University of Sao Paulo

Av Prof Luciano Gualberto
Trav 3, 158

+55 11 30915259

eromero@lme.usp.br strum@lme.usp.br jcwang@lme.usp.br

ABSTRACT
The continuous improvement on the design methodologies and
processes has made possible the creation of huge and very
complex digital systems. Design verification is one of the main
tasks in the design flow, aiming to certify the system functionality
has been accomplished accordingly to the specification. A
simulation based technique known as functional verification has
been followed by the industry. In recent years, several articles in
functional verification have been presented, focusing either on
specific design verification experiments or on methods to improve
and accelerate coverage reaching. In the first category, the
majority of the papers are aimed to processors verification, while
communication systems experiences were not such commonly
reported. In the second category, different authors have proposed
methodologies, which need an extensive and complex work by the
verification engineer on tuning the acceleration algorithms to the
specific design. In the present paper, we present a functional
verification methodology applied to a Bluetooth Baseband
adaptor core, described in SystemC RTL. Two techniques are
considered, one following the traditional framework of applying
random stimuli and checking functional coverage aspects; in the
second one, a simple acceleration procedure, based on redundant
stimuli filtering, is included. For both solutions, a hierarchical
approach is adopted. We present several results comparing both
solutions, showing the gain obtained in using the acceleration
technique. Additionally, we show how results on a real testbench
application environment correlate to the hierarchical verification
approach taken.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids
– optimization, simulation, verification

General Terms
Design, Reliability, Experimentation, Verification.

Keywords
Coverage Analysis, Functional Verification, Hierarchical
Verification, Optimization, Verification Strategy.

1. INTRODUCTION
The continuous improvement on the design methodologies and
processes has made possible the creation of huge and very
complex digital systems, with a diversity of components and sub-
systems involved, spurring the facets of the known design
productivity challenge [1]. One of the critical aspects in a
complex system development is the assurance of design quality,
which has a direct impact of in its success. One of the most
crucial activities in the design flow is the design verification, the
certification on the correctness of a circuit in respect to its
specification, i.e., its intended behavior. In the context of
Intellectual Property (IP) cores design, the verification is a key
element for their success in being reused [2].

Design verification has been accomplished following two
principal techniques known as formal and functional verification
[2]. The functional verification, also known as simulation-based
type, plays a major role in the current industrial practice.
Functional verification is carried out by implementations of
testbench models as the one shown in Figure 1, where results of
simulating a design under verification (DUV) description are
compared against the results of simulating a higher level reference
model, also known as golden model. This traditional test
framework makes simulation-based verification easy to manage,
but system designers have reported it as the most resource and
time consuming phase of the design flow. The reason is the
generalized adoption of random stimulation as a mandatory
approach in verification; in these cases, reaching high levels of
confidence in automatic testbenches requires the execution large
number of testcases until some coverage criteria is complied.

Considering the importance of the functional verification and its
weight in the design flows, there is a need for the development of
new strategies that make possible to ease and accelerate this
phase. One alternative in this direction is the coverage analysis
technique, as reported by Rosenberg[3], where the testbench
execution speedup is achieved by the identification of the less
stimulated coverage aspects and, then, indicating the manner of
changing the stimuli generation pattern. Since determining the
correlation between applied stimuli and coverage aspects is not a
trivial task, techniques natural from the artificial intelligence area

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

327

mailto:eromero@lme.usp.br
mailto:strum@lme.usp.br
mailto:jcwang@lme.usp.br

have been proposed to automate this analysis. Techniques based
on genetic algorithms [4], Bayesian networks and Data Mining [5]
have showed to reduce the stimuli application time, but needed an
extensive and complex work by the verification engineer on
tuning the acceleration algorithms to the specific design.

In the present paper, we propose a simple method, based on
redundant stimuli filtering. It allows reducing execution time of
testbenches with random stimuli, without resorting to complex
algorithms. This filtering technique is based on avoiding
unnecessary RTL simulation whenever a testcase generated by a
stimuli source is known to be redundant.

We compared the proposed filtering method to the traditional
verification framework[6] of Figure 1, by developing and
executing testbenches on a complex design, a Bluetooth Baseband
layer adaptor core, described in SystemC RTL. We opted for
performing the functional verification on a network
communication core in order to cover an application area with
little verification results reported. For years, basically
experiments on verification of general purpose processor had been
published[4][7]; presently, the activities in other application areas
has been also reported, but being only a few related to
communication systems [8,9].

Besides focusing on the acceleration of the verification
methodology of a Bluetooth Baseband adaptor core, a hierarchical
approach is explored to increase the efficiency of the functional
verification task. We present results on a verification process
running large number of testcases, showing the advantages for
easing of the bug finding and managing the circuit complexity.
Regarding the quantitative analysis on the advantages of the
proposed acceleration technique, numbers on coverage by
execution time are obtained for all modules in the Bluetooth
adaptor hierarchy, with time saving up to 66%.

The subsequent sections are organized as follows: in the section 2,
we present the functional verification methodology used here,
with the two testbench techniques to be compared; in section 3,
the Bluetooth adaptor core and its hierarchical composition is
presented; in section 4, the verification strategy for the Bluetooth
adaptor is presented, along with the results and discussion. Then,
in section 5, we present our conclusions.

2. FUNCTIONAL VERIFICATION

2.1 Basic Functional Verification Model
In this section, we introduce some basic concepts on functional
verification; more detailed description can be obtained in specific
literature about this subject, as in [2]. The functional verification
is based on the idea that some specification implemented at two

different levels of abstraction may have its behaviors compared
automatically by a tool called testbench.

The testbench architecture used in this paper follows the model
presented in the Figure 1, characterized for modularity and
reusability of its components. The testbench model comprises all
the elements required to stimulate and check the proper operation
of the Design Under Verification (DUV); in the context of this
work, the DUV is a RTL description. The stimuli source, in
general based on aid tools, applies pseudo-random generated
testcases to both the DUV and the Reference Model, also known
as Golden Model, a module with behavioral description at higher
level of abstraction. The Driver and Monitor are blocks aimed to
convert transaction level data to RTL signals and vice-versa.
Finally, in the Checker, outputs from the simulation performed on
both the Reference Model and RTL modules are compared and
figures on coverage are computed and presented.

Being the functional verification an application dependent task,
the designer must plan carefully aspects as the coverage model
and the stimuli source. The stimuli can be classified in the
following categories: directed cases, whose responses are
previously known (e.g. compliance test); real cases dealing with
expected stimuli for the system under normal conditions of
operation; corner cases, aimed to put the system on additional
stress (e.g.. boundary conditions, design discontinuities, etc.); and
random stimuli, determined by using probability functions.

The coverage is an aspect that represents the completeness of the
simulation, being particularly important when random stimuli are
applied. Coverage may be of different types as, for instance, code,
structural, functional, etc.[10], depending on which different
system characteristics are to be included. Functional coverage is
usually considered the most relevant type because it represents
directly the objectives of the verification process. However, since
it is infeasible to explore all the functionality of a complex circuit
through simulation, there is not a firm definition for the
verification community on what amount of simulation on a
testbench may correspond to an acceptable coverage. Sometimes
the coverage is limited by project deadlines.

Knowing which metrics should be included as coverage measure
is dependent on the verification engineer expertise. To deal with
the complexity of the problem, some generic steps may be
followed, in an approach known as item functional coverage.
First, a judicious selection must be made on a set of parameters
associated to input and output data, for instance, the size of
packets, words with specific meaning, as keys, passwords, etc.
Then, for every selected parameter, the designer must form
groups defined by ranges of values it may assume, following a
distribution considered relevant. The 100% coverage level is
established by a sufficient amount of items per group, i.e.,
testcases, whose corresponding applied stimuli and observed
responses match the parameter group characteristics. The larger
the number of items is considered, the stronger the functional
verification process will be.

2.2 Coverage Analysis
Even though there is no standard method to perform the
functional verification and every tool provider establishes its own
approach, some main activities may be considered in the
verification process. Hekmatpour[11] suggests that the functional

Stimuli
Source

Reference Model

Monit or DUV

Testbench

Checker

Driver

Figure 1. Basic testbench model

328

verification should be carried out by following several phases as
planning, reference model implementation, coverage analysis,
among others. The coverage analysis, to be done after or during
the testbench application, is an important phase for certifying the
testbench robustness. After the testbench application, in case of
evidence of coverage holes, the stimuli generation should be
redirected and the verification should restart until no missing
coverage aspects are found.

Coverage analysis activities may be done during the testing in
order to speed up the coverage fulfillment. It is known that, under
random stimuli, the coverage evolution, in terms of time, presents
a fast growth in the initial phase of the testbench application,
followed by a saturation tendency when higher levels of coverage
are reached, due to increased occurrence of redundant stimuli. In
this context, redundant stimulus is defined as a pattern that does
not represent any increment to the defined coverage; for the case
of item functional coverage, it is part of parameter groups, which
have already reached 100% coverage

The functional coverage saturation effect has motivated, in recent
years, researches on using the information on functional coverage
status to adjust the stimuli generation, in techniques known as
“closed-loop testbenches” or “reactive testbenches”. The
establishment of the relationship between the reached coverage
and the stimuli generation for a DUV is a complex task, requiring
the application of techniques natural of the artificial intelligence
area, such as genetic algorithms [4], data mining and Bayesian
networks [7]. Although these approaches have had excellent
reported results regarding the testbench execution time, they also
have showed to require an extensive work to be implemented and
set up.

2.3 Stimuli Filtering Technique
In order to reduce the testbench execution time, under random
stimuli, without resorting to complex methodologies, we
developed a simple closed-loop technique based on stimuli
filtering. This technique is based on the observation that
simulating the Reference Model is much faster than performing it
on the RTL model of the DUV. The long RTL simulation may be
avoided if it is known that redundant testcases were generated by
stimuli source. This is accomplished as follows: first the reference
model is executed and, then, by analyzing the results, it is verified
if the coverage parameter groups associated to each testcase have
already reached to the assigned total number of items. If the
testcase is not a redundant one, the DUV is simulated.

The implementation of this idea consisted in modifying the basic
testbench model to the one presented in the Figure 2. Other than
the inclusion of the filtering block, the only change needed on the
original testbench model is the implementation of an early
checking of the reached functional coverage.

In the new model, the stimuli are applied to the Reference Model,
whose outputs are analyzed by the Checker. The latter block
sends the information about testcase´s redundancy back to the
Filter, which, then, is responsible for blocking or allowing the
RTL simulation. Actually, the fast Reference Model simulation
and the slow RTL simulation are done serially. This method is
very simple if compared to other closed-loop testbenches since
there is no need to model the usually complex relationship
between the coverage characteristics and the stimuli generation
(source).

3. BASEBAND LAYER ADAPTOR

3.1 The Bluetooth Standard (version 1.1)
Bluetooth is an established standard for short distance wireless
communications developed by the Bluetooth Special Interest
Group[12]. The Bluetooth Stack, shown in Figure 3, comprises
the protocol layers from the high level SDP and RFCOM to the
low level radio frequency. The Bluetooth standard operates at 2.4
GHz in the ISM band (Industrial Scientific Medicine) and uses the
GSFK modulation (Gaussian Frequency Shift Keying). The data
transmitted has a symbol rate of 1 Ms/s. The FHSS (Frequency
Hopping Spread Spectrum) technique is used to reduce the effect
of radio frequency interferences on transmission quality.

The Bluetooth devices sharing the same channel form a network
called piconet, where only one of them acts as master while the
rest act as slaves, up to maximum of seven. The channel
represents a pseudo-random hopping of RF frequencies, being the
sequence determined by the Bluetooth device address of the
master. The Bluetooth protocol establishes a packet with a 72 bit
access code, which identifies the Bluetooth receiver unit of the
packet, a 54 bit header carrying information about the packet and
the payload (variable number of bits), which are information for
the upper layers.

3.2 The Bluetooth core implementation
The Bluetooth core described with SystemC® 2.0.1. at RTL level
implements all the Baseband functionality required to establish
Asynchronous Connection-Less (ACL) links. The core scheme is
presented in Figure 4; there can be observed how the modules are

 RFCOM SDP A
U
D
I
O

 L2CAP

 LMP

 BASEBAND

 RADIO

Figure 3. Bluetooth stack

Testbench

Filter

Reference Model

Stimuli
Source

Monitor DUV Driver
Checker

Figure 2. Filtering testbench model

329

organized in a hierarchical manner according its functional
affinity.

Each module communicates directly with modules of the same
level and with the module that contains it. The inner level of the
hierarchy (less global) corresponds to the bit processing modules.
The CRC module detects the presence of errors in the payload
bits, the FEC module corrects errors in the payload bits, the
FHEC module realizes the error detection and correction in
header bits, the CIPHER module encrypts the payload bits and the
WHITE module reduces the DC bias of the whole packet.

At the stream level, the bit level modules are used in the
STREAMPROC module to compose and decompose packet
streams, the CORR module identifies the packets directed to the
Bluetooth unit from all of those that come through the RF channel
and send the access code to the other units and the BTCLOCK
module set the clock references required to synchronize the
Bluetooth unit according to the connection temporization.

In the next level, the PACKETPROC module together with
CORR and BTCLOCK modules insert the streams in to the
Bluetooth timing requirements. Finally, the top level includes: the
PACKETBUFFER which, stores the information required to the
operation of the stream and bit processes, the SRAM that acts as
the configuration memory of the core and the ACCESSCTL
which deals with the interfacing with both the LEON2 processor
and the radio driver RADIOCTL. In the present work, the core
was designed to communicate with a LEON2 processor through
an AMBA™ APB interface and to a radio controller for the
Bluetooth transceiver Phillips™ BGB101.

4. THE ADAPTOR VERIFICATION

4.1 The Verification strategy
In order to deal with the complexity of the whole verification
process, the strategy was planned to match the Bluetooth adaptor
features. Therefore, two aspects were considered for the
functional verification: firstly, the development of different
testbenches focused on the most relevant characteristics of the
Bluetooth adaptor modules, such as the bit processing operations,
the stream handling, the packet handling and the interfacing
procedures; secondly, the testbenches application followed the
hierarchical structure of adaptor implementation in a bottom-up
way. Once less global (more local) modules have been debugged
and the functionally classified as correct, the verification
proceeded to more global modules.

Although the main source of applied stimuli was random, we have
also considered compliance test stimuli, found on the Bluetooth
specification, and real cases stimuli; however, the latter ones were
only applied for the CRC and FEC verification. The random
sources were strongly considered because they allow the fast
creation of large number of stimuli, what is desirable for
exploring of the huge number of possible combinations of the
Bluetooth adaptor functionality.

BASEHW

SRAM ACCESSCTR PACKETBUFFER

PACKETPROC

STREAMPROC
CORR

The coverage approach followed in this work was the item
functional coverage, as described in Section 2.1. As examples of
input coverage parameters for the CRC module, we may have the
packet size or the CRC initialization value, and, of output
coverage parameter, the parity bits.

CRC FEC CIPHER
WHITE BTCLOCKFHEC

RADIOCTR
Based on the above strategy, the verification was performed in
two different batches with different objectives: 1) to compare the
basic testbench and the filtering testbench models presented in
Section 2; 2) to analyze the benefits of hierarchical verification
for managing complexity, by applying testbenches with very large
number of stimuli.

Figure 4. Bluetooth Baseband core

4.2 Results on Comparing Verification
Models
In order to compare the testbench model proposed for redundant
stimuli filtering (closed loop) against the basic one (open loop),
random stimuli based verification was performed on all RTL
modules and sub-modules of the Bluetooth adaptor. Full coverage
(100%) per group in each chosen parameter was set to a relatively
medium number, 10,000 items, only for the purpose of this study.
Results on a real testbench application environment, what took
longer times, will be given in the next section.

Table 1 shows a summary of the numbers we obtained in
simulating all modules under both testbench models, considering
100% coverage. Column 1 lists the tested DUVs; column 2 shows
the total number of stimuli generated by the stimuli source in both
models, while column 3 presents the number of redundant stimuli,
which were filtered out with the acceleration method. In column
4, we have the total number of items to be applied (input
parameters) and observed (output parameters) in order to reach
the established 100% coverage. The last 3 columns present data
on execution time. Column 5 and 6 indicate the time consumed by
the testbench application under the basic and filtering models,
respectively. The last column shows the relative gains in
execution time. The time measures presented in Table 1 were
taken running both models on a PC with a Pentium IV HT
processor and with 1GB of DRAM memory.

From the last column in Table 1, we can see a strong relationship
between the relative time gain and the ratio of the amount of
blocked redundant stimuli in respect to the total number of
generated stimuli. However, this relationship is discrepant in a
few cases -StreamProc (interpret), Corr (correlate) and BaseHw-
because the time gain by the filtering testbench model actually
depends on the relative weight of the avoided unnecessary RTL
simulation time compared to the execution times of the stimuli
generation and of the reference model. The discrepant tendency is
presented strongly when the reference model is complex,
StreamProc (interpret) and BaseHw, or when the DUV operation
is simple, Corr (correlate).

330

Table 1. Verification with basic and filtering testbench
models, under random stimulation (10,000 items coverage)

Design under
Verification

Total #
Stimuli

Total #
Redund.
Stimuli

100%
Cov.

(Items)
Time1 (s) Time2 (s)

Time
Gain
(%)

CRC (cod) 237,282 142,988 170,000 2,295.33 1,015.94 55

CRC (decod) 212,055 117,210 170,000 4,708.78 2,116.47 55

FEC (cod) 107,403 18,045 160,000 56.92 50.53 11

FEC (decod) 106,576 17,143 160,000 72.46 52.99 26

FHEC (cod) 267,562 173,558 250,000 247.79 101.08 59

FHEC
(decod) 81,792 1,793 160,000 44.47 43.28 3

White 387,567 255,141 220,000 2,119.50 723.09 66

Cipher 171,466 82,001 500,000 10,486.64 5,648.57 46

StreamProc
(compose) 75,971 12,378 300,000 19,951.62 17,733.48 11

StreamProc
(interpret) 124,984 55,870 300,000 37,021.93 24,302.70 34

Corr
(correlate) 53,612 10,864 200,000 5,941.51 4,914.27 17

Corr (send) 40,497 223 120,000 130.79 129.24 1

PacketProc 116,105 41,280 340,000 98,625.76 69,432.49 30

BaseHw 117,998 43,210 340,000 186,882.31 131,953.00 29

A second interesting observation from Table 1 is that there are
cases where the gain is close to 50-60%, other ones about 25%
and, finally, some below 10%, meaning there are relatively more
redundant stimuli in some cases than others. This can be better
understood with the help of figure 5, showing curves on number
of redundant stimuli by (normalized) time, up to 100% coverage.
It makes evident that there has been less redundant stimuli during
the test of BaseHw module than during the verification of the
CRC module. This fact is closely related to the amount of
processing and data transformations involved, which are reflected
to the modules output ports. Whenever the output data are highly
correlated to the input data, the relative gain is smaller. This can
be confirmed in cases like CRC, FHEC, White and Cipher, where
the amount of processing is high. Another related issue is that the
coverage parameters considered for a more local module will be
left aside in the testbench development of a more global module
which uses the first one. When disconsidering those parameters
for more global modules, these ones tend to present simpler
coverage aspects, less redundant stimuli and lower gains, as it is
the case of modules at the bottom of the Table 1.

The base for the filtering method is the elimination of
unnecessary RTL simulation cycles, due to redundant stimuli. The
RTL simulation applied to the DUV is the most time consuming
task in the testbench application, so its weight has led us to some
other observations. As expected, more complex modules,
particularly the global ones, present longer simulations. As an
example from Table 1, the number of stimuli applied to the CRC
modules was higher than the total number applied to the BaseHw

module, although the execution time for the last one was two
orders higher. Another related aspect is the importance of
considering RTL simulation time in absolute values. Although
there may have a relative time gain reduction for more global
modules, as shown in Table 1, the absolute time gain in those
cases is very significant. While for more local modules the RTL
simulation time has taken about minutes, for more global
modules, the simulation has taken hours. These numbers turn to
be more critical considering that, in real testbench application
environments, the number of items are much higher - in next
section, we show testbenches with 100% coverage set as 100,000
items for each parameter group. Therefore, the absolute gain may
be days and weeks in real test environments.

0

2000

4000

6000

8000

10000

12000

14000

16000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Normalized time

N
um

be
r

of
 r

ed
un

da
t s

tim
ul

i

CRC BaseHW

Figure 5. Redundancy comparison CRC and BaseHW

Regarding the implementation time for the closed loop testbench,
the first filtering module (the CRC module) took about one day to
be developed and coded. Once this module was implemented, it
took about half day for each additional module. This extra time is
very small if compared to the time required to the development of
each module under the basic open loop model. The inclusion of
automation and design aids like templates may make this task
even faster.

4.3 Results on Testbench Application
In this section, we present the results of functional verification
with the basic testbench model, applied to the Bluetooth adaptor
modules, following a bottom-up hierarchical approach. The
verification was performed with stringent coverage restrictions:
under the random stimuli application, the 100% coverage was set
as 100,000 items for every parameter group. The results are listed
in Table 2: column 1 lists the DUVs, column 2 shows the number
of random stimuli applied, column 3 shows the number of found
errors and, finally, in column 4, the time required for the
development and execution of the testbenches is presented. For
presentation purposes, only the cases with design errors detected
are listed. It is important to notice that the small number of
detected design errors is due to the fact before the execution of
this random stimuli testbench, cases with compliance test and real
cases stimuli had already been run.

331

Table 2. Verification results with basic testbench model,
under random stimulation (100,000 items coverage)

Module # Stimuli #Errors Time (weeks)

FEC (code and decode) 2,305,455 1 2

StreamProc (compose
and interpret) 1,161,392 4 4

Corr (correlate and send) 538,133 1 2

PacketProc 797,458 4 6

BaseHw 797,458 2 6

TOTAL 5,599,896 12 22

The increasing complexity and execution time for more global
modules makes evident the relevance of the hierarchical
verification approach as a form to fight the complexity. Let us
consider that finding and correcting one design error, as in the
FEC, took 2 weeks for developing testbenches and applying
2,305,455 stimuli; then, in order to find/correct the same design
error using the whole adaptor as DUV, it would take a much
bigger effort. As result, this strategy allowed speeding up the
verification process, with errors detected in a faster and more
accurate manner. The hierarchical approach also shows benefits
on the coverage analysis aspect- as cited in previous section, the
coverage parameters considered for a more local module will,
eventually, be left aside in the testbench development of a more
global module which uses the first one. It means less stimuli to be
applied to the more global RTL module, reducing the time
consumed by testbenches application and RTL simulation. None
of the errors found during the any module verification occurred in
the previously verified modules or had influence from them. This
shows that the progressive scheme allows the designer to gain
confidence on the behavior of the core as the verification evolves
and, also, opens the possibility of reusing the inner modules for
future implementations of cores.

5. CONCLUSIONS AND FUTURE WORK
The present work shows the importance of the conception of the
functional verification strategy in the success of the verification
process. From the coverage point of view, random stimulation it is
a big source of redundant cases, i.e., stimuli that do not increase
coverage. Consequently, the effective and appropriate use of
random stimulation requires using techniques to modify the
generation patterns according to the desired coverage. Techniques
such as stimuli filtering, presented in this paper, show that
important time saving can be achieved even without much
computational expense or development effort.

We have presented several results of a verification plan applied to
a Bluetooth Baseband adaptor core, comparing the coverage
evolution under two testbench models and also reporting results in
found design errors. The results have showed us that techniques to
increase functional verification efficiency must consider the
functional and implementation characteristics of the design, as the
hierarchical structure.

As future work, the acceleration method presented in this paper
should be compared to other closed loop methodologies. One may
also develop verification tools as automatic verification modules
generation in a template based fashion.

6. ACKNOWLEDGMENTS
This work has been supported by the Ministry of Science and
Technology, through the CNPq agency, from Brazil.

7. REFERENCES
[1] Silicon Industry Association, Silicon Technology Roadmap

for Semiconductors, 2001.
[2] J Bergeron, Writing Testbenches: Functional Verification of

HDL Model. 2nd ed, Kluwer Academic Publishers, Boston,
2003.

[3] S. Rosenberg, Combined Coverage Verification Speeds
Verification. EEdesign, 2003.

[4] M. Bose, J.Shin, and E. Rudnick, A Genetic Approach to
Automatic Bias Generation for Biased Random Instruction
Generation. Evolutionary Congress Proc on, pp 442- 448,
2001.

[5] M. Braun, W. Rosenstiel, and K. Schubert, Comparison of
Bayesian Networks and Data Mining for Coverage Directed
Verification. High Level Design Verification and Test
Workshop, pp 91-95, 2003.

[6] K. da Silva, E. Melcher, G. Araújo, “Automatic Testbench
Generation Tool for a SystemC Functional Verification
Methodology”, Proceedings of the SBCCI2004, 17th
Symposium on Integrated Circuits and Systems Design, pp
66 –70, 2004.

[7] Z.Gu, Z. Yu, and Q.Zhang, Functional Verification
Methodology of a 32-bit RISC Microprocessor. IEEE
international conference on circuits and systems, pp 1454 –
1457, 2002.

[8] Y. Mathns, and A. Châtelain, Verification Strategy for
Integration 3G Baseband SoC. Design and Automation
Conference, IEEE, Chicago, pp 7-10, 2003.

[9] V. Fernandez, L. Berrojo, and A. Jalon, Design, Functional
Verification and Test of a MPEG2-TS Multiplexer for an On-
Board Satellite Processor. Proceedings of the XVII
Conference on Design of Circuits and Integrated Systems
(DCIS2002). 2002.

[10] S. Tasiran, K. Keutzer. Coverage Metrics for Functional
Validation of Hardware Designs. IEEE Design and Test of
Computers, vol 18, pp 36 – 45, 2001.

[11] A. Hekmatmpour, and J. Coulter, Coverage-Directed
Management and Optimization of Random Functional
Verification. Proceedings International Test Conference, vol
1, pp 148 – 155, 2003.

[12] Bluetooth Specification, version 1.1 , 2001.
www.bluetooth.org (at March 2005).

332

http://www.bluetooth.org/

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

