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ABSTRACT 
We propose a secure platform on a chip multiprocessor, known as 
FIDES, in order to enable next generation mobile terminals to 
execute downloaded native applications for Linux. Its most 
important feature is the higher security based on multi-grained 
separation mechanisms: coarse-grained processor-level separation 
of the basic-function domain from other domains for such 
downloaded applications, medium-grained OS-level separation, 
and fine-grained process-level separation within SELinux. Four 
new technologies, which include three enhancements to SELinux, 
support the FIDES platform: 1) bus filter logic for processor-level 
separation can be implemented as a small logic, 2) XIP kernels for 
memory-efficient OS-level separation can reduce memory 
requirements by 182%, 3) policy separation for enhanced process-
level separation can apply policies 2.1 times faster at system boot-
up, and 4) dynamic access control can provide secure Inter-
Domain Communications (IDCs) with an overhead of only 4% for 
IDC system calls. We implemented SELinuxes on an ARM-based 
multiprocessor. Therefore, the best-suited platform to secure next 
generation mobile terminals is the FIDES platform, which can 
provide higher security as well as higher performance and lower 
power consumption on chip multiprocessors leading the current 
technology trend of microprocessors. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures – mobile 
processors; D.4.6 [Operating System]: Security and Protection – 
access controls;  

General Terms 
Design, Security 

Keywords 
Secure Mobile Terminal, Chip Multiprocessor, Linux 

1. INTRODUCTION 
Next generation mobile terminals are likely to require a dedicated 
execution environment in which users are able to use native 
applications downloaded from open networks. This means that 
application processors will have to offer higher performance and 
lower power dissipation. Current application processor 
architectures, however, are based on heterogeneous multi-cores, 
such as CPUs and DSPs  [6]. Since a high clock frequency is 
needed to increase CPU performance, this makes it difficult to 
reduce power dissipation. One promising approach would be to 
use a chip multiprocessor like MP211 System-on-a-Chip (SoC) 
 [1] as an application processor. With multiprocessors, the desired 
level of performance is achieved with a number of processors that 
operate at moderate clock frequencies, which helps to keep power 
consumption low. It should be noted that the area requirement of 
such multiprocessors would not be a problem with fabrication 
technology of 90 nm or better  [14]. 

Next generation mobile terminals will also require OSs with 
higher functionality in order to reduce the cost of software 
development. Currently, real-time OSs, such as μ-ITRON  [9], and 
specialized OSs, such as Symbian OS  [13], are commonly used 
because they perform effectively on mobile terminals. However, 
the number of software engineers capable of working effectively 
with such OSs is limited due to the closed nature of the 
community dedicated to the development of mobile terminals. 
Linux OS, with its large and open community, would be a good 
candidate for addressing this problem  [5].  

Finally, the downloading of native applications will mean that 
security will become an increasingly important issue. That is, it 
will be important to be able to confine the influence of such 
downloaded applications to a certain level, and NTT DoCoMo, 
IBM, and Intel have, in fact, jointly announced specifications 
designed to encourage the development of mobile terminals 
having such security capability  [11]. 

One approach is to verify applications before making them 
available for downloading to mobile terminals. This is the 
approach taken by BREW  [4]. Since the verification is conducted 
on an actual mobile terminal, its results may be considered quite 
reliable. 

Another approach is to confine applications which might contain 
vulnerabilities within a virtual domain (i.e., into a so-called 
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sandbox). Such virtual machines as Java  [8], VMware  [15] and 
User Mode Linux (UML)  [7] can be used to create a virtual 
domain for an application to be downloaded, so that the 
application’s execution environment can be kept separate from 
the system itself. This approach appears to the one best suited to 
establishing future higher-level security, since future applications 
can be expected to become too complex for perfect pre-
verification. 

Here, we propose a secure platform which employs Linux on a 
chip multiprocessor in order to achieve higher performance and 
more secure execution environment on OSs with high 
functionality. We call this platform FIDES. It forms a domain on 
each processor, so that the basic-function domain is separated 
physically from the other domains. This platform can confine the 
influence of any downloaded application to the single domains on 
which it is to be executed. Further, since, unlike the second 
approach, applications are not confined within a virtual domain, 
the CPU performance can be kept high. In this way, FIDES with 
multi-grained separation mechanism is able to offer high 
performance and secure execution environment on high-
functionality OSs; the features are needed for next generation 
mobile terminals. 

The remainder of this paper is structured as follows: Section  2 
gives details on the technologies used to build the FIDES 
platform; Section  3 shows presents an evaluation of platform 
performance; and Section  4 discusses conclusion and future work. 

2. FIDES PLATFORM 
The basic structure of the FIDES platform is outlined in Figure 1. 
Here, we assume the use of an asymmetric multiprocessor in 
which all caches are independent.  
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Figure 1: FIDES Platform with Multi-grained Separation 
Mechanisms for Secure Mobile Terminals 

The basic FIDES platform has three domains, i.e., base, trusted, 
and untrusted. The base domain contains the basic functions of a 
mobile terminal, such as a mailer and a browser. Downloaded 
applications are never executed on the base domain, which is only 
assumed to be sufficiently trustworthy to handle the basic 
functions of the mobile terminal. Downloaded applications 
validated by communication carriers as being trustworthy are 
executed on the trusted domain. All other downloaded 

applications are executed on the untrusted domain. In this way, 
the base domain is protected from the behavior of all applications 
on other domains. Therefore, this platform has better potential 
ability to realize a secure mobile platform with high performance 
and low power consumption. Note that the number of the domains 
on FIDES platform is not limited to only three and can be flexibly 
determined by system requirements. 

However, in order to put this FIDES platform to practical use, the 
platform needs two important components: hardware support for 
coarse-grained processor-level separation and secure OSs for 
medium-grained OS-level separation and fine-grained process-
level separation.  

2.1 Processor-level Separation Logic 
The FIDES platform embeds a processor-level separation logic 
into the system bus, such as AMBA  [2]. This logic provides a new 
mechanism, which is based on the access matrix between bus 
masters and bus slaves at the bus level. An address range 
checking mechanism is also required, since some memory 
resources on different regions, such as SDRAMs or Flash ROMs, 
are accessed from bus masters. The abstract structure of bus filter 
logic is illustrated in Figure 2, where the bus signals have been 
defined in AMBA. The basic role of this logic determines whether 
an access from a bus master to a bus slave should be granted or 
not. The decision is based on the access matrix, which stores 
information in which all masters can have read and write access to 
an I/O or an address range of memory.  
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Figure 2:  Bus Filter Logic – New Logic for Processor-level 
Separation on a Chip Multiprocessor 

The content for the access matrix should only be set by the 
processor on the base domain. Also, the default setting is 
preferable to denying all access by other processors to base-
domain resources, which must be protected. 

The trade-off in terms of the design is the number of address-
range entries, which determines whether an access to a memory 
can be permitted. The more this number increases, the longer 
access latency is. Therefore, the number of the entries should be 
close to the number of protected resources. Also, if the access 
latency and the logic area are sufficiently small for the system, 
MMU architecture might be preferable. This is because it can 
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provide a simple mechanism of virtualization to the resources as 
well as access control to the bus slaves. 

2.2 Enhanced Secure OS 
Three technologies enhance Security-Enhanced Linux (SELinux) 
 [10] for fine-grained process-level separation: eXecute-In-Place 
(XIP) kernels to reduce total memory requirements; policy 
separation, which can be independently applied to individual 
domains; and dynamic access control, by which the access rights 
of processes can be changed dynamically to prevent the 
propagation, through Inter-Domain Communication (IDC), of 
viruses or other malicious attacks. 

2.2.1 XIP Kernels for OS-level Separation 
Processor-level Separation can provide OS-level separation for a 
system without any modification of an OS. However, the 
available resources in embedded systems are limited by system 
cost. An example of such resources is memories, which include 
ROMs and RAMs. Therefore, total memory requirements have to 
be reduced in order to support OS-level separation, which causes 
the system to run multiple OSs. 
In general, read-only data is often placed on ROMs to reduce the 
total memory requirement for RAMs or to shorten the boot time 
for the system, since data does not need to be copied in RAMs. 
Typical read-only data are instructions, which should be executed 
directly on a ROM. This technology is usually called XIP  [3]. 
Currently, the XIP technology is supported only by a single 
processor. Therefore, we developed a new XIP technology for the 
FIDES platform, called as XIP kernels, which is improved from a 
traditional XIP technology for a single processor. 
The concept behind XIP kernels is illustrated in Figure 3. Read-
only sections, such as instruction and read-only data, are collected 
together as one continuous section. This is achieved by modifying 
the linker script. In this way, read-only sections are retained in the 
ROM. The other sections are copied to the RAM. On the other 
hand, SELinux’s data section is copied to the dedicated working 
area on the RAM, which is determined by the processor ID on the 
SELinux. Each virtual address space in the XIP kernels seems to 
be the same as a single kernel. 
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Figure 3:  XIP kernels for  
Memory-efficient OS-level Separation 

2.2.2 Policy Separation for Process-level Separation 
SELinux’s policy is a key of system security to realize the 
process-level separation. Only a policy can control the access 
rights of processes. Note that the access right of a process 
specifies which system calls the process can execute. However, 
the larger the policy becomes, the longer the execution time for 
system calls is. This degraded performance would not be 
acceptable for embedded systems. The policy should be as simple 
as possible to reduce such overhead. Therefore, the FIDES 
platform separates a single policy into three to simplify the policy 
for each domain. For example, the policy for the base domain 
may be relaxed, the policy for the trusted domain may have 
moderate constraints, and the policy for the untrusted domain may 
have strict constraints, since the system calls for untrusted 
applications, which may have a bad influence on the other 
domains, should be restricted. 

We developed a new mechanism for policy separation for 
SELinux kernels (see Figure 4). This mechanism can be achieved 
by modifying the SELinux code to load the policy file 
corresponding to the processor ID. Further, it provides two 
additional effects for the system. First, the time to boot up 
SELinux can be reduced, since the kernel loads a smaller policy 
file. Second, simpler policies for each domain can reduce the 
overhead to execute system calls. 
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Figure 4:  Policy Separation for  
Enhanced Process-level Separation 

2.2.3 Dynamic Access Control for Secure IDCs 
IDC plays an important role to provide useful services for 
embedded systems. For example, an application on the trusted 
domain could download a music file through IDC with basic-
function applications on the base domain. However, such an IDC 
mechanism might create security holes. A process on a trusted 
domain, which communicates with another process on an 
untrusted domain, might be attacked through malicious data 
propagating from the process on the untrusted domain. Therefore, 
the concept of secure IDCs is important for the systems. 

The simplest approach would be to verify all applications with 
IDC. However, this is not realistic unless such applications are 
sufficiently small to be verified formally. If applications with IDC 
cannot be pre-verified, they should be controlled dynamically. 
One approach is with a tainted mode of Perl, which prohibits 
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system calls that use data acquired from communication with an 
untrusted domain as an argument. It can be efficiently 
implemented for interpreter languages, such as Perl, since 
malicious data can easily be traced in interpreters. However, it is 
impossible to apply to applications written in native languages 
like C, since C specifications make it difficult to trace data. Note 
that such native languages are our target in order to support the 
downloading of native applications, as mentioned in Section  1. 

Therefore, we developed dynamic access control for SELinux to 
provide more secure IDCs, which is illustrated in Figure 5. This 
mechanism can dynamically change the access rights of processes 
related to IDCs into the limited access rights. For example, two 
processes are doing IDC from domain B to domain A in the figure. 
The access right of the application on domain A is then changed 
to a stricter one. On the other hand, the application on domain B 
may have the original access right, since the application has not 
received malicious data. Note that the access right of a process 
specifies which system calls the process can execute. 
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Figure 5:  Dynamic Access Control – New Mechanism for 

Secure IDCs 
Currently, sockets and files, which are commonly used for inter-
processor communication, are available as IDCs of the FIDES 
platform.  Then, this mechanism can be implemented as a kernel 
module, which hooks only two security check functions of 
SELinux: inode_permission to check open system call for files 
and socket_bind to check bind system call for sockets in the 
structure of security_operations. When this module is loaded into 
the kernel, it reads two new policy files. These files have 
information on changed access rights, and information on 
managed kernel objects, which include file names or socket 
information with the address family (e.g. AF_INET), type (e.g. 
SOCK_STREAM), protocol, and port number.  

Note that there is only one concern with this approach. It is 
extremely difficult to determine when the original access right of 
a process must be restored, after the access right has been once 
changed. The process might execute system calls that use 
malicious data stored in its own process space. In terms of this 
concern, the downloaded application which has already 
communicated with other domains should be killed or shut down 
at appropriate time. The mechanisms for such a downloaded 
application can be achieved, since mobile terminals has already 
had such handling mechanisms for non-native applications. 

3. EVALUATION 

3.1 Evaluation Environment 
The evaluation environment is summarized in Table 1. We use a 
mobile application processor, known as MP211 SoC  [1] of NEC 
Electronics Corporation. The main feature of this chip is a chip 
multiprocessor architecture with three ARM processors. We 
implemented SELinuxes on an ARM-based multiprocessor  

Table 1: Evaluation Environment 

Item Feature 
SoC MP211 
CPU ARM926EJ-S x 3  

Cache I: 16KB, D: 16KB 
Frequency ARM: 200MHz, Bus: 100MHz 
Memory ROM:64MB, RAM:64MB 

Linux Embedded Linux  2.4.20 with SELinux

3.2 Qualitative Comparison 
Table 2 lists the qualitative advantages offered by the FIDES 
platform over other platforms: software-only platform and new-
mode platform. The most highly desired characteristics are 
underlined in the table. The information of secure IDCs is not 
shown in the table, since the mechanism of the other platforms is 
unclear.  

In general, the effective way to evaluate the quantitative security 
level of a system design is unestablished, since it depends on the 
system implementation. Therefore, the magnitude of interaction to 
a protected domain, such as base domain, could be one candidate 
for the approximate metrics. This means that a platform with 
multi-grained separation mechanisms, which can reduce the 
interaction to a protected domain, would be more secure.  

Table 2:  Qualitative Comparison with Other Platforms 

Feature Software
Only 

New 
Mode FIDES 

Separation Process Process,  
OS 

Process, OS, 
Processor 

(Section  2.1,  2.2.1-2)
Security Low Medium High 

Secure IDC --- --- 
Dynamic Access 

Control 
(Section  2.2.3) 

Performance Low Moderate High 
(Section  2.2.2) 

Power High Moderate Low 
Flexibility High Moderate Moderate 
HW Area Small Medium Large 

Reboot Time for 
Crashed Domains High High Low  

(Section  2.2.2) 
 
The software-only platform, whose security is based on only 
process-level separation on a secure OS, has the smallest 
hardware area and the highest flexibility of the three platforms. 
However, the security level is not so high, since a process might 
be able to exploit a vulnerability of the OS and the process could 
attack the base domain through the exploited OS. 

The new-mode platform, whose security is based on process-level 
and OS-level separation, features a CPU capable of switching 
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operational modes  [1] between “normal”, and “secure.” Basic 
functions are operated exclusively in the secure-mode, whereas 
operations for downloaded applications are conducted exclusively 
in the normal mode. In this way, basic-function operations are 
protected from any possible malicious-application content. This 
OS-level separation is supported by additional hardware logic.  
However, it does suffer from certain disadvantages for embedded 
systems. Notably, the platform needs the excessive length of time 
in order to reboot a crashed domain without any performance 
influence to the base domain. Further, the security level is not 
high enough, since a process might be able to waste a lot of CPU 
time by the execution code of busy-wait loop and the process 
could suppress the work of basic-function applications on the base 
domain indirectly. 

Finally, FIDES platform with multi-grained separation 
mechanisms, which include the processor-level separation, offers 
the best security. In other words, this platform is more resilient to 
the attacks which consume the system resources, such as CPU 
time or memory. Further, the platform can reboot a crashed 
domain quickly without any performance influence to the base 
domain, since a processor for the crashed domain is independent 
on the processor for the base domain. This feature is more 
preferable for embedded systems. FIDES has the largest hardware 
area of the three, as previously discussed, whereas this would not 
be a problem with a fabrication technology of 90nm or better.  

From the above comparison, the proposed FIDES platform is 
more superior as a secure platform for embedded systems, such as 
mobile terminals.  In the remainder of this section, new four 
technologies to support FIDES platform are evaluated. 

3.3 Bus Filter Logic 
The estimated number of transistors for bus filter logic as a 
processor-level separation is less than 20 K. According to 
ITRS2003  [14], the transistor density logic (M transitors/cm2) of 
an MPU is 77 in the hp90-nm fabrication technology node that 
appeared in 2004 or later. This is sufficiently small, since the area 
bus filter logic requires is less than 0.026 mm2. Further, careful 
circuit implementation can reduce its latency overhead and power 
consumption. 

3.4 XIP kernels 
The effect of reducing the total memory requirement which XIP 
kernels gives to the system is shown in Figure 6, where the 
amount of memory for a single kernel without SELinux is 
normalized to 1, and the kernel configuration has been set to the 
minimum functions for the MP211. 

The total memory requirements which include RAM and ROM 
are increased by 7%, when SELinux is introduced to the base 
kernel for a single processor. SELinux can be adapted to the 
system, since the memory overhead is very small. However, non-
XIP kernels for chip multiprocessors make the memory 
requirements increase by 214%. On the other hand, XIP kernels 
can reduce the memory requirements by 182%, compared with 
non-XIP kernels. It is shown that this technology is very 
advantageous, since the shared text section on ROM is dominant 
in all sections of a Linux kernel. Also, this memory overhead is 
acceptable enough from the point of view of current memory 

trends, since the memory overhead for XIP kernels is suppressed 
to only 32%.  
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Figure 6:  Memory Requirements Reduced by XIP kernels 

3.5 Policy Separation 
The main effect of policy separation is to simplify policy rules. It 
is difficult to evaluate these effects numerically. Instead, we 
evaluate the load time of a policy file. It has a great effect on 
reducing the boot time. This can be seen in Figure 7, where the 
number of rules in a policy file is along the horizontal axis, and 
the load time, which is an average of 20 measurements, for a 
policy with 352 rules is normalized to 1 along the longitudinal 
axis.  
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Figure 7:  Faster Load Time for Policy File 
Least-squares fitting reveals that the relation between the number 
of rules and load time is linear. The number of rules depends on 
the system requirements. In an example for our evaluation 
environment, the policy file for a single domain has 21,000 rules. 
Then, each policy file for three domains has less than 7,000 rules. 
Consequently, the load time for three domains would be 2.1 times 
faster. It should be noted that this load time cannot be achieved 
with a single processor under the same power consumption 
conditions, since the frequency is limited to a 1.5 times increment 
at maximum from our approximate calculation. 
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3.6 Dynamic Access Control 
We evaluate the module size and the overhead to the execution 
time of system calls hooked by dynamic access control. The total 
size, which contains text section, data section and BSS section, is 
only 3.7 KB. This size is small enough for embedded systems. 

In addition, the overhead to the execution time of hooked system 
calls, such as open system call and bind system call, is plotted in 
Figure 8, where the execution time is an average of 100 system 
calls, and the execution time on SELinux without this module is 
normalized to 1. The overheads of both system calls are only a 
few percent, when the access right of a process has not been 
changed. Also, the overheads are only 4%, when the access right 
has been changed.  
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4. CONCLUSION 
FIDES can provide an excellent platform for secure next 
generation mobile terminals based on the flow of mobile-terminal 
security. The FIDES platform, which employs Linux on a chip 
multiprocessor, could guarantee security in executing downloaded 
native applications.  
The main feature is the higher security based on multi-grained 
separation mechanisms:  coarse-grained processor-level 
separation of the basic-function domain from the other domains, 
medium-grained OS-level separation, and fine-grained process-
level separation on SELinux as a secure OS. Bus filter logic for 
processor-level separation can be implemented as a small logic. 
Further, we enhanced SELinux in order to support the other-level 
separations and meet the embedded systems requirements. XIP 
kernels for memory-efficient OS-level separation can reduce 
memory requirements by 182%, policy separation for enhanced 
process-level separation can apply policies 2.1 times faster at 
system boot-up, and dynamic access control can provide secure 
IDCs with an overhead of only 4% for IDC system calls. We 
implemented SELinuxes on an ARM-based multiprocessor 
The FIDES platform with multi-grained separation mechanisms is 
more secure than other platforms, such as software-only platforms 
and new-mode platforms, since it contains multi-grained 
separation mechanisms. Also, the above evaluation results show 
that four new technologies to support the FIDES platform are well 

suited to secure next generation mobile terminals. In future work, 
the FIDES platform will support SMP systems. 
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