
Designing Real-Time H.264 Decoders with Dataflow
Architectures

Youngsoo Kim Suleyman Sair

Department of Electrical and Computer Engineering, NC State University

{ykim12,ssair}@ ece.ncsu.edu

ABSTRACT
High performance microprocessors are designed with general-
purpose applications in mind. When it comes to embedded
applications, these architectures typically perform control-
intensive tasks in a System-on-Chip (SoC) design. But they are
significantly inefficient for data-intensive tasks such as video
encoding/decoding. Although configurable processors fill this gap
by complementing the existing functional units with instruction
extensions, their performance lags behind the needs of real-time
embedded tasks. In this paper, we evaluate the performance
potential of a dataflow processor for H.264 video decoding. We
first profile the H.264 application to capture the amount of data
traffic among modules. We use this information to guide the
placement of H.264 modules in the WaveScalar dataflow
architecture. A simulated annealing based placement algorithm
produces the final placement aiming to optimize the
communication costs between the modules in the dataflow
architecture. In addition to outperforming contemporary
embedded and customized processors, our simulated annealing
guided design shows a speedup of 13% in execution time over the
original WaveScalar architecture. With our dataflow design
methodology, emerging embedded applications requiring several
GOPS to meet real-time constraints can be drafted within a
reasonable amount of design time.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Dataflow architectures

General Terms: Design, Performance

Keywords: Dataflow architecture, H.264, WaveScalar

1. INTRODUCTION
The specialized needs of embedded applications create

several problems when running on general-purpose processors.
Typically critical functions in embedded applications cannot be
accelerated due to a mismatch between the application and the
default instruction set architecture of the processor. As a result,
embedded applications take many cycles to execute on general-
purpose processors. Secondly, many embedded applications
cannot use general-purpose or DSP processors because such an
implementation is not feasible due to the high power consumption

and IP costs. Consequently, the advent of new video
encoding/decoding standards such as H.264 has created the need
for an ASIP (Application Specific Instruction Processor) solution
to accelerate bottleneck functions in order to meet real-time
requirements (e.g. 15 frames per second on low bit rate
communication lines).

Extending the instruction set can significantly accelerate the
overall performance, especially for data-dominated applications
that represent many of contemporary embedded handheld SoCs.
Moreover, automatic synthesis of configurable processor cores,
and the associated software tool chain - including retargetable
compilers and simulators, maximizes the applicability of
configurable processor cores. However, both in literature surveys
and our limit study of a typical configurable processor, we found
that instruction extension approaches provide speedups in the 30-
50% range, far short of the speedups needed to realize future
embedded applications with low-end embedded processors [1].

Several researchers have proposed to overcome these
problems. One approach is using coarse grain reconfigurable
processor architectures such as Morphosys [2] and ADRES
frameworks [3]. Another approach is the use of dataflow
architectures in order to decentralize the processor architecture.
One of the advantages of dataflow architectures is that they can be
used as an alternative to RTL design and be extremely
instrumental in reducing the turn around time of current design
methodologies. Because the specifications of these emerging
embedded applications such as MPEG4, H.263, H.263+, and
H.264 are constantly changing, implementation on a generic
fabric has many advantages in the long run. But very few research
efforts propose the design methodology for a realistic embedded
application on a dataflow substrate.

We present a design methodology to implement a real-time
H.264 video-decoding application on a dataflow processor in this
paper. First, we present a limit study of extending the ISA of a
configurable processor to examine the available processing power
for emerging embedded applications. Then, we discuss our design
methodology, which uses the data transfer matrix of the H.264
application to create a mapping of application modules to
computation units on the WaveScalar dataflow architecture [11].
Since H.264 is extremely data-dominated, we chose a dataflow
architecture to reduce the amount of data transfer between
modules of the application.

2. RELATED WORK
Many researchers have investigated using configurable

architectures and extending the basic instruction set to speedup
the execution of specific applications. In these designs, we
typically start out with a parameterized processor and its basic
instruction set. We then use an architectural description language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

291

to generate the datapaths or the functional units needed for the
extension instructions. To complement the new hardware, we
need to create the necessary software tools such as the compiler,
instruction set simulator (ISS), debugger and assembler. This
completes the design cycle. With the help of automatic tool chains,
designers can develop an application specific processor in a short
amount of time. Even though these tools can significantly shorten
one iteration of the design cycle, many iterations are needed to
find the extension candidates that result in sufficient acceleration
of the application [4]. One has to rely on simulation to find the
performance bottlenecks in the application so that they can be
mapped to extension instructions. This process typically involves
using very slow ISSs [5]. Moreover, the automatic synthesis of
functional units typically produces large register files because
most extended instructions are SIMD style instructions.

One technique for automatic extraction of the extended
instruction candidates is proposed in [6]. Unlike traditional two-
input, one-output matching, they identify Multiple Input, Single
Output (MISO) operations and cluster them into one custom
instruction. This can be effective for embedded applications that
have high computation needs (e.g. cryptography), but most data-
intensive programs have very little arithmetic code. As a result,
the arithmetic portion of the application is not a bottleneck in
program execution. Another instruction set extension approach is
the CCA (Configurable Compute Accelerator) [7]. In the CCA
approach, original application is profiled to find the most
frequently executing traces. Using these traces, candidate
subgraphs for extension instructions are discovered. Next the
compiler generates a binary that takes advantage of these CCA
instructions. The CCA hardware is a grid of ALUs with multiple
copies of different functional units. Although CCA aims to reduce
the hardware design and verification time for different
applications, modern design automation tools for configurable
processors are fairly successful and widely used in industry
[8][9][10]. Because most configurable processors are designed in
a parameterized manner, the automatic synthesis of whole
processor including the customized functional units takes a
relatively short time to complete [9].

Meanwhile, commercial extensible processors have long
been available in the industry. Tensilica announced their Xtensa V
processor, which is based on a 32-bit RISC processor architecture
in 2002[9]. They extended the instruction set with user-defined
instructions. From the TIE (Tensilica Instruction Extension)
description of new instructions, a new datapath or functional unit
is added to the processor and a new integrated development
environment that supports the new instruction is generated.

In addition to instruction set extension approaches, many
coarse grain reconfigurable architectures have been proposed.
Morphosys has a tinyRISC processor and a reconfigurable ALU
matrix to extend the functional units [2]. The ADRES framework
tightly couples a reconfigurable ALU matrix with a VLIW
processor. The data kernel is executed on the reconfigurable FUs
and the rest of the code is executed on the VLIW processor [3].
While ADRES aims to improve the non-kernel code execution by
adopting a VLIW processor instead of a RISC processor, it is not
clear how much the whole application can benefit from speeding
up the control intensive part of the code. Moreover, neither
technique investigates intelligent mapping strategies to reduce the
communication overhead between the host processor and the
reconfigurable matrices.

 Recently, the WaveScalar dataflow architecture was
proposed [11]. WaveScalar has a dataflow instruction set such that
each instruction executes in place in the memory system and
explicitly communicates with its dependents in dataflow fashion.
WaveScalar architectures cache instructions and the values they
operate on in a WaveCache, a simple grid of “ALU-in-cache”
nodes. By co-locating computation and data in physical space, the
WaveCache minimizes long wire, high-latency communication.
For an efficient implementation of the H.264 video decoding
standard, WaveScalar was selected as a substrate because it is
capable of significantly reducing the amount of data transfer in
H.264. In addition, due to the highly distributed nature of the
application, WaveScalar provides a good model to speedup most
of the performance bottlenecks.

3. H.264 STANDARD
Before discussing the configurable processor and dataflow

implementations of H.264, let us briefly summarize the standard.
H.264 is the video encoding/decoding standard that is replacing
the current MPEG4 video standard [12]. The new standard
provides both enhanced compression efficiency over existing
video coding standards and a network friendly video
representation. In its video coding layer, some of the important
enhancements include the use of a small block-size, exact match
transform, adaptive in-loop deblocking filter and motion
prediction capabilities. A detailed block diagram of the H.264
decoder is presented in Fig. 1. After receiving the data from NAL
(Network Adaptation Layer), the data is processed by the entropy
decoder. Next, the IT/IQ (Integer transform/Inverse quantization)
block is used to generate the reference frame data which will be
added to the reference frame image or intra-predicted image based
on its header information. Then, the original image in
reconstructed through the deblocking filter. The H.264 baseline
profile used in this project is a simple implementation that
supports intra and inter-coding, as well as entropy coding with
context-adaptive variable-length coding. The reference C source
code is built by pruning the TML reference model. Extra
functionality beyond the selected H.264 profile was removed from
C code. Therefore, the C model that we use has been optimized at
the source code level.

Fig. 1. H.264 Decoder

There are several on-going research efforts analyzing the
complexity of H.264 video decoding. The complexity of the
algorithm directly affects the cost-effectiveness of an H.264
implementation and hence the final success of the standard. The
published results show that H.264 standard aims at improving the
compression efficiency up to 50% compared to existing standards.
However, the encoder complexity increases by a factor of 2 when
compared to MPEG4 and with a factor of three for the decoder
[13]. Finally, it is impossible to realize the decoder completely in
software on an embedded processor at this time. This is the reason
the H.264 application is selected as a target of our design

292

methodology. The H.264 is the most complex algorithm in video
decoding area. Unlike other areas such as cryptography, the
embedded video coding application must be run at real-time speed.
Therefore, it would be ideal if we can achieve sufficient
acceleration of the at a moderate hardware cost [14]. On the other
hand, this kind of applications is also unsuitable for a hardware
only implementation because the standards are always evolving
and changing.

4. CONFIGURABLE PROCESSOR LIMIT
STUDY
In this section, we present a limit study on the performance

potential of a typical configurable processor. The goal of this
study is to get a good grasp of the processing power of current
configurable processors when we add new instructions to the ISA.
In Section 5, a currently available embedded processor (an
ARM9) will be compared to this configurable processor and our
dataflow architecture in their ability to meet the real-time
requirements for H.264.

We configure the H.264 reference code to process 15 frames
of video data per second. We then profile the application with the
GNU gprof toolset. Next, we analyze the longest executing
functions in the profile to determine which instructions to
accelerate. The final step involves rewriting the application binary
where we use inline assembly to insert the mnemonics for the
newly defined instructions.

As is common in configurable processor research [15][16],
we simulated the original and the rewritten binaries in the
SimpleScalar ARM simulator [18]. We modified SimpleScalar
instruction definition files to correctly recognize and simulate new
instructions on the new functional units.

The profiling results of the decoder reference software are
presented in Fig. 2. As expected, MC (Motion Compensation)
block is the most performance demanding part of the decoder.

Fig. 2. H.264 decoder gprof profiling results

In addition to global profiling, we also profile MC, ITIQ,
ENTDEC blocks separately. The profiling results for the MC
block are presented in Fig. 3. After removing GNU gprof
instrumentation functions (e.g. internal_mcount, _mcount), along
with the driver functions and the stubs needed for simulating
image input (e.g. HEXCHAR2DEC, main, get_block,
ReadData_HEX), MC_MAIN and get_SW_BUFF remain as the
main bottlenecks. MC_MAIN performs the difference calculation
of nearby images and get_SW_BUFF reads in the motion block
for processing.

Fig. 3. MC block profile

Based on profiling results, new instructions are created for
reducing the execution time spent in MC_MAIN and
get_SW_BUFF functions. In general, a new instruction falls into
one of the following categories:

- SIMD instruction – The instruction performs the same
operation on multiple data items in parallel. These operations
are prevalent in video applications and thus can provide
significant performance improvements with specialized
SIMD instructions.

- Combined instruction – When multiple operations are
applied to single data item sequentially, the new instruction
can combine these into one instruction. Unlike compiler
optimizations or other software approaches that aim to
reduce the instruction count locally, the search for combining
instructions takes a global approach. In the most extreme
case, the whole application can be replaced with a single
instruction. As an example, the showbits function which
takes the most execution cycles in the entropy decoding
block (ENTDEC) can be replaced with one instruction using
relatively few hardware resources.

Fig. 4 shows the pseudo code of the function that calculates
the difference between pixels in each motion block and
accumulates the differences for motion compensation. We will
replace this whole loop with one instruction. The new SAD (Sum
of Absolution Difference) instruction will be used in the
subsequent experiments instead of this loop.

Fig. 4. Pseudo code of SAD function

We compiled the H.264 software with glibc 2.1.3 using the
arm-linux library. In our simulations, we used a StrongARM 110
configuration. As our benchmarks, we utilize a hand-coded unit
test bench for speed up calculation and the H.264 reference
software with 15 frames of image data.

for y_s /* motion vectors in search area */

 for x_s

 for y_p /* pixels in macro-block */

 for x_p

 sad[x_s][y_s] +=

 abs(prev_image[x_s+x_p][y_s+y_p]

 - curr_image[x_p][y_p]);

293

Fig. 5. SAD2 loop code for unit testing

The unit test bench SAD1 (original code) and SAD2 (modified
code with new instruction) were written by hand. The code for
SAD2 is presented in Fig. 5. Execution time results for the unit
test and H.264 are presented in Fig. 6. SAD2 is approximately 15
times faster than SAD1 code, because the extended instruction
performs sixteen sum of absolute difference calculation in one
clock cycle. The H.264 with 15 frames of video data shows a
speedup of 2.9. In addition to SAD, 11 additional instructions
were added to the ISA to achieve this speedup. In all, we selected
the top four candidate instructions from each of the three H.264
modules. Therefore, this study is a good estimate for the
performance of current configurable processors.

Fig. 6. Unit test and H.264 decoder simulation results with

the new SAD instruction

5. H.264 on a DATAFLOW
ARCHITECTURE
As mentioned in Section 2, WaveScalar is an alternative to

superscalar designs for scalable, low-complexity, and high-
performance processors with a dataflow instruction set
architecture and execution model. To guarantee a low complexity
design, a distributed architecture was modeled instead of
centralized processing units in WaveScalar. WaveScalar’s
execution model relies on WaveCache processing elements that
are comprised of a grid of ALUs-in-cache. WaveScalar
instructions execute in their assigned WaveCache and send their
results to their dependent’s WaveCache. By co-locating
computation and data in physical space, the WaveCache
minimizes long wire, and thus high-latency, communication.
Neighboring WaveCaches are arranged into 4 by 4 clusters. Each
processing element has functional units, input and output queues
and control logic to communicate. Each element has an instruction
queue that is capable of storing eight instructions and the
corresponding store buffers. The processing elements can
communicate by using a shared bus in the cluster. Among the

clusters, the WaveScalar uses a hop-by-hop routing policy where
each link is traversed in one cycle [11].
 For multimedia embedded applications like H.264 and
MPEG4, acceleration typically implies approaches such as
instruction-level parallelism and SIMD parallelization. These
approaches are performed at a fine granularity. But coarse grain
parallelism has more potential if the application is data-dominated.
The entropy decoding block extracts the coded bit stream and
forwards the motion vectors and quantized values to the integer
transform block. Also, the motion vectors and prediction modes
must be passed to motion compensation.

To use the inherent task level parallelism in H.264, we
profiled the data transfer patterns to guide the placement of
WaveCache blocks. In our profiling setup, the H.264 reference
software was used and MB (Motion Block) data structure was the
major profiling target. The parts of the application source code
that operate on the motion block related C-struct were hand-
instrumented to count the number of data transfers. The total
amount of data transfer was calculated by multiplying the access
counter with the size of each access. Note that it is fairly
straightforward to incorporate this profiling code with a dynamic
instrumentation system such as ATOM [19]. The data transfer
matrix for H.264 is depicted in Fig. 7, with each node denoting a
function block. Each edge represents the number of data transfers
between blocks.

Lentf

IT
Hentf

233

IQ

470

MC

REC

IPRE
D

DB

680

139125

321
23

456356

34 239

Fig. 7. Data Transfer Matrix of H.264

We use the transfer matrix to improve the default
WaveScalar assignment of instructions to WaveCache clusters in
our methodology. In the default WaveScalar architecture,
WaveCache placement is performed by placing each producer and
consumer as close as possible. In our methodology, we use a
simulated annealing based placement algorithm. The slicing
model uses WaveCache module connectivity information in
minimizing communication costs. The objective of this algorithm
is to set the relative position of function blocks such that the
blocks contributing most to the overall data movement are placed
as neighboring WaveCaches. Given this objective, the problem
can be described as follows:

Minimize cost = ∑ αi * netlengthi
where, i = each edge in the transfer matrix,
αi = weight of edge i,
netlengthi = half perimeter net length of the nodes

connected by i
We use the transfer matrix computed from the data usage

profile to place blocks with large weights as close as possible.
While net length does not correspond to an actual wire length, it
represents a measure of block connectivity.

When we compare the original WaveScalar placement to our
approach on the H.264 application, simulation results show that

for (row = 0; row < 16; row++) {

 Pixelrow row1, row2;

 /* do SAD on all 16 pixels in row at once: */

 row1 = *((Pixelrow *) im1_p);

 row2 = *((Pixelrow *) im2_p);

 SAD(total,row1, row2);

 /* point to first pixel in next row of block in image */

 im1_p += numcols;

 im2_p += numcols;

 } /* row loop */

294

execution time is reduced by 13%. The total communication
among processing elements is reduced by 25% with this transfer
matrix based placement. In Table 1, nearby communication refers
to the sum of the number of messages passed within a 4x4 cluster
of processing elements. Fig. 8 depicts the communication amount
among blocks of various sizes as a percentage of the total
communication. We can see that our placement algorithm
increases communication within a 4x4 block by almost 40% while
reducing 8x8 communications by more than 60%.

Table 1. Execution cycles comparison
 Original w/ transfer matrix

Execution
cycles

165.95 Mcycles 144.49 Mcycles

Nearby
communication

8182082 10992009

Fig. 8. Nearby communication histogram

We also analyzed a different application (the MPEG4 kernel)
using our methodology. Our profiler produced the transfer matrix
shown in Fig. 9. In terms of execution time, the original
placement finished MPEG4 in 17.3 million cycles while the
optimized version completes in 15.5 million cycles. This amounts
to a 10% speedup.

HiF

iDCT
TVLC

128

REC
MC

VOM

DB

VIM

47

789

145

349

285

385
199

295

Fig. 9. Data Transfer Matrix of MPEG4

We can use these experimental results to investigate the real-
time feasibility of a H.264 decoder implemented using different
models. In our analysis, we assume that the processing of 15
frames in one second achieves real-time realization because H.264
is usually used in the low bit rate mobile environment. To our

knowledge, there is no embedded processor that can handle this
video application in real-time currently. The execution times of
H.264 on various platforms are shown in Table 3. The
ARM9TDMI processor is benchmarked with the instruction set
simulator that ships with the ARM developer suite. We observe
that in order to process H.264 in real-time, a clock speed above
300 MHz is needed. Note that this is only available in high-end
embedded processors due to power constraints. When we compare
the remaining two options, we see that the implementation on the
dataflow architecture is feasible because of its reduced runtime.
Because typical contemporary embedded processors operate up to
a frequency of 200MHz, the amount of speedup is crucial in
determining feasibility [9].

Next we compare the area of the designs we evaluate. All the
area estimations presented in Tables 2 and 3 are based on a 0.18
um technology. The baseline configurable processor is the 5-stage
RISC processor design provided by LisaTek and is synthesized
with the Synopsys Design Compiler [20]. This synthesis yielded a
1.0 mm2 area for the core. The area for extended instructions is
computed by synthesizing the automatically generated HDL
netlists from the LISA architecture description language. The
estimated area results provided in Table 2 are calculated from the
gate counts as well as routing utilization and additional resources.

Table 2. Configurable processor area
Extended

instruction
Gate
counts

Estimated
Area

mc_ext 25,000 0.43 mm2

iluma 7,803 0.13 mm2
itrans 18,034 0.31 mm2

showbits 14,837 0.25 mm2

code_bitstr 12,023 0.21 mm2

Rest 8,000 0.14 mm2

In our dataflow design, we used 1024 WaveCache blocks for

H.264 and each block has 8 instructions each of which is 4 bytes.
Thus, in order to calculate the area of the dataflow processor, we
used the die area of a 32KB, 32-byte block size, 1-way I-cache
estimated by CACTI [17].

Table 3. H.264 real-time realization comparison
H.264 ARM9

TDMI
Configurable

processor
 Dataflow
w/
transfer

Execution
cycles

728.12
Mcycles

278.34
Mcycles

144.49
Mcycles

Estimated
die area

1.16 mm2 2.47 mm2 3.2 mm2

 When we analyze the total die area results shown in Table 3
we see that dataflow architectures have a definite advantage in
terms of performance per area. This is an important factor when
one is considering incorporating accelerators into single SoCs.

6. CONCLUSIONS
Emerging embedded applications strain current embedded

processors when it comes to real-time realization in a low power
setting. In this paper, an efficient design methodology is proposed

0

10

20

30

40

50

60

70

80

4 X 4 8 X 8 16 X 16 32 X 32
cluster size

%
 c

om
m

un
ic

at
io

n

original optimized

295

for one such application, the H.264 video decoder. To exploit the
task parallelism inherent to the H.264 application, we calculated
the data transfer matrix of this application in our methodology.
We then mapped the H.264 modules onto the WaveScalar
dataflow architecture with the help of a simulated annealing-based
placement algorithm that uses the data transfer matrix to place
blocks that communicate a lot close to one another. The
experimental results show that this design method is extremely
helpful in data-dominated applications. We also looked at the
feasibility of implementing H.264 with an ARM9 embedded
processor as well as a configurable processor and found that these
approaches lack the sheer compute power demanded in this
application. Our design methodology enables designers to
implement data-dominated applications with real-time constraints
in a short amount of time.

7. REFERENCES
[1] ITRS 2003-2018 Roadmap – System Functional Requirements For

Handheld Wireless Low Power SoC

[2] H. Singh, Lee Ming-Hau, Lu Guangming, F. J. Kurdahi, N.
Bagherzadeh and E. M. Chaves Filho, MorphoSys: an integrated
reconfigurable system for data-parallel and computation-intensive
applications, IEEE Transactions on Computers, Volume 49, pp. 465
- 481, 2004.

[3] B. Mei, S. Vernalde, D. Verkest and R. Lauwereins, Design
methodology for a tightly coupled VLIW/reconfigurable matrix
architecture: a case study, in Proc. DATE, pp. 1224-1229, 2004.

[4] A. Hoffmann, A, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O.
Wahlen, A. Wieferink, H. Meyr, A novel methodology for the design
of application-specific instruction-set processors (ASIPs) using a
machine description language, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume 20, Issue
11, pp. 1338 – 1354, 2004.

[5] I. Park, S. Kang and Y Yi, Fast cycle-accurate Behavioral
Simulation for Pipelined Processors Using Early Pipeline
Evaluation,” International Conference on Computer Aided Design,
pp. 138-141, Nov, 2003

[6] K. Atasu, L. Pozzi, and P. Ienne, Automatic Application-Specific
Instruction-Set Extensions under Microarchitectural Constraints, In
the Proceedings of 40th DAC Design Automation Conference, Los
Angeles, June 2003.

[7] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
Application-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization, International Symposium
on Microarchitecture (MICRO-37), pp. 30-40, December 2004.

[8] C. Rowen and S. Leibson , Flexible Architectures for Engineering
Successful SOCs , In the Proceedings of 41st Conference on Design
Automation Conference, pp. 692-697. 2004.

[9] Tensilica web page, http://www.tensilica.com/

[10] ARC website, http://www.arc.com

[11] S. Swanson, K. Michelson, A. Schwerin and M. Oskin, WaveScalar
In the 36th Annual International Symposium on Microarchitecture
(MICRO-36), December 2003

[12] H.264 TML Model, http://bs.hhi.de/~suehring/tml/

[13] S. Saponara and C. Blanch, K. Denolf and J. Bormans, The JVT
Advanced Video Coding Standard: Complexity And Performance
Analysis On A Tool-by-tool Basis, ICIP Conference, 2002.

[14] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F.
Pereira, T. Stockhammer and T. Wedi, Video coding with
H.264/AVC: tools, performance, and complexity, IEEE Circuits and
Systems Magazine, Vol. 4, Issue 1, pp. 7-28, 2004.

[15] L. Pozzi, M. Vuletic, and P. Ienne, Automatic topology-based
identification of instruction-set extensions for embedded processors.
In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, page 1138, Paris, March 2002.

[16] N. Pazos, A. Maxiaguine, P. Ienne, and Y. Leblebici. Parallel
modelling paradigm in multimedia applications: Mapping and
scheduling onto a multi-processor system-on-chip platform. In
Proceedings of the International Global Signal Processing
Conference, Santa Clara, Calif., September 2004.

[17] CACTI web page,
http://research.compaq.com/wrl/people/jouppi/CACTI.html

[18] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical Report 1342, Computer Sciences Dept., University of
Wisconsin-Madison, 1997.

[19] A. Srivastava and A. Eustace, ATOM: A system for building
customized program analysis tools. In Proceedings of the Conference
on Programming Language Design and Implementation, pages 196--
205. ACM, 1994.

[20] CoWARE LisaTek Processor Designer Manual.

296

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

