
Improving Superword Level Parallelism Support in Modern
Compilers

Christian Tenllado†

tenllado@dacya.ucm.es
Luis Piñuel†

lpinuel@dacya.ucm.es
Manuel Prieto†

mpmatias@dacya.ucm.es

Francisco Tirado†

ptirado@dacya.ucm.es

†Dto. Arquitectura de
Computadores y Automática

Universidad Complutense
Avd. Complutense s/n, 28040

Madrid, Spain

F. Catthoor‡
catthoor@imec.be

‡Interuniversity
MicroElectronic Center (IMEC)

Kapeldreef 75, B-3001
Leuven, Belgium

ABSTRACT
Multimedia vector instruction sets are becoming ubiquitous
in most of the embedded systems used for multimedia, net-
working and communications. However, current compiler
technology do not allow for an efficient exploitation of the
inherent data parallelism available in many signal process-
ing and multimedia applications. In this paper, we have
explored the automatic vectorization of embedded applica-
tions. In particular, we have focused on algorithms in which
the same computations are applied over a set of signals that
are being processed simultaneously. Usually this set of sig-
nals is represented as a 2D array in which each row is an
input signal that has to be filtered in some way. A motivat-
ing example, inspired by VoIP processing, illustrates that
state-of-the-art vectorizing compilers inefficiently exploit the
data parallelism inherent to this kind of applications. One
of the main reasons behind this, is that they present inner
loops that carry all the dependencies and external loops with
strided memory accesses.

We propose a modification of the Superword Level Par-
allelism (SLP) compiler, proposed in [9], that tries to over-
come these problems. Experimental results show that our
approach clearly outperforms commercial compilers.

Categories and Subject Descriptors: D.3.4 Compilers:
Optimization

General Terms: Algorithms, Performance, Languages.

Keywords: Superword Level Parallelism, FIR, Automatic
Vectorization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

1. INTRODUCTION
Nowadays there is a clear trend towards extending the use

of short vector processing in modern architectures. Most of
the advanced embedded architectures used for multimedia,
networking or signal processing have already added SIMD
extensions to their instruction set architectures (ISA). For
instance, many Motorola (now Freescale) embedded sys-
tems provide AltiVec [4], the ARM11 incorporates its own
SIMD ISA [1] and the proposed IBM’s Cell [8] architec-
ture includes eight SIMD processing elements connected to
a PowerPC core. Despite this architectural trend, and even
though some current compilers can generate SIMD instruc-
tions, SIMD units are still most effectively exploited by using
SIMD data-types explicitly in the source code and restruc-
ture algorithms accordingly [5]. Therefore, compilers have
to evolve in order to efficiently exploit this parallelism.

The general idea to bridge this gap is to reuse the work
done during the 70’s and 80’s in the context of parallel
compilers for shared memory and vector supercomputers.
However, those methodologies need to evolve to match the
the capabilities of the new technology. Larsen et al. pro-
posed in [9] a novel approach to handle the short vector par-
allelism inherent to multimedia and scientific applications,
which can be considered a first step towards this goal. They
showed that the traditional loop parallelism, used in vec-
tor machines, can be considered a subset of their Superword
Level Parallelism (SLP) approach, which seems to be more
appropriate for short vector multimedia extensions.

These new SIMD capabilities help to face the increasing
demand on both the features and the performance of new
embedded systems for signal processing and multimedia.

We have focused on applications such as VoIP where usu-
ally, a single system has to give service to different commu-
nication channels, processing several signals simultaneously.
This often requires an efficient exploitation of their SIMD ca-
pabilities in order to satisfy real time constraints. However,
in application like this, inner loops carry all the data depen-
dencies and modern compilers inefficiently exploit SIMD.

In this paper we introduce a methodology that tries to
overcome some of these problems. We extend the SLP com-

303

piler [9], providing it with the capability to efficiently extract
the data parallelism available from a external loop, free of
dependencies. This technique permits, for some kind of sig-
nal and image processing algorithms, an efficient superword
construction from data stored in non-adjacent memory ad-
dresses.

For evaluation purposes we have used a a set of FIR filters
of different lengths. From a compiler perspective, this is not
one of the worst scenarios given that our target application
only exhibits input dependencies. However, even for this
relatively simple case, state-of-the-art vectorizing compilers
only achieve moderate speedups. Our methodology clearly
outperforms commercial compilers providing an additional
75% speedup on average.

The rest of the paper is organized as follows. Section 2
describes the algorithms that can potentially benefit form
the methodology introduced in this paper and illustrates
the problems faced by current compilers. In Section 3 we
give a brief overview of the original SLP compiler which will
be modified in Section 4. The performance of the resultant
methodology is evaluated in Section 5 and finally Section 6
summarizes the main conclusions of this work.

2. TARGET ALGORITHMS
In many communication, multimedia or signal processing

systems we find algorithms constituted by loop nests that
process a set of arrays. Often, inner loops iterate over ad-
jacent memory locations in these arrays, and they are po-
tential candidates for SIMD exploitation using multimedia
extensions. However, when these inner loops carry depen-
dencies, current compiling methodologies become inefficient,
and only achieve marginal performance benefits.

In this paper, we focus on algorithms where the main loop
nest can be split into two nest, denoted as inner nest (IN)
and outer nest (ON) respectively, which satisfy the following
conditions:

• All the dependencies are carried by the loops in IN. As
dependencies we consider flow, anti, output and input
dependencies.

• Loops in the IN iterate over the lowest dimension of
the arrays, while the innermost loop within ON scans
the highest dimension.

2.1 Formal Description
This kind of algorithms can formally be described by ex-

tending the definition of spatial locality given by Kandemir [6].

Definition 2.1. A given a loop nest of depth n exhibits
spatial locality in the k innermost loops, with respect to a
reference R (denoted by an n×m access matrix AR) to a m-
dimensional array if, for each vector ḡ defining the memory
layout,

ḡ ∈ Ker{ai}, i = n − k + 1, . . . , n

where ai is the row vector form of the i-th column of AR.

Based on this definition, our methodology targets algo-
rithms that present spatial locality in all the loops within
the IN.

2.2 Evaluation Kernel
For evaluation purposes we have chosen a system that has

to process several signals simultaneously. As part of this
processing each signal has to be filtered by a linear FIR. For

instance, each signal could have been sampled from a dif-
ferent channel, similar to a VoIP algorithm. Often, locality
constraints imposed by the following stages in the system
impose the samples of each signal to be stored in adjacent
memory locations. This is usually achieved by representing
the set of signals as a 2D array in which each row represents
a signal from a different channel (C/C++ arrays are stored
in row-major order).

The algorithm used to filter those signals is described in
Figure 1. This is a clear candidate for our methodology:

• Inner loops (j and k loops) scan different columns of
the same array row, whereas outer loops (just the i

loop in this example) scan different rows

• Data dependencies are only carried by the j an k loops

for(i=0;i<CHANNELS;i++)
{
 for (j=0; j<FILTER_LENGTH; j++)
 {
 aux = 0.0;

 for (k=FILTER_LENGTH-j-1; k<=FILTER_LENGTH-1; k++)
 aux = aux + input[i][1+j-FILTER_LENGTH+k]*filter[k];

 output[i][j] = aux;
 }

 for (j=FILTER_LENGTH; j<SAMPLES; j++)
 {
 aux = 0.0;

 for (k=0; k<FILTER_LENGTH; k++)
 aux = aux + input[i][1+j-FILTER_LENGTH+k]*filter[k];

 output[i][j] = aux;
 }
}

Figure 1: FIR filter bank applied on several signals
from different channels.

The inner loop in the example we have just described is
a reduction. This kind of algorithms can be vectorized by
modern compilers, as we will show bellow. However, ex-
tracting SIMD parallelism from this loop implies a signifi-
cant overhead due to alignment checking and loop peelings.
As an alternative, a conventional vector compiler would sug-
gest loop interchanging [13] to uncover the vector parallelism
among rows. However, this is not appropriate given that in-
terchanging causes memory access patterns with poor spa-
tial locality.

More recent techniques, as the SLP approach proposed by
Larsen et. al. [9], would unroll the inner loop and try to ex-
tract SLP from the basic block generated. The algorithm is
then vectorizable at the expense of including several packing
instructions that cannot be avoided due to the input depen-
dencies. Moreover, Larsen’s compiler cannot extract SLP
from the external loop since vectorization is only enabled if
packing candidates involve adjacent memory accesses.

Our methodology extends Larsen’s algorithm and man-
ages to process several signals in parallel by constructing
superwords that combine samples from the different chan-
nels.

3. SLP COMPILER OVERVIEW
The methodology proposed in this paper uses some ideas

extracted form the original SLP compiler proposed by Larsen
et.al. [9]. However, the basic stages in its core have been
modified in order to enhance the SLP extraction for the al-
gorithms under scope. In this Section we briefly describe
the original SLP compiler. It is convenient to remind some
definitions introduced in [9]:

304

Definition 3.2. A Pack is a n-tuple, 〈s1, s2, s3, · · · , sn〉,
where s1, s2, s3, · · · , sn are independent isomorphic state-
ments in a basic block.

Definition 3.3. A PackSet is a set of Packs.

Definition 3.4. A Pair is a Pack of size two, where the first
statement is considered the left statement, and the second
statement is considered the right element.

Definition 3.5. The SuperWord Size (sws), is the maxi-
mum number of data elements that can be packed in a short
vector register on the target platform.

The SLP compiler extracts parallelism from the innermost
basic block in a loop nest. To get a vectorizing compiler from
it, i.e. to transform the loop parallelism into SLP, it does
a pre-processing of each loop nest unrolling the innermost
loop by a factor equal to the sws. This unrolling constructs
a basic block with several consecutive instances of the same
statement. If vector parallelism could be extracted from the
original loop, it can now be extracted from the basic block.

The core of the SLP compiler is applied later on a three-
address representation of the code. It is subdivided into four
phases: Adjacent Memory Identication, PackSet Extension,
Combination and Scheduling, which are described bellow.

In the Adjacent Memory Identication stage, the basic block
is scanned searching for Pairs with adjacent memory refer-
ences, which are grouped together forming the initial Pack-

Set. The Pairs in it constitute a seed for the SIMD instruc-
tions obtained at the end of the process. Adjacency is deter-
mined using both alignment information and array analysis.
No Pairs are formed that cross alignment boundaries.

As intermediate step, statements can belong simultane-
ously to two Pairs as long as they occupy the left and right
positions in the two Pairs respectively. This allows the Com-

bination stage to easily merge groups into larger clusters. A
simple example of the process is described in Figure 2.

t2 = A[i][j+4];

t3 = A[i][j+5];

t6 = t2 + a;

t7 = t3 + b;

t4 = A[i][j+6];

t8 = t4 + c;

t2 = A[i][j+4];

t3 = A[i][j+5];

t6 = t2 + a;

t7 = t3 + b;

t3 = A[i][j+5];

t4 = A[i][j+6];

t8 = t4 + c;

t2 = A[i][j+4];

t3 = A[i][j+5];

t6 = t2 + a;

t7 = t3 + b;

t3 = A[i][j+5];

t4 = A[i][j+6];

t8 = t4 + c;

t7 = t3 + b;

t2 = A[i][j+4];

t3 = A[i][j+5];

t6 = t2 + a;

t7 = t3 + b;

t4 = A[i][j+6];

t8 = t4 + c;

a) Basic Block b) Adjacent Memory
Identification

c)PckSet Extension d) Combination

Figure 2: Simple example to illustrate the original
SLP methodology.

More Pairs are added to the PackSet in the next stage.
The compiler does it following the use-def and def-use chains
of the Pairs that are currently in the PackSet. In this way
the new members will consume superwords already formed
or will provide the ones needed for an existing Pair. In all
cases, alignment consistency is checked.

Once all the possible candidates have been discovered, the
combination stage is started. Here two Pairs are combined if
the right statement of the first Pair is the same than the left
statement of the other (Figure 2). The combined Pairs form

a Pack. This process continues till no further combination
is possible. The alignment consistency guaranties that the
Packs formed will never cross alignment boundaries and that
its size wont be larger than the sws.

Finally the PackSet contains Packs of statements that
have to be executed in parallel, using SIMD computations.
It could happen that executing two groups of statements
in parallel produces a dependency violation. A dependency
cycle among Packs indicates that the set of chosen groups is
invalid and at least one of the Packs has to be eliminated.

After Scheduling, every Pack in the PackSet corresponds
to a SIMD instruction plus some possible pack/unpack in-
structions that could be necessary. The interested reader
can refer to [9] for more details.

In our context, the weakest points of the SLP compiler
are the following:

• It cannot efficiently extract SLP when dependencies
are carried by the inner loop.

• The statement Packing is not steered. It could poten-
tially be enhanced if the Packing process is performed
according to some information extracted from data de-
pendence analysis.

• It does not consider the chance of combining super-
words to obtain new seeds for the Packing process.
The number of Packs finally created could be larger if
we take this into account.

Some of these points are covered in our methodology for
the kind of algorithms under scope.

4. METHODOLOGY DESCRIPTION
We propose some modifications to the SLP compiler aimed

to extract the vector parallelism from the external loop. The
methodology starts with some loop transformations which
expose the vector parallelism from the external loop as SLP
in the innermost basic block. Additionally we incorporate
some modifications into the Larsen’s compiler core that al-
low us for an efficient exploitation of this SLP. We show that
this strategy achieves dramatic speedups for these kind of
algorithms.

4.1 Initial Loop Transformations
The loop transformations here presented try to turn the

vector parallelism available in the external loop into poten-
tial SLP, which can be exploited by a compiler core focused
on basic blocks. In the following we use loop unrolling fac-
tors equal to the sws.

First we perform an unroll-and-jam on the deepest loop
in ON (Section 2). Our aim in applying this transformation
is to uncover the available vector parallelism that can be
exploited when different rows are processed concurrently.
This transformation is always possible as the loop does not
carry dependencies.

When possible, we perform an additional unroll-and-jam

transformation for every loop in IN but the innermost one.
It aims at increasing both the temporal locality and the
number of adjacent memory accesses in the innermost ba-
sic block. Dependencies has to be checked on each loop to
determine if it is available for this transformation.

Finally we unroll the innermost loop. Our aim in applying
this unrolling is to create adjacent memory accesses in the
innermost basic block.

305

Let us illustrate by way of example how this process works,
using as a case study the FIR algorithm introduced in Fig-
ure 1. For the sake of simplicity we suppose a sws of 2.

The first unroll-and-jam produces a basic block in the in-
nermost loop with accesses to elements from different rows
in the input array (see Figure 3). This transformation has
been added to extract the available SIMD parallelism using
our modified version of the SLP core. In our case example,
this parallelism comes from the processing of different sig-
nals (rows) simultaneously. In the next subsection we will
understand how this is possible.

The subsequent step is again an unroll-and-jam transfor-
mation but on the j-loop (see Figure 4), which augments the
basic block of the innermost loop with some statements that
perform adjacent memory accesses.

for(i=0;i<CHANNELS;i+=2)
{

 ...//First loop not shown

 for (j=FILTER_LENGTH; j<SAMPLES; j++)
 {
 aux_i0 = 0.0;
 aux_i1 = 0.0;

 for (k=0; k<FILTER_LENGTH; k++)
 {
 aux_i0 = aux0 + input[i][1+j-FILTER_LENGTH+k]*filter[k];
 aux_i1 = aux1 + input[i+1][1+j-FILTER_LENGTH+k]*filter[k];
 }

 output[i][j] = aux0_i0;
 output[i+1][j] = aux1_i1;

 }
}

Figure 3: Unroll-and-jam on the i-loop in Figure 1
(sws = 2).

for(i=0;i<CHANNELS;i+=2)
{

 ...//First loop not shown

 for (j=FILTER_LENGTH; j<SAMPLES; j+=2)
 {
 aux_i0_j0 = 0.0;
 aux_i1_j0 = 0.0;

 aux_i0_j1 = 0.0;
 aux_i1_j1 = 0.0;

 for (k=0; k<FILTER_LENGTH; k++)
 {
 aux_i0_j0 = aux0 + input[i][1+j-FILTER_LENGTH+k]*filter[k];
 aux_i1_j0 = aux1 + input[i+1][1+j-FILTER_LENGTH+k]*filter[k];

 aux_i0_j1 = aux0 + input[i][1+j+1-FILTER_LENGTH+k]*filter[k];
 aux_i1_j1 = aux1 + input[i+1][1+j+1-FILTER_LENGTH+k]*filter[k];
 }

 output[i][j] = aux0_i0_j0;
 output[i+1][j] = aux1_i1_j0;

 output[i][j+1] = aux0_i0_j1;
 output[i+1][j+1] = aux1_i1_j1;
 }
}

Figure 4: Unroll-and-jam on the j-loop in Figure 1
(sws = 2).

After applying these unroll-and-jams, the inner loop is
unrolled producing the code shown in Figure 5. This final
transformation adds only one new adjacent memory access.
The reason is that some of the elements of the input ma-
trix accessed by the new statements, are also accessed by
the statement instances obtained by the previous j-loop un-
rolling (marked as bold in Figure 5). This translates to an
improvement in temporal locality, which has been the main
motivation behind the traditional unroll-and-jam transfor-
mation. This enhancement has shown to be also very ef-
fective in a SLP context [11]. We should highlight that the
unroll-and-jam of the i-loop does not affect the temporal
locality as it does not carry dependencies. It generates ex-
tra isomorphic statements that perform memory accesses on
different rows of the arrays.

for(i=0;i<CHANNELS;i+=2)
{

 ...//First loop not shown

 for (j=FILTER_LENGTH; j<SAMPLES; j+=2)
 {
 aux_i0_j0 = 0.0;
 aux_i1_j0 = 0.0;

 aux_i0_j1 = 0.0;
 aux_i1_j1 = 0.0;

 for (k=0; k<FILTER_LENGTH; k++)
 {
 aux_i0_j0 = aux0 + input[i][1+j-FILTER_LENGTH+k]*filter[k];
 aux_i1_j0 = aux1 + input[i+1][1+j-FILTER_LENGTH+k]*filter[k];

 aux_i0_j1 = aux0 + input[i][2+j-FILTER_LENGTH+k]*filter[k];
 aux_i1_j1 = aux1 + input[i+1][2+j-FILTER_LENGTH+k]*filter[k];

 aux_i0_j0 = aux0 + input[i][2+j-FILTER_LENGTH+k]*filter[k+1];
 aux_i1_j0 = aux1 + input[i+1][2+j-FILTER_LENGTH+k]*filter[k+1];

 aux_i0_j1 = aux0 + input[i][3+j-FILTER_LENGTH+k]*filter[k+1];
 aux_i1_j1 = aux1 + input[i+1][3+j-FILTER_LENGTH+k]*filter[k+1];
 }

 output[i][j] = aux0_i0_j0;
 output[i+1][j] = aux1_i1_j0;

 output[i][j+1] = aux0_i0_j1;
 output[i+1][j+1] = aux1_i1_j1;
 }
}

Figure 5: Unrolling on the k-loop in Figure 1 (sws =
2).

After these additional loop transformations and some in-
termediate stages described in [9], the modified core of the
SLP compiler can be applied. To improve the SLP exploita-
tion, we should add to these intermediate steps the loop peel-
ing and dynamic alignment detection techniques described
in [10, 2, 7].

4.2 Modifications to the SLP
compiler core

As we have explained in the previous Section, one of the
keys to success of the SLP algorithm is its ability to seed an
initial PackSet with pairs of statements that imply accesses
to adjacent memory locations. This translates to a reduction
in the number of load instructions and enables the compiler
to find vector candidates that are already packed in memory.
This adjacent memory accesses can also be found in the
basic block generated by the process described in Figures 3,
4 and 5. Thus we do not modify the first phase.

However, we modify the original ordering performing the
combination stage just after the adjacent memory identifi-

cation. In this way, at the end of the combination phase
the compiler has a PackSet (P0) that only contains Packs

of statements that access adjacent memory locations. In the
code generation phase, each of these Packs can be translated
to a vector load. For the same reasons as in the original SLP
compiler algorithm, these Packs are guaranteed to be less
than or equal than the sws and will not cross alignment
boundaries.

As a result of the loop transformations performed, we have
in the basic block sets with sws equivalent Packs. These sets
contain statements that perform the same computations on
different rows of the arrays (Figure 6b). We will refer to a
set of these equivalent Packs as a Group.

Each Group can be seen as a sws × sws matrix. We in-
troduce a new Pack Transposition phase, in order to pack
together statements that operate on data elements from dif-
ferent rows. It consist in transposing each of the Groups

in the PackSet. The process is described in Figure 6 for
the final basic block in Figure 5. A new PackSet (P1) is
constructed from the transposition result (Figure 6c).

In the code generation phase, this Pack Transposition

translates to a set of shuffling operations that transform each

306

t2 = input[i][j+2];

t3 = input[i][j+3];

t5 = input[i+1][j+2];

t6 = input[i+1][j+3];

t2 = input[i][j+2];

t3 = input[i][j+3];

t5 = input[i+1][j+2];

t6 = input[i+1][j+3];

t2 = input[i][j+2];

t3 = input[i][j+3];

t5 = input[i+1][j+2];

t6 = input[i+1][j+3];

p1 = vec_load(&input[i][j+2]);

p2 = vec_load(&input[i+1][j+2]);

TRASPOSE_MACRO(p1,p2);

p1

p2

p1

p2

a) b)

c) d)

Figure 6: An example of the Pack Transposition

phase and the respective vector code generation for
the example in Figure 5 (sws = 2).

of the superwords processed by a Group in P0 to the cor-
responding superwords consumed by the new Packs in P1

(Figure 6d). As we will show, the shuffling overhead is by far
compensated by an increase in the number of short vector
instructions finally generated.

This process can be done in the context of the SLP com-
piler algorithm as multidimensional arrays are padded in
the lowest dimension, which guaranties constant alignment
among rows [9]. This new stage is an example of how the
packing of elements can be steered according to a depen-
dence analysis. Notice that this stage combines superwods
that were found in memory making new superwords, that
will be better consumed in the final SIMD algorithm. De-
pendencies gave us the information for this transformation.

Finally, the new PackSet (P1) is considered as seed for
the PackSet Extension phase of the original SLP compiler
algorithm, with one slight difference, the PackSet Extension

phase has to work on Packs not on Pairs of statements. No
modifications are done on the scheduling stage.

5. EXPERIMENTAL RESULTS
For evaluation purposes, our Pack Transposition SLP (PT-

SLP) methodology has been manually applied on the algo-
rithm shown in Figure 1. We have performed all the experi-
ments on a Intel Pentium processor (512KB L2 cache, 8K L1
data cache) running Linux. We have chosen this platform
given that it provides both a state-of-the-art short vector in-
struction set (Intel’s SSE/SSE2 [12]) and a state-of-the-art
commercial vector compiler (Intel C/C++ compiler version
8.1 [3]), which can also be used used as back-end for our
methodology.

In all cases, we have done the same experiments modifying
both the filter length and the array sizes. For the sake of
simplicity we have used square arrays.

We have used as a reference the speedups achieved by
a commercial compiler such as the Intel C/C++ compiler.
Figure 7 shows the speedups achieved over the original scalar
code introduced in Figure 1. As the Larsen’s SLP compiler,
it only extracts vector parallelism from the inner loop.

The theoretical maximum speedup is the sws, i.e. 4 in
our case. In absence of real data dependencies carried by the
innermost loop, the vector extraction from this loop becomes
effective for large filters (large number of iterations in the
loop).

Let us see which is the effect of applying instead our
methodology on the original scalar code. Figure 8 shows
impressive speedups. However, we are performing several
optimizations in addition to a better SLP exploitation as

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

230420481152102457651228825614412864

S
pe

ed
up

s

Matrix Size

Intel Compiler on original code

12 taps
15 taps
18 taps
23 taps
26 taps
29 taps
32 taps
36 taps
41 taps
55 taps
64 taps
80 taps

103 taps
120 taps

Figure 7: Speedups achieved by the automatic ve-
cotriozation of the Intel compiler over the original
scalar code.

lateral effect of applying our methodology. As in the refer-
ence case, performance is better for large filters.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2
 5.4

230420481152102457651228825614412864

S
pe

ed
up

s

Matrix Size

PT-SLP on original code

12 taps
15 taps
18 taps
23 taps
26 taps
29 taps
32 taps
36 taps
41 taps
55 taps
64 taps
80 taps

103 taps
120 taps

Figure 8: Speedups achieved by the Pack-
Transposition SLP (PT-SLP) over the original scalar
code.

We have analyzed step by step the methodology in order
to isolate the SLP performance improvements from the rest
of the optimizations. From this analysis we have concluded
that the unroll-and-jam transformation made on the exter-
nal loop provides important improvements on the execution
time of the program, which are summarized in Figure 9. As
can be noticed, the speedups are significant and for small
sizes they are even larger than those obtained by Intel’s
automatic vectorization. Furthermore, we should highlight
that these benefits are independent of the array size.

The effect of the additional SLP extraction enabled by
our methodology can be isolated if we take as baseline scalar
code a tuned version in which this unroll-and-jam transfor-
mation on the i-loop has already been performed. We repeat
the experiments using this new baseline code to analyze only
the benefits of the additional SLP extraction.

Results are shown in Figures 10 and 11 respectively. Whereas
the Intel compiler hardly achieves any improvements, Pack

Transposition is able to efficiently extract parallelism from
the external loop. The speedups are around 2 for a large
range of arrays and filter lengths, outperforming the Intel
compiler by 70% (on average).

One of the keys to success is that the technique loads
superwords already packed in memory and systematically
reorder them in the register file. The overhead introduced

307

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

230420481152102457651228825614412864

S
pe

ed
up

s

Matrix Size

Unroll and Jam effect

12 taps
15 taps
18 taps
23 taps
26 taps
29 taps
32 taps
36 taps
41 taps
55 taps
64 taps
80 taps

103 taps
120 taps

Figure 9: Speedup achieved by applying the unroll-

and-jam on the external loop.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

230420481152102457651228825614412864

S
pe

ed
up

s

Matrix Size

Intel Compiler on Unroll and Jam

12 taps
15 taps
18 taps
23 taps
26 taps
29 taps
32 taps
36 taps
41 taps
55 taps
64 taps
80 taps

103 taps
120 taps

Figure 10: Speedup achieved the automatic vector-
ization of the Intel compiler over a tuned scalar code
where an unroll-and-jam transformation applied on
the external loop.

by the extra shuffling operations is by far compensated by
the additional vector computations that can be generated
from the new superwords. Finally, we should remark that,
far from adversely affecting the performance for the scalar
versions, the loop transformations needed to convert vector
parallelism in the outer loop into potential SLP entail extra
benefits.

6. CONCLUSIONS
In this paper we have presented a novel methodology to

efficiently exploit short vector parallelism from the external
loop in loop nests that process 2D arrays. These algorithms
are extensively used in modern multimedia, networking or
signal processing embedded systems.

The methodology consists in a modification of the SLP
compiler presented in [9]. Some loop transformations are
used to construct a basic block adequate to the modified SLP
core. These transformations turn the vector parallelism of
the external loop into potential SLP. The core is instructed
to efficiently recombine groups of superwords into new su-
perwords that contain elements from different rows of the
array. Results show that the overhead introduced by this
systematic recombination is by far compensated by the ex-
tra SLP exploited.

The methodology has been evaluated on a set of FIR fil-
ters independently applied to several signals. In a future
work we plan to extend the evaluation to a larger set of
applications. Given that our long term goal is to develop

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

230420481152102457651228825614412864

S
pe

ed
up

s

Matrix Size

PT-SLP vs scalar Unroll and Jam

12 taps
15 taps
18 taps
23 taps
26 taps
29 taps
32 taps
36 taps
41 taps
55 taps
64 taps
80 taps

103 taps
120 taps

Figure 11: Speedups achieved by PT-SLP over a
tuned scalar code where an unroll-and-jam transfor-
mation has been applied to the external loop

platform independent tools, we also plan to evaluate our
methodology on different computing platforms in order to
analyze the impact of some architectural parameters and
model them accordingly. This study can also be extended
by the analysis of different kinds of algorithms that would
require other superword combinations.

7. ACKNOWLEDGMENTS
This work is supported by the Spanish Government Re-

search Contract TIC2002-750 and the HiPEAC European
Network of Excellence. Christian Tenllando was also sup-
ported by the Marie Curie Fellowship of the European Com-
munity. We also thank the anonymous reviewers of ISSS-
CODES’05 for their helpful comments.

8. REFERENCES
[1] Arm11 family. http://www.arm.com/

products/CPUs/families/ARM11Family.html.

[2] A. Bik, M. Girkar, P. Grey, and X. Tian. Efficient exploitation
of parallelism on pentium iii and pentium 4 processor-based
systems. Intel Technology Journal, 2001.

[3] I. Corpation. Intel c/c++ and intel fortran compilers for linux.
Available at http://www.intel.com/software/products/
compilers.

[4] S. Fuller. Motorola’s AltiVec technology. Technical Report
ALTIVECWP/D, MOTOROLA, 1998.

[5] H. P. Hofstee. Power efficient processor architecture and the
cell processor. In HPCA, pages 258–262, 2005.

[6] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and
J. Ramanujam. A linear algebra framework for automatic
determination of optimal data layouts. IEEE Transactions on

Parallel and Distributed Systems, 10(2):115–135, February
1999.

[7] A. Krall and S. Lelait. Compilation techniques for multimedia
processors. Int. Journal on Parallel Programing, 28(4), 2000.

[8] K. Krewell. Cell moves into the limelight. Microprocessor
Report, (2/14/05-01), February 2005.

[9] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. ACM SIGPLAN
Notices, 35(5):145–156, 2000.

[10] S. Larsen, E. Witchel, and S. Amarasinghe. Techniques for
increasing and detecting memory alignment. Technical Report
MIT-LCS-TM-621, MIT, USA, 2001.

[11] J. Shin, J. Chame, and M. W. Hall. Compiler-controlled
caching in superword register files for multimedia extension
architectures. In Int. Conf. on Parallel Architectures and

Compiler Techniques, pages 45–55, 2002.

[12] S. T. Thakkar and T. Huff. Internet streaming simd extensions.
Computer, 32(12):26–34, 1999.

[13] H. Zima and B. Chapman. Supercompilers for Parallel and

Vector Computers. Addison-Wesley, Massachusetts, USA, 1991.

308

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

