

Enhanced Code Density of Embedded CISC
Processors with Echo Technology

1Youfeng Wu, 1Mauricio Breternitz Jr, 2Herbert Hum, 3Ramesh Peri, 2Jay Pickett
1Programming Systems Lab 2Low Power Microprocessor Lab 3Compiler Lab

Intel Labs
2200 Mission College Blvd

Santa Clara, CA 95054
{youfeng.wu,mauricio.breternitz.jr,herbert.hum,ramesh.peri,jay.pickett}@intel.com

ABSTRACT
Code density is an important issue in memory constrained
systems. Some RISC processor, e.g. the THUMB extension in the
ARM processor, supports aggressive code size reduction even at
the cost of significant performance loss. In this paper, we develop
an algorithm that utilizes a set of novel variable length Echo
instructions and evaluate its effectiveness for IA32 binaries. Our
experiments show that IA32 processor equipped with Echo
instructions is capable of achieving a similar code density as the
THUMB extension in the ARM instruction set with significantly
lower performance penalty.

Categories and Subject Descriptors

D.3.4 [Programming languages] Processors – Compilers,
Optimization
C.1.1 [Processor Architectures] Single Data Stream
Architectures - RISC/CISC, VLIW Architectures

General Terms
Design, Algorithms, Experimentation, Performance

Keywords
Code density, Echo technology, Compiler Optimizations, CISC
Processors, Embedded systems

1. INTRODUCTION
Code density is an important issue in embedded systems. The
size of memory directly affects system cost and therefore
program memory is often constrained. Processors with higher
code density allow more programs to be supported at lower
overall system cost.
RISC processors such as ARM address this issue with special
subsets of instructions such as THUMB and THUMB2 targeting

higher code density. By some estimates, virtually 100% of
ARM cores supports THUMB and about 50% of applications for
ARM systems are written in THUMB. However, this approach
requires a significant ISA change and extra hardware decoding
overhead for handling ARM, THUMB and THUMB2
instructions. Studies show a significant performance loss when
the THUMB code is generated for code size reduction ([1][16]).
Echo Technology (ET) replaces a repeating code sequence with a
single ECHO instruction to reduce code size Its usefulness for
code size reduction has been demonstrated for JAVA bytecode
and Alpha code with fixed sized Echo instructions [7][12]. In
this paper, we develop a set of novel variable length Echo
instructions and evaluate its effectiveness for IA32 binaries.
IA32 processors have emerged successfully in the embedded
environment [8][17][20] due to the tremendously large existing
code base and higher code density than RISC processors. Even
though IA32 code is dense, its variable length instruction set
allows variable-length ECHO instructions to further improve
compression ability. Our experiments show that IA32 equipped
with ET is capable of achieving a similar code density as the
THUMB extension in the ARM instruction set at significantly
lower performance penalty.
The contributions of the paper are summarized as follows:

• An updated study of the code density of IA32 v.s.
ARM/THUMB with EEMBC and Spec2kINT benchmarks.
On the average, IA32 code optimized for size is about 16% to
25% smaller than size-optimized ARM code and about 18% to
23% larger than THUMB.

• A demonstration that ET reduces IA32 code size by 17% to
20%. This brings IA32 code to similar code density as
THUMB code. Since THUMB often suffers serious
performance loss compared to ARM code and a study has
shown that ET incurs much smaller performance loss [12],
IA32 with ET presents a significant performance advantage
over THUMB. Although mixed mode code generation [9] and
the THUMB2 extension [1] have been recently proposed to
alleviate the performance penalty of THUMB, we believe
these new techniques will also help size-optimized IA32
binaries to improve performance. We do not discuss
THUMB2 further as it is a recent development and little
experience is available.

• A proposed set of IA32 Echo instructions and an ET algorithm
to achieve the above results. We also propose several ET
extensions, such as boosted Echo and new ET algorithms that
can further improve the IA32 code density.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS, September 19–21, 2005, Jersey City, NJ, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

160

The rest of the paper is organized as follows. Section 2 outlines
related work. Section 3 compares the code density of IA32 vs.
ARM/THUMB. Section 4 defines Echo technology and
illustrates how it can reduce code size. Section 5 describes ET
algorithms. Section 6 proposes new IA32 Echo instructions and
presents the evaluation results. Section 7 discusses future work.
Section 8 concludes the paper.

2. RELATED WORK
There have been several efforts to reduce code size through the
use of classical compiler optimizations such as folding, dead code
elimination, tail merging, and common sub-expression
elimination [5]. The compiler optimization called Procedural
Abstraction [3][6][10][13] is also shown to reduce code size.
Fraser et al [Fraser-02] first proposed the “Echo” instruction to
compress Java bytecodes. They use a form of “sequential Echo”
instruction, allowing call, return, and nested Echo instructions
inside Echo regions. The Echo instructions reduced the size of
bytecode by about 30%.
Lau et al [12] extended Echo technology to include a bitmask
Echo instruction. They applied the technique to the Alpha
machine code without allowing call and returns inside Echo
regions. With binary rewriting techniques, including instruction
reordering and register renaming they demonstrated about 15%
reduction in code size.
Brisk et al [2] reported an early result on a framework that
recognizes Echo opportunities at the compiler’s intermediate
representation level and asks later compiler phases to preserve
the Echo opportunities discovered in earlier phases. They
reported that the potential compression ratios range from 72% to
50% for 10 MediaBench applications.

3. CODE DENSITY WITHOUT ET
The IA32 ISA supports variable length CISC instructions. This
inherently enables higher code density. For example, the GCC
Code-Size Benchmark Environment [4] reports that IA32 code is
about 10% smaller than ARM code although it is about 15%
larger than THUMB code.
To compare the code density of IA32 to ARM/THUMB with the
latest compilation technologies, we experiment with the EEMBC
and SPEC2kINT benchmarks compiled with Intel’s production
compilers for Xscale (an ARM compatible microprocessor
family) and for IA32. The two compilers are developed from the
same code base and should represent similar optimization
technology and policies. Specifically, the binaries used in this
paper are optimized for minimal code size and are compiled with
the same flag (-O1) in both compilers.
Figure 1 shows the relative code sizes averaged over EEMBC
and SPEC2kINT benchmarks. The IA32 code is the basis,
normalized to 1. ARM and Thumb code are relative to the basis.
On the average, ARM code is about 16% (for EEMBC) to 25%
(SPEC2kINT) larger than IA32 code; although IA32 code is
about 18% (SPEC2kINT) to 23% (EEMBC) larger than THUMB
code. In this paper, our proposed ET extension achieves 17% to
20% size reduction for IA32 code. Therefore, IA32 code with
ET should have a similar code density as THUMB code.

4. ECHO TECHNOLOGY
Echo Technology tries to replace a repeating sequence of
instructions by a single Echo instruction. An Echo instruction
has the format “Echo (offset, length)”. When this instruction is

executed, the control is transferred to the instruction that is
“offset” away from the current instruction, execute “length”
instructions there, and then branch back to the instruction
immediately after the Echo instruction.
For example, in Figure 2 (a), the instructions 340 to 356 are the
same repeating code sequence as instructions 100 to 116.
Consequently, the code sequence {340, …, 356} can be replaced
by an Echo instruction, such as Echo(240, 5) shown in Figure 2
(b), indicating that when the Echo instruction is executed, the five
instructions starting at 100 are executed and then execution
continues at instruction 344. The value 240 is the offset from
positions 100 to 340.
For ease of discussion, we will refer to the repeating code
sequence replaced by an Echo instruction the “Echo Region”, and
the code executed when an Echo instruction is executed is called
the “Echo Target”. For the example in Figure 2, the code
sequence {340, …, 356} is an Echo region, and instruction
sequence {100, …, 116} is the Echo target for the Echo region.
Using this terminology, Echo Technology involves identifying
Echo regions, replacing them with Echo instructions, and
executing the Echo targets when the Echo instructions are
executed.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ARM Osize IA32 Osize Thumb Osize

Av
er

ag
e

Si
ze

 R
el

at
iv

e
to

 IA
32

EEMBC SPEC2kINT

Figure 1. IA32 and THUMB relative code sizes

 (a) Original code (b) Code after applying ET

Figure 2. Example illustrating Echo Technology
We place several restrictions on Echo regions, for easier
implementation. First, Echo regions are not allowed to contain
Echo instructions (no nested Echo instructions). Second, Echo
regions are not allowed to overlap. Otherwise, it will be
impossible to replace the overlapping Echo regions with Echo
instructions. Third, except for the first instruction, none of the

mov
shl
xor
add
movsx
…
mov
shl
xor
add
movsx
…
mov
shl
xor
add
movsx

100
104
108
112
116

340
344
348
352
356

404
408
412
416
420

mov
shl
xor
add
movsx
…
Echo(240, 5)
……

…
Echo(280, 5)

100
104
108
112
116

340
344

380

161

instructions in an Echo region should be a target of a branch
instruction, as the whole Echo region will be replaced by an Echo
instruction and the branch target will no longer exist afterward.
Furthermore, internal control flow inside an Echo region, such as
looping or branching to internal blocks, makes the semantics of
an Echo instruction hard to define and is usually not allowed.
Call, return, and branch instructions with target addresses outside
the Echo region may be allowed inside Echo region as long as the
instructions in the Echo region and the corresponding Echo target
have the same target addresses (notice that we allow them to have
different offsets in the instruction encoding).
In terms of hardware implementation, a register (Return_PC) for
storing the return PC and another register (Echo_Counter) for
storing the length are needed. Also, a mode flag (Echo_Mode)
indicating whether or not the current execution is an Echo target
is necessary so the Return_PC and Echo_Counter are
used/updated only when Echo target is executed. Furthermore,
when call and return instructions are included inside the Echo
regions, the Return_PC, Echo_Counter, and Echo_Mode need to
be saved on calls and restored on returns. The save and restore
can be implicitly performed by the call/return instructions on the
stack.
1 cmp
2 beq
3 add
4 mov
5 cmp /* Echo region {5, 6} matched Echo target {1, 2},

and replaced by Echo(4, 2) */
6 beq
…
9 mov /* {9, 10} could match {4, 5}, BUT {5, 6} has

already been replaced by an Echo instruction. */
10 cmp
11 beq /* Echo region {11, 12, 13} matched Echo target {2,

3, 4}, and replaced by Echo(8, 3) */
12 add
13 mov
....

Figure 3. Illustration of ET algorithm

5. ET ALGORITHM
Assume that the IA32 ISA supports K Echo instructions with
different ranges for the offset and length fields Echoi(offseti,
lengthi), for i = 1, …, K. If the offseti occupies Oi bits in the
Echoi instruction, then the maximum offset from an Echo region
to its Echo target is max_offseti = 2Oi – 1. If the lengthi field
occupies Li bits in the Echoi instruction, then the maximum
number of instructions in the Echo region replaced by the Echoi
instruction is max_lengthi = 2Li . For example, for an Echoi
instruction with Oi = 12 and Li = 4, max_offseti = 4095 and
max_lengthi = 16 (lengthi =0 implies that the Echo region has one
instruction).
We use a sequential search algorithm to identify Echo regions
and replace them with Echo instructions. This algorithm is based
on the well-known LZ77 algorithm [20] extended for identifying
legal Echo regions in binary programs. The algorithm examines
each instruction in their decoded order and tries to form an Echo
region starting at this instruction with a corresponding Echo
target in the instructions preceding the current instruction. An
illustration of the algorithm is shown in Figure 3 (assuming each
instruction is 1-byte long). The instructions 1, 2, …13, are
examined in that order. When instruction 5 is examined, the

instructions 1 to 4 are checked to look for an Echo target for a
potential Echo region starting at instruction 5. In this example,
Echo region {5, 6} is identified to match with the Echo target {1,
2}, and the Echo region {5, 6} is replaced by Echo(4, 2).
Although in the original code {9, 10} may match {4, 5}, since {5,
6} is already replaced by an Echo instruction, {9, 10} must not be
identified as an Echo region for Echo target {4, 5}. Finally, Echo
region {11, 12, 13} matched Echo target {2, 3, 4}, and the region
can be replaced by an Echo(8, 3) instruction. Notice that Echo
targets {1, 2} and {2, 3, 4} overlap and that presents no problem.
This is one of the advantages of Echo Technology over
procedural abstraction. Procedural abstraction converts common
code sequences into separate procedures and uses the normal
function call and return mechanism to invoke the procedures [6].
The code in different procedures cannot overlap.
The ET algorithm must make sure that the Echo instructions used
to replace the Echo regions are legal instructions supported by the
architecture. In particular, when an Echo instruction Echo(offset,
length) is used to replace an Echo region, there must be an Echoi(
offseti, lengthi) supported by the hardware such that offset <=
max_offseti and length <= max_lengthi. If multiple Echo
instructions satisfy this condition, we will select the smallest
Echo instruction to replace the Echo region. If none of the Echo
instructions is shorter than the Echo region, we will not replace
the Echo region with an Echo instruction.

5.1 Other Algorithms
The sequential search algorithm described above is effective at
finding ET opportunities. An interesting property of the
algorithm is that when determining whether or not to compress an
Echo region, the corresponding Echo target is before the Echo
region and all the compression decisions about the code between
the Echo target and the Echo region have already been made.
Thus the exact offset value can be used to select the best Echo
instruction.
There are cases, however, where a non-sequential search
algorithm may discover better Echo opportunities. For example,
rather than realizing each Echo region as soon as it is seen,
sometime it is possible to skip the Echo region so that a larger
Echo region can be recognized later. The SEQUITUR [14] or
suffix tree [15][18] based approaches are promising in this
regard.
SEQUITUR takes a sequence of symbols (e.g. instructions) and
produces a context-free grammar that produces the sequence.
Each non-terminal that appears multiple times in the string’s
parse tree is a candidate to be an echo region. A non-terminal that
generates a long string and appears multiple times in the grammar
should be considered an Echo region prior to non-terminals that
generate short strings or do not repeat many times.
A suffix tree is another compact data structure that encodes
information about instruction repetition within a string. For each
path from the tree’s root to a leaf node, the edge labels along the
path describe a specific suffix of the string. If an interior node
heads a subtree with M leaves, the substring on the path from the
root to that node appears M times in the input string. An interior
node that has a long path from root to it and has a subtree with
many leaves should be considered an Echo region with a higher
priority than others.
Since ET supports various lengths of Echo instructions,
determining the offset in an Echo instruction can be hard in a
non-sequential search algorithm, because the code between the

162

Echo target and the Echo region may have not been finalized yet.
The size of the Echo instruction depends on the offset from the
Echo region to the Echo target, which may be unknown when a
non-terminal or an interior node is examined. For these reasons,
we use the Sequential Search algorithm for all the experiments in
this paper. Our ongoing research is to develop an efficient non-
sequential search algorithm that out-performs the sequential
search algorithm used in this paper.

6. EXPERIMENTAL RESULTS
We experiment with Echo Technology on the EEMBC1.1 and
SPEC2kINT benchmark suites. The effect of ET on code size
reduction is shown by the following compression ratio:

Compression ratio =
ET without size code

ET with size code

6.1 IA32 Echo Instructions
The notation Echo.operand_size.length_size designates the IA32
Echo instructions shown below:

Echo.1.0 8-bit-offset, 0-bit-counter
Echo.1.1 7-bit-offset, 1-bit-counter
Echo.2.2 14-bit-offset, 2-bit-counter
Echo.3.4 20-bit-offset, 4-bit-counter

For example, Echo.1.0 uses 1-byte to encode the two operands
and the length field uses 0 bits (with a default Echo region of one
instruction). Therefore, the offset field uses 8 bits for a
maximum offset of 255. Similarly, Echo.1.1 uses 1-byte to
encode the two operands so the offset field uses 7 bits (for a
maximum offset of 127) and the length field uses 1 bit (for a
maximum of 2 instructions per Echo region). The four Echo
instructions all have 1-byte opcodes1 and will be 2, 2, 3, and 4
bytes long, respectively.

6.2 Effects of the Echo instructions
Figure 4 shows compression ratio with ET for EEMBC and
SPEC2kINT benchmarks. The compression ratios for individual
EEMBC benchmarks ar omitted as they cannot fit in the graph.
On the average, Echo instructions reduce code size by about 17%
and 20% for EEMBC and SPEC2kINT, respectively. The
SPEC2kINT benchmarks have slightly better compression ratio,
probably because that they are larger binaries and have more
repeated code. The code size reduction is relatively consistent,
ranging from 15% to 23% for individual SPEC2kINT
benchmarks.
Figure 5 shows the percentage of Echo regions that are replaced
by each of the four Echo instructions. All the 4 Echo instructions
are useful, although Echo.1.1 is the least useful one for
SPEC2kINT benchmarks, and Echo.3.4 is the least frequently
used one for EEMBC benchmarks. Interestingly, the most
beneficial instruction is Echo.2.2, which is three bytes long, and
this instruction may not be supported in RISC processors (e.g.
ALPHA or ARM/THUMB). Furthermore, if opcode becomes
scarce, we can remove Echo.1.1 without sacrificing compression
ratio much.

1 The new 64-bit extensions to IA32 have freed up several 1-byte

opcodes and it seems possible that more 1-byte opcodes may be
freed up when new IA32 extensions appear in the embedded
domain.

Figure 6 shows the distribution of the Echo region sizes, in terms
of both the number of instructions and the number of bytes.
Although there are Echo regions with more than 60 bytes, the
majority of the Echo regions are relatively small, with about 3 to
20 bytes. The majority of the Echo regions have 1 to 10
instructions. EEMBC has relatively more big Echo regions than
SPEC2kINT, because that EEMBC programs are more regular
than SPEC2kINT.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bz
ip2 cc

1
cra

ft eo
n

ga
p

gz
ip mcf

pa
rse

r
pe

rlb
tw

olf

vo
rte

x vp
r

sp
ec

Mean

ee
mbcM

ea
n

C
om

pr
es

si
on

 R
at

io

Figure 4. Compression ratios with Echo instructions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

EEMBC SPEC2kInt

Pe
rc

en
ta

ge
 o

f R
eg

io
ns

 C
ov

er
ed

.3.4

.2.2

.1.1

.1.0

Figure 5. Relative usefulness of Echo Instructions

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Echo region sizes

A
cc

um
ul

at
iv

e
pe

rc
en

ta
ge

insts SPEC # insts EEMBC # bytes SPEC # bytes EEMBC

Figure 6. Distribution of Echo region sizes

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23

i, 2**i < offset <= 2**(i+1)

cu
m

m
ul

at
iv

e
%

 o
f o

cc
ur

an
ce

s eembc spec

Figure 7. Distribution of the offset values

Figure 7 shows the distribution of the offset values in the Echo
instructions. There are two “knees” at 28 and 214 for EEMBC
benchmarks and two “knees” at 28 and 217 for SPEC benchmarks.

163

The majority of the offset values are smaller than 213 for EEMBC
benchmarks and 217 for SPEC benchmarks.
In the above experiments, we have allowed Echo regions to
include call, return, and branch instructions that have the same
target addresses as their counterparts in the Echo target. We also
used four 1-byte opcodes for Echo instructions. The compression
ratios with these assumptions are shown in Figure 8 by the bars
marked with “Call/ret/br”. Figure 8 also shows the results when
call/return, and branch instructions are selectively disallowed in
Echo regions, or 2-byte opcodes are used. When branches are
disallowed inside Echo regions, the compression ratio gets
slightly worse from 83% to about 84% for EEMBC and from
80% to 82% for SPEC2kINT (See the bars marked with “Call/ret
only”). When branches are allowed but call/returns are
disallowed, the compression ratio gets worse to 86% for EEMBC
and 84% for SPEC2kINT (see the bar marked with “Br only”). If
all call, return, and branches are disallowed, the compression
ratio further degrades to 88% for EEMBC and 86% for
SPEC2kINT (see the bars marked with “No call/ret/br”).
Furthermore, if we add one more byte overhead to each Echo
instruction and allow call/ret/br in Echo regions (see the bars
marked “Echo.II”), the compression ratio is similar to the case
with “No call/ret/br”. This result suggests that even with the least
costly HW alternative (“No call/ret/br”) or using 2-byte opcode,
we can expect to see 12% to 14% code size reduction with ET.

6.3 Performance Comparison
Our experiment with a simulated IA32 processor scaled to a
similar ARM processor in terms of process technology, power
consumption, and die area, shows that the two processors
perform similarly when compiled for maximal performance. Our
timing measurement shows that the THUMB code compiled for
minimal code size incurs about 35% performance drop. In
contrast, the IA32 code compiled for minimal code size loses
only about 14% performance. Furthermore, early study shows
that ET only has minor (e.g. 1% to 3%) performance overhead
[12]. We believe the 3% overhead should be an upper bound for
ET, although we have not extended our simulator to simulate the
Echo instructions yet. Basically, the Echo instruction is similar to
a direct jump, which can be ‘executed’ by the CPU fetch stage
with zero cycle delay without affecting later pipeline stages, as
long as the branch target hits i-cache. Furthermore, ET reduces
code size by up to 20% and this should improve i-cache
performance. In conclusion, IA32 with ET should out perform
THUMB by about 18% (35% - 14% - 3%).

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Call/ret/br Call/ret only Br only No call/ret/br Echo.II

co
m

pr
es

si
on

 ra
tio

EEMBC Spec2kInt

Figure 8. Compression ratios of variants of ET

6.4 Comparison to Procedural Abstraction
Procedural abstraction [3][6][10] converts common code
sequences into separate procedures and uses the normal function
call/ret mechanism This approach has several disadvantages

compared to ET. First, the overlap of echo targets is now
impossible. Second, Echo target is in the original code while
procedural abstraction needs to produce new code for the target.
Third, each “call” instruction takes 3 to 5 bytes in IA32, the “ret”
and stack manipulation operations take additional instructions,
and this is much longer than an Echo instruction (2 to 4 bytes).
Kunchithapadam et al [10] shows that the Procedural Abstraction
reduces the static code size of SPEC95INT programs by 0.85% to
2.37%. Fraser [6] combines procedural abstraction with tail
merging and achieves about 7% size reductions for VAX
assembly code (which was optimized with early 80’s compilation
technology). Cooper [3] shows that procedural abstraction,
combined with tail merging, register abstraction and re-coloring,
obtains about 5% size reduction measured in terms of
intermediate-code instructions.

6.5 Discussions
The above results show that the ET algorithm can reduce IA32
code size by 17% to 20%. If calls and returns are disallowed in
Echo regions, the code size reduction is still around 14% to 16%.
A similar amount of code size reduction (15%) for Alpha is
achieved in [12] with a much more complicated algorithm that
requires instruction reordering, register renaming, and a new type
of “bitmask” Echo instruction. We believe that by adding Lau’s
techniques into our algorithm we would significantly improve our
results. This demonstrates the advantage of IA32’s variable
length instructions. When the offset and length fields for an Echo
region fit into one byte (or two bytes), we can use a two-byte (or
three byte) Echo instruction to replace the Echo region in IA32.
The same Echo region would have to use a 4-byte Echo
instruction for Alpha code. Furthermore, we may use a 5-byte
Echo instruction to compress the Echo regions, which may be
impossible for RISC processors.
Arguably, ET can also be supported in THUMB to reduce it code
size. However, THUMB instructions are all two-bytes long. As
the data in Figure 5 shows, the two-byte Echo instructions can
cover less than 50% of the compressible regions in EEMBC and
less than 40% of those in SPEC2kINT. To retain most benefit of
ET, we need 3-byte and 4-byte Echo instructions to allow longer
offset and length fields. If Echo instructions are implemented as
32-bits ARM instructions, the frequent transitions between ARM
and THUMB modes may degrade the performance too much for
the Echo instructions to be useful.

7. FUTURE ENHANCEMENT
The major barrier to achieve higher code size reduction with ET
is that the ECHO instruction needs to specify the offset from the
Echo instruction to the Echo target. It is easy to see that when
more code is searched, more Echo opportunities can be found.
The Echo opportunities discovered via wide range searches may
require a larger offset field in the Echo instructions. The larger
offset requires longer versions of the Echo instruction, which
may lose Echo opportunities when the Echo instruction itself is
not shorter than the Echo region.
For a set of Echo instructions with long offsets, say, o1, o2, o3,
…, ot, we may subtract a common “base” value from them all so
that the new (delta) offsets o1-base, o2-base, …, ot-base are all
much smaller than the original value. To compensate for the
difference between the old offsets and the new offsets, we insert a
new instruction “setEchoBase base” that will be executed before
any of the Echo instructions dominated by it. This instruction
will place the “base” value in a hardware “base_offset” register.

164

When an Echo(offset, length) instruction is executed, the actual
offset will be base_offset + offset, and this updated offset will be
used to perform the Echo operation. We call this technique the
boosted Echo Technology. We are currently evaluating its
effects.
Currently we only allow call/ret/branch instruction with the same
target address as that in the Echo target to be included inside the
Echo region. It should be possible to allow them even when they
have different absolute addresses in the Echo region and the Echo
target. To compensate the address difference, the Echo
instruction may take an additional operand for the difference to
be added to the branch target address.
As proposed in [2], recognizing Echo regions at the data flow
level can potentially obtain much higher code size reduction.
The challenge is to keep Echo region correctly maintained
throughout optimizations after they are formed. This requires
significant compiler changes. We will explore this avenue in the
future.
Profile information may be used to guide the Echo algorithm to
recognize Echo regions only in the infrequently executed code to
reduce the performance impact of code compression [9].
Although performance critical code should not be recognized as
Echo regions and replace them with Echo instructions, they still
can be used as the Echo targets. In fact, allowing performance
critical code to be Echo targets may enable the code to be more
likely found in instruction cache and thus improve performance.
We are also actively pursuing an efficient non-sequential (e.g.
SEQUITUR and Suffix Tree based) search algorithms that may
obtain better compression than our current sequential search
algorithm.

8. CONCLUSION
In this paper we first show that the current IA32 has code density
disadvantage when compared to THUMB although its code
density is much better than ARM. We then show that IA32
equipped with ET can achieve similar code density as THUMB,
and incurs significantly less performance loss. For IA32
targeting memory constrained systems, we believe ET presents
an attractive new technology.
We also believe the techniques in this paper apply to other ISAs.
We have chosen the IA32 architecture due to several reasons,
among which its ubiquity. The distinguishing characteristic of the
IA32 architecture that makes it particularly suited for this
technique is the fact that it supports variable-length instruction
encodings, thus enabling compact encoding of ECHO
instructions. Also, some Echo instructions may grow to be 4 to 6
bytes in length, thus exacerbating the savings from Echo
Technology. In contrast, many 32-bit RISC architectures adopt a
uniform 32-bit instruction encoding, raising the ceiling at which
ECHO regions become interesting.

9. REFERENCES
[1] ARM website, http://www.arm.com/products/CPUs/ archi-

thumb2.html, 2004
[2] P. Brisk and M. Sarrafzadeh, “Framework and Design

Methodology of a Compiler that Compresses Code using
Echo Instructions,” ODES-2, in conjunction with CGO04,
March 21, 2004

[3] K. D. Cooper and N. McIntosh, “Enhanced code
compression for embedded RISC processors,” PLDI, May
1999.

[4] GCC Code-Size Benchmark Environment (CSiBE),
http://sed.inf.u-szeged.hu/csibe/, 2004

[5] S. Debray, W. Evans, R. Muth, and B. de Sutter. “Compiler
techniques for code compression,” ACM TOPLAS, pages
378–415, 2000.

[6] C. Fraser, E. Myers, and A. Wendt, “Analyzing and
compressing assembly code,” SIGPLAN Notices,
19(6):117-121, June 1984

[7] C. Fraser. “An instruction for direct interpretation of LZ77-
compressed programs,” Microsoft Technical Report MSR-
TR-2002-90. ftp://ftp.research.microsoft.com/pub/tr/tr-2002-
90.pdf.

[8] Embedded Intel® Architecture at
http://www.intel.com/products/embedded/index.htm

[9] A. Krishnaswamy, and Rajiv G., “Profile Guided Selection
of ARM and Thumb Instructions,” LCTES’02-SCOPES’02,
June 2002, Berlin, Germany, pp 56-64.

[10] K. Kunchithapadam and J. Larus. “Using lightweight
procedures to improve instruction cache performance,” CS-
TR-99-1390, University of Wisconsin, 1999.

[11] N. Jesper Larsson, “Extended Application of Suffix Trees to
Data Compression,” IEEE Data Compression Conference,
March, 1996, pp. 190-199.

[12] J. Lau, S. Schoenmackers, T. Sherwood, B. Calder, “Code
compression: Reducing code size with echo instructions,”
CASES, October 2003.

[13] S. Liao. “Code Generation and Optimization for Embedded
Digital Signal Processors,” Ph.D. thesis, 1996.
Massachusetts Institute of Technology.

[14] C.G. Nevill-Manning, and I.H. Witten, "Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm," Journal of Artificial Intelligence Research, 7,
67-82. (1997)

[15] E. M. McCreight, “A Space-economical Suffix Tree
Construction Algorithm,” J. of ACM, April 1976.

[16] M. Nanja and J. D. Munter, “The Effects of Compiler
Optimizations and Mixed Mode Code on Application
Performance, Memory Footprint, Power, and Energy
Consumption for Embedded Systems,” Submitted to
CTCES04.

[17] National Geode x86 "appliance-on-chip" SOCs, http:
//www.linuxdevices.com/products/PD6094486551.html

[18] E. Ukkonen, “On-line construction of suffix trees,”
Algorithmica, Sept 1995.

[19] Via Embedded Platforms at
http://www.viaembedded.com/index.jsp.

[20] J. Ziv and A Lempel, “A Universal Algorithm for Sequential
Data Compression,” IEEE Transaction on Information
Theory, 23 (3), p337-343, May 1977.

165

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

