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ABSTRACT
This short paper, an update of [75], is intended to provide
a brief summary and extensive references on biological ap-
plications for micro- and nano-machining, as well as the
computer-aided design challenges generated by those appli-
cations.
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1. INTRODUCTION
It has long been recognized that techniques developed

for fabricating nanometer-sized semiconductor devices can
be used to generate mechanical structures, a process re-
ferred to as micro- or nano-machining. Electrostatic forces
are commonly used to manipulate these small structures
because such forces are sufficiently large, owing to their
quadratic scaling with inverse length, and because electro-
statics is easily controlled electronically. Devices which com-
bine small structures and electrostatic manipulation are of-
ten referred to as MEMS or NEMS, which are mnemonics for
Micro(Nano)-Electro-Mechanical Systems. These mnemon-
ics have become quite popular, and now MEMS and NEMS
are used quite liberally to refer to a wide range of micro- and
nano-machined devices that are not primarily electrome-
chanical [1].

MEMS and NEMS can be combined to create single-chip
systems that perform complicated procedures on micron-
and nanometer-sized objects, making the technology a nat-
ural candidate for processing biological cells, bacteria, and
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even larger proteins [2, 3, 4]. The potential of MEMS and
NEMS in biological and biomedical applications inspired a
subfield, often referred to as bioMEMS. The bioMEMS field
is currently undergoing a dramatic expansion thanks in part
to the very visable commercial success of microarrays for
collecting gene expression data [6]; and the development of
biologically-neutral rapidly micromachinable materials [5].
What has not kept pace is the development of the appropri-
ate computer-aided design (CAD) tools.

The impact of inadequate CAD tools in micro- and nan-
otechnology is well-known. Researchers will not as aggres-
sively examine the design space of a new idea, because they
will have to rely on slow-to-construct physical prototypes.
Product developers will struggle much longer to create man-
ufacturable designs, because generating multiple physical
prototypes is an extremely inefficient approach to determin-
ing design sensitivities. Even though there is consensus on
the impact of inadequate CAD, the reason the situation has
not changed is that bioMEMS design is so technologically
diverse that new CAD strategies are needed. In this short
paper, really an update of [75], the author is trying to point
out both application and CAD literature that will help make
clear some of the design tool challenges. Below, applications
are mentioned first, to show the diversity of bioMEMS tech-
nology, followed by brief descriptions of some of the associ-
ated CAD issues.

2. APPLICATIONS
The biological applications of micro- and nano-machining

fall into three broad overlapping categories: providing faster
or extended experimental capabilities for researchers in mo-
lecular, cellular and system biology; improving detection
capabilities either for medical diagnosis or biohazard appli-
cations; and developing implantable devices for managing
chronic diseases [7, 8].

2.1 Research
In the area of biological research, one of the major suc-

cesses of microtechnology is the microarray [6]. A microar-
ray is a two-dimensional array of individually programmable
patches that can be made to “light up” in response to gene
expression levels. The two dimensional array then creates
a characteristic picture which represents relative expression
levels for many different genes. One important use of mi-
croarray data is to construct or calibrate network models for
cellular signal transduction and regulation [9, 10, 11]. These
networks are then used to gain insight into cell normal and
disease responses, as well as to identify treatment targets.
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Microarrays are relatively straight-forward devices to de-
sign, because most of the cell processing is done externally.
In order to accelerate that cell preparation, complicated mi-
crofluidic devices are being developed that can store arrays
of cells and select them electronically [12], or lyse cells to
release proteins for later detection [13]. In addition, new
“living cell” devices are being developed which can yield
single-cell time-series data, which can be much more infor-
mative than the single-timepoint, multicell-aggregate data
provided by microarrays [14].

2.2 Biomedical Applications
In the area medical diagnosis, micro- and nano-machining

offers the promise of rapid and inexpensive testing by creat-
ing a single device that is the equivalent of an entire diagnos-
tic lab [15, 4, 16, 17]. Some labs-on-a-chip are essentially de-
tectors; they combine mixers, reservoirs of reagents, separa-
tors, and reaction product sensors. Single-chip labs intended
for processing cells are significantly more complicated; they
may include techniques for screening and lysing the cells,
preconcentrators or filters for resulting biomolecules, and
specialized arrays of sensors [18].

There has been considerable success in designing and op-
timizing basic lab-on-a-chip components, and there are a
variety of alternative designs for cell manipulators, mixers,
separators, preconcentrators, filters and sensors. There has
been less success in designing complete single-chip labs, in
part because of the difficulty in modeling the entire compli-
cated system.

Additional medical applications for micro- and nano-ma-
chining include DNA sequencing [19, 20, 21, 22, 23], cell
separating and isolation [24, 12], and blood testing [25, 26].

2.3 Implantable Devices
Many of the implantable, or in-vivo, applications of micro-

machining are ones for which there is little or no treatment
alternative. Such applications of micromachining are inspir-
ing, and include approaches for continuous glocose monitor-
ing [27], neural-stimulation [28], retinal implants [29], and
artificial livers and other tissues [30, 31]. In-vivo microma-
chined devices are unlikely to appear in the near term, there
are many difficult challenges such as the problems of energy
havesting and developing biocompatible processing [32, 33,
34, 35].

3. CAD CHALLENGES
For surface-micro-machined polysilicon, a popular and re-

latively mature MEMS technology, existing design tools are
reasonably complete. There are low-level simulation tools
which, given either 3-D geometry or 2-D layout, can per-
form fast coupled 3-D electromechanical analysis of a single
device. In addition, there are higher-level tools that extract
more abstract models from 2-D layout and can be used for
system simulation [36, 37, 38]. The situation is very dif-
ferent for bioMEMS. The tools are nowhere near as com-
plete, primarily because the technology, and therefore the
physical effects, are much more diverse. This diversity im-
pacts strategies for low-level simulation as well as for model
extraction. Finally, generating manufacturable designs in
these new technologies have proved to be extremely difficult,
suggesting that recent techniques in robust design might be
important avenues to pursue [39].

3.1 Simulation
For many bioMEMS devices, the important physics can

be reasonably accurately modeled using coupled continuum
models. For example, many microfluidics devices can be
simulated by coupling a Stokes equation model for the fluid,
Poisson or Laplace’s equation for the electrostatic fields, and
the continuum elastostatics equation for mechanical defor-
mation. For devices described by coupled continuum mod-
els, there are finite-element [40, 41] and volume-element [42]
simulation tools which allow substantial flexibility in multi-
physics simulation. When faster computational performance
is needed for 3-D field simulation, Green’s function indepen-
dent fast solvers [43, 44, 46, 45] can be combined with finite-
element simulation using matrix-implicit multi-level Newton
methods [47], though there is little available software.

Although some bioMEMS devices can be described by
coupled PDE’s and simulated using existing or emerging
multiphysics simulators, many devices have more compli-
cated physics. In devices intended for use in molecular sep-
aration, the length scales are such that noncontinuum fluid
effects must be considered [48, 49, 50], and therefore hybrid
approaches which combine molecular and continuum mod-
els are being developed [55, 56, 57, 58]. For devices used
in processing cells, faster techniques are needed for analyz-
ing cells in flow [51, 52, 53, 54]. For devices that perform
droplet chemistry, methods are needed for rapid surface evo-
lution [59].

4. MODEL EXTRACTION
The application of micromachining to systems which use

bioMEMS, such as labs-on-a-chip, require complicated com-
binations of individual bioMEMS devices which process flu-
ids, cells and molecules (e.g. mixers, separators and pumps).
In order to simulate systems of these devices, models have
been developed for common components, such as mixers and
separators [60, 61]. The wide variety of devices currently
in development, and the need to rapidly assess the impact
of candidate device performance on system behavior, will
accelerate the demand for techniques which more automati-
cally extract models of these bioMEMS devices from detailed
physical simulation. The required automatic techniques may
include approaches similar to the robust nonlinear model or-
der reduction strategies developed for classical MEMS and
nonlinear circuits [62, 63, 64, 65, 66, 67, 68], but may also
require new approaches where the interaction is a surface or
region, rather than a few ports [69, 70, 71]. Finally, auto-
mated device optimization, particularly to improve robust-
ness, will likely require some form of parameterized model
reduction[72, 73, 74].

5. CONCLUSIONS
The field of micro- and nano-machining for biological ap-

plications has progressed considerably since the publication
of [75], but the CAD tools have changed little. In the au-
thor’s opinion, the lack of adequate CAD tools is the key
reason for this field’s near decade long delay between re-
search prototype and commercial product. And since the
technology is scaling ever downward, eventually delays in
product development will halt research progress, because
the delays will cascade. That is, without a previous genera-
tion’s technology in useable form, it is unlikely that the next
generation technological investigation can thoroughly begin.
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The author hopes that this brief paper will provide enough
pointers to the literature to motivate students to contribute
to CAD tool development and thereby help avoid technology
stagnation.
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