
An Integer Linear Programming Approach for Identifying
Instruction-Set Extensions

Kubilay Atasu ∗

Department of Computer
Engineering

Bogazici University, Turkey

atasu@boun.edu.tr

Günhan Dündar
Department of Electrical and

Electronics Engineering
Bogazici University, Turkey

dundar@boun.edu.tr

Can Özturan
Department of Computer

Engineering
Bogazici University, Turkey

ozturaca@boun.edu.tr

ABSTRACT
This paper presents an Integer Linear Programming (ILP)
approach to the instruction-set extension identification prob-
lem. An algorithm that iteratively generates and solves a set
of ILP problems in order to generate a set of templates is
proposed. A selection algorithm that ranks the generated
templates based on isomorphism testing and potential eval-
uation is described. A Trimaran based framework is used
to evaluate the quality of the instructions generated by the
technique. Speed-up results of up to 7.5 are observed.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms
Algorithms, Design, Performance

Keywords
ASIPs, Extensible Processors, Integer Linear Programming

1. INTRODUCTION
One of the most important differences between embed-

ded computing and general purpose computing is the cus-
tomization opportunities available in embedded computing.
Embedded systems are dedicated to an application domain.
Components of an embedded system can be specialized in
order to exploit the characteristics of the given application.
Very often, general-purpose processors fail to satisfy the

strict performance, power, and area requirements of embed-
ded applications. Use of Application-Specific Integrated-
Circuits (ASIC), on the other hand, results in a loss of flexi-
bility that could be provided by a general-purpose processor.

∗This author is supported by TUBITAK under National
Ph.D. Scholarship Program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

Application-specific instruction-set processors (ASIP) are a
good compromise between general-purpose processors and
ASICs. A base processor is augmented with application spe-
cific functional units that implement the application-specific
instruction-set extensions. While the datapath is extended
with new functional units, a pre-verified, pre-optimized base
processor design and instruction-set architecture (ISA) is
reused. Control intensive parts of an application can be im-
plemented in software using the base processor instructions,
and time-critical, computation intensive parts can be mi-
grated to the specialized datapath as special instructions.
Several commercial examples of extensible processors exist,
such as Tensilica Xtensa [1][2], MIPS Pro Series [3], ARC
ARCtangent [4], and ARM OptimoDE [5].
Identifying the instruction-set extensions is a HW/SW

partitioning problem that must respect the architectural
constraints of the base processor. The way the specialized
functional units read their inputs and write their outputs
determines the communication cost of the HW/SW inter-
face. Very often, specialized units can read several input
operands from the register file and can write a single output
operand to the result bus with no extra cost. Additional in-
puts and outputs require additional data transfers between
the register file and specialized units, and increase the com-
munication cost. Alternatively, additional read and write
ports may be added to the register file, which results in in-
creased area and register read and write delays.
Applications described in high-level languages are often

converted to control dataflow graphs (CDFG) using com-
piler infrastructures. The basic blocks of the application
form the nodes of the CDFG, and the edges of the CDFG
represent the control flow across basic blocks. The aim is
to identify clusters of primitive operations satisfying given
input and output constraints, having possibly multiple in-
stances within the basic blocks of the CDFG that collectively
maximize some metric. In this work, we present an Integer
Linear Programming (ILP) based methodology for identify-
ing maximal speed-up instruction-set extensions under input
and output constraints given a high level description of an
application.

2. RELATED WORK
Automatic identification of instruction set extensions has

received considerable attention from various research groups
with interest in computer architecture, reconfigurable com-
puting or HW/SW co-design.

172



A description of the HW/SW partitioning problem for
ASIP design in the form of a formal combinatorial opti-
mization problem is given in [6]. This work assumes that
instruction-set extension candidates, and the matching of
these instructions with the dataflow graph nodes are previ-
ously defined. The problem is formulated as finding min-
imum area solution that satisfies given latency and power
consumption constraints. A branch-and-bound method is
proposed for the solution of the problem. The work in [7,
8, 9] are similar in that they rely on incremental clustering
of related dataflow graph nodes using heuristic approaches
with the aim of identifying frequently occurring patterns.
In [10], a simulated annealing based algorithm is employed
to generate clusters based on schedule time and resource us-
age of dataflow graph nodes. The work of Choi et al. [11]
formulates the instruction-set extension identification prob-
lem as a modified subset-sum problem. In order to overcome
the computational explosion, this work puts a limit in the
latency of the instruction-set extensions.
In [12], MaxMISO algorithm is introduced, which identi-

fies all maximal-input single output instruction-set exten-
sion candidates within an application in linear run-time.
The main limitation of this algorithm is that the number
of outputs is restricted to to one, and the number of in-
puts is not parameterizable. In [13], a cone is defined as
a subgraph consisting of a given node and a set of its con-
nected predecessors. A dynamic programming based algo-
rithm is proposed for the identification of single output cones
as instruction-set extension candidates. The algorithm has
exponential worst case time complexity, but it is very fast
in practice. The number of inputs is parameterizable, but
the number of outputs is restricted to one.
In [14] a complete tool chain based on Trimaran [19] is

described. Candidate generation is based on a heuristic
guide function and compilation with instruction-set exten-
sions is formulated as a subgraph isomorphism problem.
Machine description is updated automatically to support the
instruction-set extensions. Extensive simulation results are
presented.
In [15], an exact enumerative algorithm based on con-

straint propagation is proposed, that could handle any input
and output combination without imposing any constraint on
latency, or connectivity of instruction-set extensions. The
algorithm is observed to handle dataflow graphs with up
to 100 operations reasonably fast, but its performance for
larger dataflow graphs is often unacceptable. Another limi-
tation of this work is that there is no notion of instruction
reuse, an instruction-set extension has only a single instance
in the code.
In [16], the notion of cones used in [13] is extended to

include backward cones. At each node the set of upward
and downward cones are computed and saved. Later, the
backward and forward cones are combined to enumerate all
possible connected instruction-set extension candidates sat-
isfying input and output constraints. The algorithm is ob-
served to be faster than the algorithm of [15]. However, it is
not able to identify parallel, disconnected components of the
dataflow graph as part of a single instruction-set extension.
ILP based solutions have long been used in the HW/SW

co-design area. Niemann et al. present a very elaborated
example of such a work in [17]. However, the problem of
instruction-set extension identification under input and out-
put constraints has not yet been formulated as an ILP prob-

lem in the literature. Today’s increasingly advanced ILP
solvers such as CPLEX [20] are often able to solve prob-
lems with a few thousands of integer variables and tens of
thousands of constraints efficiently. CPLEX Mixed Integer
Optimizer incorporates state of the art techniques, such as
cutting plane algorithms, heuristics, reduction algorithms,
and a variety of branching techniques. To take advantage
of this widely used sophisticated package, we formulate the
instruction-set extension identification problem as an ILP.
The paper is organized as follows: Section 3 describes an

ILP model for identifying a single template given a basic
block. An algorithm that iteratively generates and solves a
set of ILP problems to generate a set of templates from a
basic block is described in Section 4. The set of all templates
generated from all basic blocks are passed to the template
selection algorithm of Section 5, which groups together iso-
morphic templates and ranks them based on their potential.
The experimental setup and the results are presented in Sec-
tions 6 and 7.

3. ILP MODEL FOR IDENTIFICATION
The dataflow within a basic block is represented by a di-

rected acyclic graph G (V, E), where the nodes V represent
operations and the edges E represent data dependencies
between operations. Each dataflow graph G is associated
with an extended dataflow graph Gext

(
V ext, Eext

)
where

V ext = V ∪V in, and Eext = E ∪Ein. The additional nodes
V in represent input variables of the basic block. The ad-
ditional edges Ein connect nodes V in to V . The node set
V out ⊆ V represent the operations generating the output
variables of the basic block.
An instruction template T is an induced subgraph of G.

A template T is convex if there exists no path from a node
u ∈ T to another node v ∈ T which involves a node w /∈ T .
Our aim is to identify templates having less than or equal to
Nin inputs, having less than or equal to Nout outputs, satis-
fying the convexity constraint, that maximise a certain met-
ric. Such a metric should be a measure of speedup achievable
when the template is executed as a single instruction in a
specialised datapath. Fixing the values Nin and Nout, means
a fixed communication cost. The convexity constraint is im-
posed on the templates to ensure that the compiler can gen-
erate a feasible schedule after the introduction of specialised
instructions.
The definition of the indices we use in our formulations is

as follows:

I1 = {1..n1} indices for nodes v1i ∈ V

I2 = {1..n2} indices for nodes v2i ∈ V in

I3 = {1..n3} indices for nodes v3i ∈ V out

I4 = {1..n4} indices for nodes v4i ∈ V/V out

We associate with each dataflow graph node a binary de-
cision variable xi that represents whether the node is con-
tained in the template or not. We use x′

i to denote the
complement of xi. If xi = 1, the node is contained in the
template. Otherwise, x′

i = 1 and the node is not contained
in the template. The formal definition is as follows:

xi, x
′
i ∈ {0, 1} x′

i = 1− xi i ∈ I1

To be able to formulate the problem, the list of successor
nodes and the list of predecessor nodes of nodes in V as

173



well as the list of successor nodes of nodes in V in must be
known. This information is formally defined as follows:

Succ(i ∈ I1) = {j ∈ I1 | ∃e ∈ E : e = (v1i, v1j)}
Pred(i ∈ I1) = {j ∈ I1 | ∃e ∈ E : e = (v1j , v1i)}
Succ(i ∈ I2) =

{
j ∈ I1 | ∃e ∈ Ein : e = (v2i, v1j)

}
For the sake of simplicity, we demonstrate our formula-

tions making use of and/or type operations. Such opera-
tions can be easily converted to linear form by introducing
additional variables and constraints.

3.1 Input Port Constraint
A dataflow graph node is an input node for the template

T if it is not contained in T , and it has at least one succes-
sor contained in T . Similarly, an input node for the basic
block is an input node for T if it has at least one successor
contained in T .

∑
i∈I1


x′

i ∧

 ∨

j∈Succ(i)

xj





 +

∑
i∈I2


 ∨

j∈Succ(i)

xj


 ≤ Nin

(1)

3.2 Output Port Constraint
A dataflow graph node is an output node for the template

T if it is contained in T and it has at least one successor not
contained in T . A node in T is automatically an output
node if it is an output node for the basic block.

∑
i∈I3

xi +
∑
i∈I4


xi ∧


 ∨

j∈Succ(i)

x′
j





 ≤ Nout (2)

3.3 Convexity Constraint
For each dataflow graph node we introduce two new de-

cision variables Ai and Di. Ai = 1 if the node has at least
one ancestor contained in the template, Ai = 0 otherwise.
Similarly, Di = 1 if the node has at least one descendant
contained in the template, Di = 0 otherwise. More formally,

Ai, Di ∈ {0, 1} i ∈ I1

Ai =

{
0 ifPred(i) = ∅(∨

j∈Pred(i) (xj ∨ Aj)
)

otherwise
(3)

Di =

{
0 ifSucc(i) = ∅(∨

j∈Succ(i) (xj ∨ Dj)
)

otherwise
(4)

To preserve the convexity, there should be no dataflow
graph node that is not contained in T , having both an an-
cestor and a descendant contained in T :

x′
i ∧ Ai ∧ Di = 0 i ∈ I1 (5)

3.4 Objective
The objective function is an estimation of reduction in

the schedule length of the basic block when the template
T is implemented as a special instruction. The software
latency of the special instruction is estimated by quantizing
its critical path length. To be able to calculate the objective,
we associate with each dataflow graph node pre-computed
software and hardware latencies si and hi, where si is integer

and hi is real. In addition, we associate with each dataflow
graph node a real decision variable li that represents the
completion time of the operation corresponding to that node
when the template T is executed in hardware. The largest
such value gives us the critical path length L of T . The
objective is the difference between the sum of the software
latencies of the nodes contained in T and the ceiling of the
critical path length of T . The nonlinearity introduced by
the ceiling function can simply be avoided by defining L as
an integer decision variable. Formally:

max
∑
i∈I1

(sixi)− 
L� (6)

li = xihi if Pred(i) = ∅ (7)

lj ≥ li + xjhj j ∈ Succ(i), i ∈ I1 (8)

L ≥ li if Succ(i) = ∅ (9)

4. TEMPLATE GENERATION
Our template generation algorithm iteratively solves a set

of ILP problems to generate a set of templates. For a given
basic block, the first template is identified by solving the ILP
problem as defined in Section 3. After the identification of
the first template, the dataflow graph nodes contained in the
template are collapsed to a single graph node, and adjacency
information is updated. The updated graph is the input of
the second iteration with the restriction that the graph node
representing the previously identified template cannot be
part of new templates. By imposing this restriction, we limit
the number of templates to a linear function of the dataflow
graph size. The process is continued until the solution of
the ILP problem does not return a positive objective value.
The same procedure is applied for all basic blocks. A more
formal description is given in Figure 1.

PROCEDURE TEMPLATE GENERATION
S : The set of templates to be generated
IB = {1..nb} : Indices for basic blocks
Gi (Vi, Ei) : Dataflow graph of basic block i
Gext

i

(
V ext

i , Eext
i

)
: Extended dataflow graph of basic block i

V out
i : Output nodes of basic block i

BEGIN
S = ∅
FOR i ∈ IB

Generate Gi, Gext
i , and V out

i

DO
Generate ILP problem for Gi, Gext

i , and V out
i

Identify template T solving the ILP problem
IF (objective ≥ 0 )

S = S ∪ {T}
Collapse T into a single graph node
Disable inclusion of the node within new templates
Update Gi, Gext

i , and V out
i

WHILE (objective ≥ 0 )
END

Figure 1: Template Generation Algorithm

5. TEMPLATE SELECTION
Our template selection algorithm first applies pairwise iso-

morphism checks on the set of templates generated by the

174



algorithm of Figure 1. The isomorphism checks are done us-
ing the nauty package [18]. The nauty package is known as
one of the fastest isomorphism checking tools. It makes use
of a backtracking algorithm that produces automorphism
groups of a given graph, as well as the canonically labelled
isomorph of the graph. To understand whether two graphs
are isomorphic, it is enough to compare their canonically
labelled isomorphs.
A set of isomorphic templates defines an isomorphism

class. Once the isomorphism classes are determined, po-
tential evaluation starts. The potential of a template is the
value of the objective function described in Section 3.4 mul-
tiplied by the frequency of execution of the basic block that
contains the template. The potential of an isomorphism
class is the sum of the potentials of the individual templates
contained in that class. The classes are then ranked accord-
ing to their potentials. We choose the first Nk classes, where
Nk is a user defined parameter.
A chosen isomorphism class defines an instruction-set ex-

tension that can implement the whole set of templates in-
cluded in that class. Each template corresponds to a piece
of code segment of the application. These code segments are
later replaced with the new instruction.

6. EXPERIMENTAL SETUP
We use the Trimaran [19] framework to generate the con-

trol/dataflow information, and to achieve basic block level
profiling of a given application. Specifically, we work with
Elcor, the back-end of Trimaran. Elcor is associated with a
parameterizable machine description for which it generates
machine code. Once a subset of opcodes are reserved for
instruction-set extensions, it is possible to introduce them in
the code specifying only the opcode id. Elcor does not need
to be internally aware of the structure of the instruction-
set extensions, but it can obtain this information by making
calls to a machine description database.
We read the Elcor intermediate representation after ap-

plying classical compiler optimizations, and before schedul-
ing and register allocation are done. At this point we apply
our algorithms to identify the instruction-set extensions. We
use the CPLEX Mixed Integer Optimizer [20] within our al-
gorithms to solve the ILP problems generated throughout
their execution.
We use a single-issue machine as the baseline. We search

for instruction-set extension candidates within basic block
boundaries. We disable inclusion of memory access, and
branch operations within instruction-set extensions. We cal-
culate hardware latencies of various operations using a cir-
cuit complexity estimation methodology described in [21],
and we normalize the latencies based on the latency of a 32-
bit carry propagate adder. We use software latencies similar
to latency specifications of a popular embedded processor.
Once the instruction-set extensions are identified, we con-

figure the baseline machine to support the new instructions,
and we replace the associated code segments with the new
instructions. After that, we apply standard Trimaran schedul-
ing and register allocation passes on the new code with
instruction-set extensions. We calculate the cycles spent
in a basic block by multiplying its schedule length by its
frequency of execution. We calculate the total cycles spent
in an application as the sum of the cycles spent in its basic
blocks. We assume no change in the processor cycle time
due to the introduction of instruction-set extensions.

7. RESULTS
We chose Advanced Encryption Standard to demonstrate

the effectiveness of our algorithms. The core of the AES en-
cryption is the Round Transformation (see Figure 2), which
operates on a 16-byte State. The State can be considered
as a two dimensional array of bytes having four rows, and
four columns. The columns are often stored in four 32-bit
registers, and are inputs and outputs of the round trans-
formation. First, a nonlinear byte substitution is applied
on each of the State bytes by making table lookups from
S-Boxes stored in the memory. Next, the rows of the State
Array are rotated over different offsets. After that, a linear
transformation called MixColumn Transformation is applied
on each column. The final operation of the Round Transfor-
mation is an XOR with Round Key. The output of a round
transformation, becomes the input of the next round trans-
formation. Very often, several round transformations are
unrolled within a loop, resulting in very large basic blocks
consisting of several hundreds of operations.

^ ^ ^

S S S S S S S S S S S S S S S S

^

Column1 Column2 Column3 Column4

Column1 Column2 Column3 Column4

Rotate Rows

MixColumn MixColumn MixColumn

Round Key

MixColumn

Figure 2: The Round Transformation

The most compute-intensive part of AES encryption is the
MixColumn Transformation. The MixColumn Transforma-
tion is a single input, single output transformation consisting
of around 20 simple bitwise operations with many constant
coefficients. Its critical path is smaller than the latency of a
32-bit adder. It would be the most likely choice for a manual
designer as a special instruction. The dataflow of operations
implementing the transformation is depicted in Fig. 3.
We used a highly optimized 32-bit implementation of AES

described in [22]. As shown in Figure 4, two Round Trans-
formations are unrolled within a loop, resulting in the largest
basic block of the application consisting of around 350 op-
erations. A second basic block consists of a single Round
Transformation followed by the Final Round Transforma-
tion, which does not incorporate MixColumn Transforma-
tions. The code also includes an initialization stage, where
State is read from memory and reorganized for fast process-
ing, and a finalization stage, where State is written back to
memory in its original format.
Given an input port constraint of 1, and an output port

constraint of 1, our template generation algorithm success-
fully finds the 12 instances of the MixColumn Transforma-
tions within the two basic blocks of the ENCRYPTBLOCK
function, and our isomorphism checking algorithm success-
fully combines the 12 templates within a single isomorphism
class as the most promising instruction set extension of the
application. Given an input port constraint of 2, and an out-

175



<< >>

|

^

&

>>

<< >>

|

<<

&

^

^

|

>><<

0x80808080

|

0x7F7F7F7F

XTIME

ROTATE

OUTPUT

INPUT

^

>>

|

<<

Figure 3: The MixColumn Transformation

FUNCTION ENCRYPTBLOCK
BEGIN

Initialize(State)
FOR i in {1..num rounds/2}
BEGIN

Round(State, RoundKey++) ;
Round(State, RoundKey++) ;

END
Round(State, RoundKey++) ;
FinalRound(State, RoundKey) ;
Finalize(State)

END

Figure 4: Implementation of AES Encryption

put port constraint of 2, our tool successfully identifies the
two parallel MixColumn Transformations within a Round
Transformation and matches it with five other isomorphic
templates. Given an input port constraint of 4, and an out-
put port constraint of 4, our tool successfully identifies the
four parallel MixColumn Transformations within a Round
Transformation. All three instances of the 4-input 4-output
instruction set extension are matched in the code.
The AES decryption is very similar to AES encryption.

Basically, Inverse MixColumn Transformations replace Mix-
Column Transformations in the Round Transformation. The
Inverse MixColumn Transformations are again single-input,
single-output transformations. However, they are more com-
plex compared to MixColumn Transformations comprising
around 40 bitwise operations. Again, two Round Transfor-
mations are unrolled within a loop, resulting in the largest
basic block of the application consisting of around 550 op-
erations. Again, our tool successfully identifies single or
multiple parallel Inverse MixColumn Transformations as the
most promising instruction-set extension candidates within
the application basic blocks.

The number of instances matched in the code for the best
8 instruction-set extension candidates under different input
and output constraints for AES encryption and AES de-
cryption benchmarks are presented in Table 1. The degree
of instruction reuse is high. Up to 18 instances of a single
instruction are found for both benchmarks. The speed-up
results obtained for the two benchmarks under different in-
put and output constrains up to 8 instruction-set extensions
are presented in Figures 5, and 6. The x-axis represents a
set of constraints consisting of (Nin,Nout,Nk) tuples, and the
y-axis represents the corresponding speed-up values in the
figures. The figures show that a speed-up of more than 4.5
can be reached for AES encryption. In the case of decryption
larger logic blocks are mapped from software to hardware,
and speed-up results of up to 7.5 can be reached. Only a
limited amount of resources are needed in all the cases.

Table 1: No. Instances of ISEs

AES Encryption
Nin,Nout 1st 2nd 3rd 4th 5th 6th 7th 8th

1,1 12 - - - - - - -
2,2 6 16 18 8 2 6 1 1
4,4 3 7 4 6 2 1 1 1

AES Decryption
Nin,Nout 1st 2nd 3rd 4th 5th 6th 7th 8th

1,1 12 - - - - - - -
2,2 6 13 18 7 6 1 1 3
4,4 3 7 4 6 2 2 2 1

Figure 5: Speed-up Results for AES Encryption

The performance of our algorithms is quite notable. The
identification algorithm of [15] fails to generate a result for
the AES benchmark in several days. Under the same con-
straints and under the same objective function our ILP-
based template identification algorithm finds the optimal
solutions in only a few seconds. Figure 7 depicts the time
taken by ILP solver to solve the set of identification prob-
lems generated throughout the execution of the template
generation algorithm of Figure 1 on AES encryption and
decryption benchmarks. The largest identification time we
observed on a Pentium 4, 3.0 GHz machine with 1GB mem-
ory was around 25 seconds. The largest execution time we
observed for the overall algorithm was only about 2 minutes.

176



Figure 6: Speed-up Results for AES Decryption

0.1

1

10

100

1000

10000

100000

1 10 100 1000

S
O

LU
T

IO
N

 T
IM

E
 (

M
IL

LI
S

E
C

O
N

D
S

)

GRAPH NODES

problem instances

Figure 7: Performance of ILP Based Identification

8. CONCLUSIONS
We proposed an ILP based solution to the instruction-set

identification problem. We start with a high-level descrip-
tion of a given application and generate a set of templates
using the ILP based method. A template selection method-
ology based on isomorphism testing and a potential evalu-
ation function results in combined instruction-set extension
identification and code generation. Our algorithms can opti-
mally identify multiple-input multiple output instruction-set
extension candidates without imposing any constraint on the
latency or connectivity. Our algorithms can handle bench-
marks with very large basic blocks on which state of the
art algorithms fail to reach a solution. The success of our
approach is demonstrated on AES where MixColumn and
Inverse MixColumn Transformations are successfully identi-
fied, and speed-up results of up to 7.5 are reached.

9. REFERENCES
[1] D. Goodwin, D. Petkov. Automatic Generation of

Application Specific Processors. In CASES 2003, pages
137–147, San Jose, CA, Nov. 2003.

[2] Tensilica, http://www.tensilica.com

[3] MIPS, http://www.mips.com

[4] ARC, http://www.arc.com

[5] ARM, http://www.arm.com

[6] N.N. Binh, M. Imai, A. Shiomi, N. Hikichi. A
Hardware/Software Partitioning Algorithm for
Designing Pipelined ASIPs with Least Gate Counts. In
33rd DAC, pages 527–532, Las Vegas, Nevada, 1996.

[7] J. Van Praet, G. Goossens, D. Lanneer, and
H. De Man. Instruction set definition and instruction
selection for ASIPs. In Proceedings of the 7th
International Symposium on High-Level Synthesis,
pages 11–16, Apr. 1994.

[8] M. Arnold and H. Corporaal. Designing domain specific
processors. In Proceedings of the 9th International
Workshop on Hardware/Software Codesign, pages
61–66, Copenhagen, Apr. 2001.

[9] P. Brisk, A. Kaplan, R. Kastner, M. Sarrafzadeh.
Instruction Generation and Regularity Extraction For
Reconfigurable Processors In CASES 2002, pages
262–269, Grenoble, France, 2002

[10] I.-J. Huang and A. M. Despain. Synthesis of
application specific instruction sets. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, CAD-14(6):663–75, Jun. 1995.

[11] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H.
Hwang, and C.-M. Kyung. Synthesis of application
specific instructions for embedded DSP software. IEEE
Transactions on Computers, C-48(6):603–14, Jun. 1999.

[12] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A
DAG based design approach for reconfigurable VLIW
processors. In DATE 1999, pages 778–79, Mar. 1999.

[13] J. Cong, Y. Fan, G. Han, Z. Zhang.
Application-Specific Instruction Generation for
Configurable Processor Architectures. In FPGA 2004,
pages 183–189, Monterey, CA, Feb. 2004.

[14] N. Clark, H. Zhong, S. Mahlke. Processor Acceleration
Through Automated Instruction Set Customization. In
36th MICRO, pages 184–88, San Diego, CA, Dec. 2003.

[15] K. Atasu, L. Pozzi, P. Ienne. Automatic
Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints. In 40th DAC, Anaheim,
California, Jun. 2003.

[16] P. Yu, T. Mitra. Scalable Custom Instructions
Identification for Instruction-Set Extensible Processors.
In CASES 2004, Washington, DC, Sep. 2004.

[17] R. Niemann, P. Marwedel. An Algorithm for
Hardware/Software Partitioning Using Mixed Integer
Linear Programming. Design Automation for Embedded
Systems, Vol. 2, No. 2, pages 165–193, Mar. 1997

[18] Nauty Package.
http://cs.anu.edu.au/people/bdm/nauty.

[19] Trimaran: An Infrastructure for Research in
Instruction Level Parallelism.
http://www.trimaran.org.

[20] ILOG CPLEX :High-Performance Software for
Mathematical Programming and Optimization.
http://www.ilog.com/products/cplex/

[21] R. Zimmermann. Computer Arithmetic: Principles,
Architectures, and VLSI Design, Lecture notes,
Integrated Systems Laboratory, ETH Zürich, 1997

[22] K. Atasu, M. Macchetti, L. Breveglieri. Efficient AES
implementations for ARM Based Platforms. In ACM
SAC 2004, Nicosia, Cyprus, Mar. 2004.

177


	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index




