
Designing Real-Time H.264 Decoders with Dataflow 
Architectures 

 
Youngsoo Kim   Suleyman Sair 

Department of Electrical and Computer Engineering, NC State University 

{ykim12,ssair}@ ece.ncsu.edu
   

ABSTRACT 
High performance microprocessors are designed with general-
purpose applications in mind. When it comes to embedded 
applications, these architectures typically perform control-
intensive tasks in a System-on-Chip (SoC) design. But they are 
significantly inefficient for data-intensive tasks such as video 
encoding/decoding. Although configurable processors fill this gap 
by complementing the existing functional units with instruction 
extensions, their performance lags behind the needs of real-time 
embedded tasks. In this paper, we evaluate the performance 
potential of a dataflow processor for H.264 video decoding. We 
first profile the H.264 application to capture the amount of data 
traffic among modules. We use this information to guide the 
placement of H.264 modules in the WaveScalar dataflow 
architecture. A simulated annealing based placement algorithm 
produces the final placement aiming to optimize the 
communication costs between the modules in the dataflow 
architecture. In addition to outperforming contemporary 
embedded and customized processors, our simulated annealing 
guided design shows a speedup of 13% in execution time over the 
original WaveScalar architecture. With our dataflow design 
methodology, emerging embedded applications requiring several 
GOPS to meet real-time constraints can be drafted within a 
reasonable amount of design time. 

Categories and Subject Descriptors 
C.1.3 [Other Architecture Styles]: Dataflow architectures 

General Terms: Design, Performance 

Keywords: Dataflow architecture, H.264, WaveScalar 

1. INTRODUCTION 
The specialized needs of embedded applications create 

several problems when running on general-purpose processors. 
Typically critical functions in embedded applications cannot be 
accelerated due to a mismatch between the application and the 
default instruction set architecture of the processor. As a result, 
embedded applications take many cycles to execute on general-
purpose processors. Secondly, many embedded applications 
cannot use general-purpose or DSP processors because such an 
implementation is not feasible due to the high power consumption 

and IP costs. Consequently, the advent of new video 
encoding/decoding standards such as H.264 has created the need 
for an ASIP (Application Specific Instruction Processor) solution 
to accelerate bottleneck functions in order to meet real-time 
requirements (e.g. 15 frames per second on low bit rate 
communication lines). 

Extending the instruction set can significantly accelerate the 
overall performance, especially for data-dominated applications 
that represent many of contemporary embedded handheld SoCs. 
Moreover, automatic synthesis of configurable processor cores, 
and the associated software tool chain - including retargetable 
compilers and simulators, maximizes the applicability of 
configurable processor cores. However, both in literature surveys 
and our limit study of a typical configurable processor, we found 
that instruction extension approaches provide speedups in the 30-
50% range, far short of the speedups needed to realize future 
embedded applications with low-end embedded processors [1]. 

Several researchers have proposed to overcome these 
problems. One approach is using coarse grain reconfigurable 
processor architectures such as Morphosys [2] and ADRES 
frameworks [3]. Another approach is the use of dataflow 
architectures in order to decentralize the processor architecture. 
One of the advantages of dataflow architectures is that they can be 
used as an alternative to RTL design and be extremely 
instrumental in reducing the turn around time of current design 
methodologies. Because the specifications of these emerging 
embedded applications such as MPEG4, H.263, H.263+, and 
H.264 are constantly changing, implementation on a generic 
fabric has many advantages in the long run. But very few research 
efforts propose the design methodology for a realistic embedded 
application on a dataflow substrate. 

We present a design methodology to implement a real-time 
H.264 video-decoding application on a dataflow processor in this 
paper. First, we present a limit study of extending the ISA of a 
configurable processor to examine the available processing power 
for emerging embedded applications. Then, we discuss our design 
methodology, which uses the data transfer matrix of the H.264 
application to create a mapping of application modules to 
computation units on the WaveScalar dataflow architecture [11]. 
Since H.264 is extremely data-dominated, we chose a dataflow 
architecture to reduce the amount of data transfer between 
modules of the application. 

2. RELATED WORK 
Many researchers have investigated using configurable 

architectures and extending the basic instruction set to speedup 
the execution of specific applications. In these designs, we 
typically start out with a parameterized processor and its basic 
instruction set. We then use an architectural description language 
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to generate the datapaths or the functional units needed for the 
extension instructions. To complement the new hardware, we 
need to create the necessary software tools such as the compiler, 
instruction set simulator (ISS), debugger and assembler. This 
completes the design cycle. With the help of automatic tool chains, 
designers can develop an application specific processor in a short 
amount of time. Even though these tools can significantly shorten 
one iteration of the design cycle, many iterations are needed to 
find the extension candidates that result in sufficient acceleration 
of the application [4]. One has to rely on simulation to find the 
performance bottlenecks in the application so that they can be 
mapped to extension instructions. This process typically involves 
using very slow ISSs [5]. Moreover, the automatic synthesis of 
functional units typically produces large register files because 
most extended instructions are SIMD style instructions.   

One technique for automatic extraction of the extended 
instruction candidates is proposed in [6]. Unlike traditional two-
input, one-output matching, they identify Multiple Input, Single 
Output (MISO) operations and cluster them into one custom 
instruction. This can be effective for embedded applications that 
have high computation needs (e.g. cryptography), but most data-
intensive programs have very little arithmetic code. As a result, 
the arithmetic portion of the application is not a bottleneck in 
program execution. Another instruction set extension approach is 
the CCA (Configurable Compute Accelerator) [7]. In the CCA 
approach, original application is profiled to find the most 
frequently executing traces. Using these traces, candidate 
subgraphs for extension instructions are discovered. Next the 
compiler generates a binary that takes advantage of these CCA 
instructions. The CCA hardware is a grid of ALUs with multiple 
copies of different functional units. Although CCA aims to reduce 
the hardware design and verification time for different 
applications, modern design automation tools for configurable 
processors are fairly successful and widely used in industry 
[8][9][10]. Because most configurable processors are designed in 
a parameterized manner, the automatic synthesis of whole 
processor including the customized functional units takes a 
relatively short time to complete [9]. 

Meanwhile, commercial extensible processors have long 
been available in the industry. Tensilica announced their Xtensa V 
processor, which is based on a 32-bit RISC processor architecture 
in 2002[9]. They extended the instruction set with user-defined 
instructions. From the TIE (Tensilica Instruction Extension) 
description of new instructions, a new datapath or functional unit 
is added to the processor and a new integrated development 
environment that supports the new instruction is generated. 

In addition to instruction set extension approaches, many 
coarse grain reconfigurable architectures have been proposed. 
Morphosys has a tinyRISC processor and a reconfigurable ALU 
matrix to extend the functional units [2]. The ADRES framework 
tightly couples a reconfigurable ALU matrix with a VLIW 
processor. The data kernel is executed on the reconfigurable FUs 
and the rest of the code is executed on the VLIW processor [3]. 
While ADRES aims to improve the non-kernel code execution by 
adopting a VLIW processor instead of a RISC processor, it is not 
clear how much the whole application can benefit from speeding 
up the control intensive part of the code. Moreover, neither 
technique investigates intelligent mapping strategies to reduce the 
communication overhead between the host processor and the 
reconfigurable matrices. 

 Recently, the WaveScalar dataflow architecture was 
proposed [11]. WaveScalar has a dataflow instruction set such that 
each instruction executes in place in the memory system and 
explicitly communicates with its dependents in dataflow fashion. 
WaveScalar architectures cache instructions and the values they 
operate on in a WaveCache, a simple grid of “ALU-in-cache” 
nodes. By co-locating computation and data in physical space, the 
WaveCache minimizes long wire, high-latency communication. 
For an efficient implementation of the H.264 video decoding 
standard, WaveScalar was selected as a substrate because it is 
capable of significantly reducing the amount of data transfer in 
H.264. In addition, due to the highly distributed nature of the 
application, WaveScalar provides a good model to speedup most 
of the performance bottlenecks. 

3. H.264 STANDARD 
Before discussing the configurable processor and dataflow 

implementations of H.264, let us briefly summarize the standard. 
H.264 is the video encoding/decoding standard that is replacing 
the current MPEG4 video standard [12]. The new standard 
provides both enhanced compression efficiency over existing 
video coding standards and a network friendly video 
representation. In its video coding layer, some of the important 
enhancements include the use of a small block-size, exact match 
transform, adaptive in-loop deblocking filter and motion 
prediction capabilities. A detailed block diagram of the H.264 
decoder is presented in Fig. 1. After receiving the data from NAL 
(Network Adaptation Layer), the data is processed by the entropy 
decoder. Next, the IT/IQ (Integer transform/Inverse quantization) 
block is used to generate the reference frame data which will be 
added to the reference frame image or intra-predicted image based 
on its header information. Then, the original image in 
reconstructed through the deblocking filter. The H.264 baseline 
profile used in this project is a simple implementation that 
supports intra and inter-coding, as well as entropy coding with 
context-adaptive variable-length coding. The reference C source 
code is built by pruning the TML reference model. Extra 
functionality beyond the selected H.264 profile was removed from 
C code. Therefore, the C model that we use has been optimized at 
the source code level.  

 
Fig. 1. H.264 Decoder 

There are several on-going research efforts analyzing the 
complexity of H.264 video decoding. The complexity of the 
algorithm directly affects the cost-effectiveness of an H.264 
implementation and hence the final success of the standard. The 
published results show that H.264 standard aims at improving the 
compression efficiency up to 50% compared to existing standards. 
However, the encoder complexity increases by a factor of 2 when 
compared to MPEG4 and with a factor of three for the decoder 
[13]. Finally, it is impossible to realize the decoder completely in 
software on an embedded processor at this time. This is the reason 
the H.264 application is selected as a target of our design 
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methodology. The H.264 is the most complex algorithm in video 
decoding area. Unlike other areas such as cryptography, the 
embedded video coding application must be run at real-time speed. 
Therefore, it would be ideal if we can achieve sufficient 
acceleration of the at a moderate hardware cost [14]. On the other 
hand, this kind of applications is also unsuitable for a hardware 
only implementation because the standards are always evolving 
and changing. 

4. CONFIGURABLE PROCESSOR LIMIT 
STUDY 
In this section, we present a limit study on the performance 

potential of a typical configurable processor. The goal of this 
study is to get a good grasp of the processing power of current 
configurable processors when we add new instructions to the ISA. 
In Section 5, a currently available embedded processor (an 
ARM9) will be compared to this configurable processor and our 
dataflow architecture in their ability to meet the real-time 
requirements for H.264. 

We configure the H.264 reference code to process 15 frames 
of video data per second. We then profile the application with the 
GNU gprof toolset. Next, we analyze the longest executing 
functions in the profile to determine which instructions to 
accelerate. The final step involves rewriting the application binary 
where we use inline assembly to insert the mnemonics for the 
newly defined instructions.  

As is common in configurable processor research [15][16], 
we simulated the original and the rewritten binaries in the 
SimpleScalar ARM simulator [18]. We modified SimpleScalar 
instruction definition files to correctly recognize and simulate new 
instructions on the new functional units. 

The profiling results of the decoder reference software are 
presented in Fig. 2. As expected, MC (Motion Compensation) 
block is the most performance demanding part of the decoder. 

 
Fig. 2. H.264 decoder gprof profiling results 

In addition to global profiling, we also profile MC, ITIQ, 
ENTDEC blocks separately. The profiling results for the MC 
block are presented in Fig. 3. After removing GNU gprof 
instrumentation functions (e.g. internal_mcount, _mcount), along 
with the driver functions and the stubs needed for simulating 
image input (e.g. HEXCHAR2DEC, main, get_block, 
ReadData_HEX), MC_MAIN and get_SW_BUFF remain as the 
main bottlenecks. MC_MAIN performs the difference calculation 
of nearby images and get_SW_BUFF reads in the motion block 
for processing. 

 
Fig. 3. MC block profile 

Based on profiling results, new instructions are created for 
reducing the execution time spent in MC_MAIN and 
get_SW_BUFF functions. In general, a new instruction falls into 
one of the following categories: 

- SIMD instruction – The instruction performs the same 
operation on multiple data items in parallel. These operations 
are prevalent in video applications and thus can provide 
significant performance improvements with specialized 
SIMD instructions.   

- Combined instruction – When multiple operations are 
applied to single data item sequentially, the new instruction 
can combine these into one instruction. Unlike compiler 
optimizations or other software approaches that aim to 
reduce the instruction count locally, the search for combining 
instructions takes a global approach. In the most extreme 
case, the whole application can be replaced with a single 
instruction. As an example, the showbits function which 
takes the most execution cycles in the entropy decoding 
block (ENTDEC) can be replaced with one instruction using 
relatively few hardware resources. 

Fig. 4 shows the pseudo code of the function that calculates 
the difference between pixels in each motion block and 
accumulates the differences for motion compensation. We will 
replace this whole loop with one instruction. The new SAD (Sum 
of Absolution Difference) instruction will be used in the 
subsequent experiments instead of this loop. 

 
 
 
 

 
 
 

Fig. 4. Pseudo code of SAD function 

We compiled the H.264 software with glibc 2.1.3 using the 
arm-linux library. In our simulations, we used a StrongARM 110 
configuration. As our benchmarks, we utilize a hand-coded unit 
test bench for speed up calculation and the H.264 reference 
software with 15 frames of image data. 

for y_s           /* motion vectors in search area */ 

 for x_s 

  for y_p        /* pixels in macro-block              */ 

   for x_p 

    sad[x_s][y_s] +=  

      abs(prev_image[x_s+x_p][y_s+y_p] 

          - curr_image[x_p][y_p]); 
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Fig. 5. SAD2 loop code for unit testing 

The unit test bench SAD1 (original code) and SAD2 (modified 
code with new instruction) were written by hand. The code for 
SAD2 is presented in Fig. 5. Execution time results for the unit 
test and H.264 are presented in Fig. 6. SAD2 is approximately 15 
times faster than SAD1 code, because the extended instruction 
performs sixteen sum of absolute difference calculation in one 
clock cycle. The H.264 with 15 frames of video data shows a 
speedup of 2.9. In addition to SAD, 11 additional instructions 
were added to the ISA to achieve this speedup. In all, we selected 
the top four candidate instructions from each of the three H.264 
modules. Therefore, this study is a good estimate for the 
performance of current configurable processors. 

 
Fig. 6.  Unit test and H.264 decoder simulation results with 

the new SAD instruction 

5. H.264 on a DATAFLOW 
ARCHITECTURE 
As mentioned in Section 2, WaveScalar is an alternative to 

superscalar designs for scalable, low-complexity, and high-
performance processors with a dataflow instruction set 
architecture and execution model. To guarantee a low complexity 
design, a distributed architecture was modeled instead of 
centralized processing units in WaveScalar. WaveScalar’s 
execution model relies on WaveCache processing elements that 
are comprised of a grid of ALUs-in-cache. WaveScalar 
instructions execute in their assigned WaveCache and send their 
results to their dependent’s WaveCache. By co-locating 
computation and data in physical space, the WaveCache 
minimizes long wire, and thus high-latency, communication. 
Neighboring WaveCaches are arranged into 4 by 4 clusters. Each 
processing element has functional units, input and output queues 
and control logic to communicate. Each element has an instruction 
queue that is capable of storing eight instructions and the 
corresponding store buffers. The processing elements can 
communicate by using a shared bus in the cluster. Among the 

clusters, the WaveScalar uses a hop-by-hop routing policy where 
each link is traversed in one cycle [11]. 
    For multimedia embedded applications like H.264 and 
MPEG4, acceleration typically implies approaches such as 
instruction-level parallelism and SIMD parallelization. These 
approaches are performed at a fine granularity. But coarse grain 
parallelism has more potential if the application is data-dominated. 
The entropy decoding block extracts the coded bit stream and 
forwards the motion vectors and quantized values to the integer 
transform block. Also, the motion vectors and prediction modes 
must be passed to motion compensation. 

To use the inherent task level parallelism in H.264, we 
profiled the data transfer patterns to guide the placement of 
WaveCache blocks. In our profiling setup, the H.264 reference 
software was used and MB (Motion Block) data structure was the 
major profiling target. The parts of the application source code 
that operate on the motion block related C-struct were hand-
instrumented to count the number of data transfers. The total 
amount of data transfer was calculated by multiplying the access 
counter with the size of each access. Note that it is fairly 
straightforward to incorporate this profiling code with a dynamic 
instrumentation system such as ATOM [19]. The data transfer 
matrix for H.264 is depicted in Fig. 7, with each node denoting a 
function block. Each edge represents the number of data transfers 
between blocks.  
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Fig. 7. Data Transfer Matrix of H.264 

We use the transfer matrix to improve the default 
WaveScalar assignment of instructions to WaveCache clusters in 
our methodology. In the default WaveScalar architecture, 
WaveCache placement is performed by placing each producer and 
consumer as close as possible. In our methodology, we use a 
simulated annealing based placement algorithm. The slicing 
model uses WaveCache module connectivity information in 
minimizing communication costs. The objective of this algorithm 
is to set the relative position of function blocks such that the 
blocks contributing most to the overall data movement are placed 
as neighboring WaveCaches. Given this objective, the problem 
can be described as follows: 

Minimize cost = ∑ αi * netlengthi 
where, i = each edge in the transfer matrix, 
αi = weight of edge i, 
netlengthi = half perimeter net length of the nodes 

connected by i 
We use the transfer matrix computed from the data usage 

profile to place blocks with large weights as close as possible. 
While net length does not correspond to an actual wire length, it 
represents a measure of block connectivity. 

When we compare the original WaveScalar placement to our 
approach on the H.264 application, simulation results show that 

for (row = 0; row < 16; row++) { 

        Pixelrow row1, row2; 

        /* do SAD on all 16 pixels in row at once: */ 

        row1 = *((Pixelrow *) im1_p); 

        row2 = *((Pixelrow *) im2_p); 

        SAD(total,row1, row2); 

        /* point to first pixel in next row of block in image */ 

        im1_p += numcols; 

        im2_p += numcols; 

    } /* row loop */ 
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execution time is reduced by 13%. The total communication 
among processing elements is reduced by 25% with this transfer 
matrix based placement. In Table 1, nearby communication refers 
to the sum of the number of messages passed within a 4x4 cluster 
of processing elements. Fig. 8 depicts the communication amount 
among blocks of various sizes as a percentage of the total 
communication. We can see that our placement algorithm 
increases communication within a 4x4 block by almost 40% while 
reducing 8x8 communications by more than 60%. 

Table 1. Execution cycles comparison 
 Original w/ transfer matrix 

Execution 
cycles 

165.95 Mcycles 144.49 Mcycles 

Nearby 
communication 

8182082 10992009 
 

Fig. 8. Nearby communication histogram 

We also analyzed a different application (the MPEG4 kernel) 
using our methodology. Our profiler produced the transfer matrix 
shown in Fig. 9. In terms of execution time, the original 
placement finished MPEG4 in 17.3 million cycles while the 
optimized version completes in 15.5 million cycles. This amounts 
to a 10% speedup. 
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Fig. 9. Data Transfer Matrix of MPEG4 

We can use these experimental results to investigate the real-
time feasibility of a H.264 decoder implemented using different 
models. In our analysis, we assume that the processing of 15 
frames in one second achieves real-time realization because H.264 
is usually used in the low bit rate mobile environment. To our 

knowledge, there is no embedded processor that can handle this 
video application in real-time currently. The execution times of 
H.264 on various platforms are shown in Table 3. The 
ARM9TDMI processor is benchmarked with the instruction set 
simulator that ships with the ARM developer suite. We observe 
that in order to process H.264 in real-time, a clock speed above 
300 MHz is needed. Note that this is only available in high-end 
embedded processors due to power constraints. When we compare 
the remaining two options, we see that the implementation on the 
dataflow architecture is feasible because of its reduced runtime. 
Because typical contemporary embedded processors operate up to 
a frequency of 200MHz, the amount of speedup is crucial in 
determining feasibility [9].  

Next we compare the area of the designs we evaluate. All the 
area estimations presented in Tables 2 and 3 are based on a 0.18 
um technology. The baseline configurable processor is the 5-stage 
RISC processor design provided by LisaTek and is synthesized 
with the Synopsys Design Compiler [20]. This synthesis yielded a 
1.0 mm2 area for the core. The area for extended instructions is 
computed by synthesizing the automatically generated HDL 
netlists from the LISA architecture description language. The 
estimated area results provided in Table 2 are calculated from the 
gate counts as well as routing utilization and additional resources. 

Table 2. Configurable processor area 
Extended 

instruction 
Gate 
counts 

Estimated 
Area 

mc_ext 25,000 0.43 mm2 

iluma 7,803 0.13 mm2 
itrans 18,034 0.31 mm2 

showbits 14,837 0.25 mm2 

code_bitstr 12,023 0.21 mm2 

Rest 8,000 0.14 mm2 
 
In our dataflow design, we used 1024 WaveCache blocks for 

H.264 and each block has 8 instructions each of which is 4 bytes. 
Thus, in order to calculate the area of the dataflow processor, we 
used the die area of a 32KB, 32-byte block size, 1-way I-cache 
estimated by CACTI [17].  

Table 3. H.264 real-time realization comparison 
H.264 ARM9 

TDMI 
Configurable 

processor 
 Dataflow 
w/ 
transfer 

Execution 
cycles  

728.12 
Mcycles 

278.34 
Mcycles 

144.49 
Mcycles 

Estimated 
die area 

1.16 mm2 2.47 mm2 3.2 mm2 

 When we analyze the total die area results shown in Table 3 
we see that dataflow architectures have a definite advantage in 
terms of performance per area. This is an important factor when 
one is considering incorporating accelerators into single SoCs.  

6. CONCLUSIONS 
Emerging embedded applications strain current embedded 

processors when it comes to real-time realization in a low power 
setting. In this paper, an efficient design methodology is proposed 

0

10

20

30

40

50

60

70

80

4 X 4 8 X 8 16 X 16 32 X 32
cluster size

%
 c

om
m

un
ic

at
io

n

original optimized

295



for one such application, the H.264 video decoder. To exploit the 
task parallelism inherent to the H.264 application, we calculated 
the data transfer matrix of this application in our methodology. 
We then mapped the H.264 modules onto the WaveScalar 
dataflow architecture with the help of a simulated annealing-based 
placement algorithm that uses the data transfer matrix to place 
blocks that communicate a lot close to one another. The 
experimental results show that this design method is extremely 
helpful in data-dominated applications. We also looked at the 
feasibility of implementing H.264 with an ARM9 embedded 
processor as well as a configurable processor and found that these 
approaches lack the sheer compute power demanded in this 
application. Our design methodology enables designers to 
implement data-dominated applications with real-time constraints 
in a short amount of time. 
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