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ABSTRACT 
Code density is an important issue in memory constrained 
systems. Some RISC processor, e.g. the THUMB extension in the 
ARM processor, supports aggressive code size reduction even at 
the cost of significant performance loss. In this paper, we develop 
an algorithm that utilizes a set of novel variable length Echo 
instructions and evaluate its effectiveness for IA32 binaries.  Our 
experiments show that IA32 processor equipped with Echo 
instructions is capable of achieving a similar code density as the 
THUMB extension in the ARM instruction set with significantly 
lower performance penalty. 
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1. INTRODUCTION 
Code density is an important issue in embedded systems. The 
size of memory directly affects system cost and therefore 
program memory is often constrained.  Processors with higher 
code density allow more programs to be supported at lower 
overall system cost.   
RISC processors such as ARM address this issue with special 
subsets of instructions such as THUMB and THUMB2 targeting 

higher code density.   By some estimates, virtually 100% of 
ARM cores supports THUMB and about 50% of applications for 
ARM systems are written in THUMB.  However, this approach 
requires a significant ISA change and extra hardware decoding 
overhead for handling ARM, THUMB and THUMB2 
instructions.  Studies show a significant performance loss when 
the THUMB code is generated for code size reduction ([1][16]). 
Echo Technology (ET) replaces a repeating code sequence with a 
single ECHO instruction to reduce code size  Its usefulness for 
code size reduction has been demonstrated for JAVA bytecode 
and Alpha code with fixed sized Echo instructions [7][12].  In 
this paper, we develop a set of novel variable length Echo 
instructions and evaluate its effectiveness for IA32 binaries.   
IA32 processors have emerged successfully in the embedded 
environment [8][17][20] due to the tremendously large existing 
code base and higher code density than RISC processors.  Even 
though IA32 code is dense, its variable length instruction set 
allows variable-length ECHO instructions to further improve 
compression ability.  Our experiments show that IA32 equipped 
with ET is capable of achieving a similar code density as the 
THUMB extension in the ARM instruction set at significantly 
lower performance penalty. 
The contributions of the paper are summarized as follows: 

• An updated study of the code density of IA32 v.s. 
ARM/THUMB with EEMBC and Spec2kINT benchmarks.  
On the average, IA32 code optimized for size is about 16% to 
25% smaller than size-optimized ARM code and about 18% to 
23% larger than THUMB. 

• A demonstration that ET reduces IA32 code size by 17% to 
20%.  This brings IA32 code to similar code density as 
THUMB code.  Since THUMB often suffers serious 
performance loss compared to ARM code and a study has 
shown that ET incurs much smaller performance loss [12], 
IA32 with ET presents a significant performance advantage 
over THUMB.  Although mixed mode code generation [9] and 
the THUMB2 extension [1] have been recently proposed to 
alleviate the performance penalty of THUMB, we believe 
these new techniques will also help size-optimized IA32 
binaries to improve performance.  We do not discuss 
THUMB2 further as it is a recent development and little 
experience is available. 

• A proposed set of IA32 Echo instructions and an ET algorithm 
to achieve the above results. We also propose several ET 
extensions, such as boosted Echo and new ET algorithms that 
can further improve the IA32 code density. 
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The rest of the paper is organized as follows.  Section 2 outlines 
related work.  Section 3 compares the code density of IA32 vs. 
ARM/THUMB.  Section 4 defines Echo technology and 
illustrates how it can reduce code size.  Section 5 describes ET 
algorithms.  Section 6 proposes new IA32 Echo instructions and 
presents the evaluation results.  Section 7 discusses future work.  
Section 8 concludes the paper. 

2. RELATED WORK 
There have been several efforts to reduce code size through the 
use of classical compiler optimizations such as folding, dead code 
elimination, tail merging, and common sub-expression 
elimination [5].  The compiler optimization called Procedural 
Abstraction [3][6][10][13] is also shown to reduce code size. 
Fraser et al [Fraser-02] first proposed the “Echo” instruction to 
compress Java bytecodes.  They use a form of “sequential Echo” 
instruction, allowing call, return, and nested Echo instructions 
inside Echo regions.  The Echo instructions reduced the size of 
bytecode by about 30%.   
Lau et al [12] extended Echo technology to include a bitmask 
Echo instruction.  They applied the technique to the Alpha 
machine code without allowing call and returns inside Echo 
regions.  With binary rewriting techniques, including instruction 
reordering and register renaming they demonstrated about 15% 
reduction in code size. 
Brisk et al [2] reported an early result on a framework that 
recognizes Echo opportunities at the compiler’s intermediate 
representation level and asks later compiler phases to preserve 
the Echo opportunities discovered in earlier phases.  They 
reported that the potential compression ratios range from 72% to 
50% for 10 MediaBench applications. 

3. CODE DENSITY WITHOUT ET 
The IA32 ISA supports variable length CISC instructions.  This 
inherently enables higher code density.  For example, the GCC 
Code-Size Benchmark Environment [4] reports that IA32 code is 
about 10% smaller than ARM code although it is about 15% 
larger than THUMB code. 
To compare the code density of IA32 to ARM/THUMB with the 
latest compilation technologies, we experiment with the EEMBC 
and SPEC2kINT benchmarks compiled with Intel’s production 
compilers for Xscale (an ARM compatible microprocessor 
family) and for IA32. The two compilers are developed from the 
same code base and should represent similar optimization 
technology and policies.  Specifically, the binaries used in this 
paper are optimized for minimal code size and are compiled with 
the same flag (-O1) in both compilers. 
Figure 1 shows the relative code sizes averaged over EEMBC 
and SPEC2kINT benchmarks.  The IA32 code is the basis, 
normalized to 1. ARM and Thumb code are relative to the basis. 
On the average, ARM code is about 16% (for EEMBC) to 25% 
(SPEC2kINT) larger than IA32 code; although IA32 code is 
about 18% (SPEC2kINT) to 23% (EEMBC) larger than THUMB 
code.  In this paper, our proposed ET extension achieves 17% to 
20% size reduction for IA32 code.  Therefore, IA32 code with 
ET should have a similar code density as THUMB code. 

4. ECHO TECHNOLOGY 
Echo Technology tries to replace a repeating sequence of 
instructions by a single Echo instruction.  An Echo instruction 
has the format “Echo (offset, length)”.  When this instruction is 

executed, the control is transferred to the instruction that is 
“offset” away from the current instruction, execute “length” 
instructions there, and then branch back to the instruction 
immediately after the Echo instruction.   
For example, in Figure 2 (a), the instructions 340 to 356 are the 
same repeating code sequence as instructions 100 to 116.  
Consequently, the code sequence {340, …, 356} can be replaced  
by an Echo instruction, such as Echo(240, 5) shown in Figure 2 
(b), indicating that when the Echo instruction is executed, the five 
instructions starting at 100 are executed and then execution 
continues at instruction 344.  The value 240 is the offset from 
positions 100 to 340. 
For ease of discussion, we will refer to the repeating code 
sequence replaced by an Echo instruction the “Echo Region”, and 
the code executed when an Echo instruction is executed is called 
the “Echo Target”.  For the example in Figure 2, the code 
sequence {340, …, 356} is an Echo region, and instruction 
sequence {100, …, 116} is the Echo target for the Echo region. 
Using this terminology, Echo Technology involves identifying 
Echo regions, replacing them with Echo instructions, and 
executing the Echo targets when the Echo instructions are 
executed.   
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Figure 1.  IA32 and THUMB relative code sizes  

 
    (a) Original code              (b) Code after applying ET 

Figure 2. Example illustrating Echo Technology 
We place several restrictions on Echo regions, for easier 
implementation.  First, Echo regions are not allowed to contain 
Echo instructions (no nested Echo instructions).  Second, Echo 
regions are not allowed to overlap.  Otherwise, it will be 
impossible to replace the overlapping Echo regions with Echo 
instructions.  Third, except for the first instruction, none of the 
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instructions in an Echo region should be a target of a branch 
instruction, as the whole Echo region will be replaced by an Echo 
instruction and the branch target will no longer exist afterward.  
Furthermore, internal control flow inside an Echo region, such as 
looping or branching to internal blocks, makes the semantics of 
an Echo instruction hard to define and is usually not allowed.   
Call, return, and branch instructions with target addresses outside 
the Echo region may be allowed inside Echo region as long as the 
instructions in the Echo region and the corresponding Echo target 
have the same target addresses (notice that we allow them to have 
different offsets in the instruction encoding).  
In terms of hardware implementation, a register (Return_PC) for 
storing the return PC and another register (Echo_Counter) for 
storing the length are needed.  Also, a mode flag (Echo_Mode) 
indicating whether or not the current execution is an Echo target 
is necessary so the Return_PC and Echo_Counter are 
used/updated only when Echo target is executed.  Furthermore, 
when call and return instructions are included inside the Echo 
regions, the Return_PC, Echo_Counter, and Echo_Mode need to 
be saved on calls and restored on returns.  The save and restore 
can be implicitly performed by the call/return instructions on the 
stack.   
1    cmp       
2    beq 
3    add 
4    mov 
5    cmp      /* Echo region {5, 6} matched Echo target {1, 2}, 

and replaced by Echo(4, 2) */ 
6    beq 
… 
9    mov      /* {9, 10} could match {4, 5}, BUT {5, 6} has 

already been replaced by an Echo instruction. */ 
10  cmp 
11  beq       /* Echo region {11, 12, 13} matched Echo target {2, 

3, 4}, and replaced by Echo(8, 3) */ 
12  add 
13  mov 
.... 

Figure 3.  Illustration of ET algorithm 

5. ET ALGORITHM  
Assume that the IA32 ISA supports K Echo instructions with 
different ranges for the offset and length fields Echoi(offseti, 
lengthi), for i = 1, …, K.  If the offseti occupies Oi bits in the 
Echoi instruction, then the maximum offset from an Echo region 
to its Echo target is max_offseti = 2Oi – 1.  If the lengthi field 
occupies Li bits in the Echoi instruction, then the maximum 
number of instructions in the Echo region replaced by the Echoi 
instruction is max_lengthi = 2Li .  For example, for an Echoi 
instruction with Oi = 12 and Li = 4, max_offseti = 4095 and 
max_lengthi = 16 (lengthi =0 implies that the Echo region has one 
instruction).  
We use a sequential search algorithm to identify Echo regions 
and replace them with Echo instructions. This algorithm is based 
on the well-known LZ77 algorithm [20] extended for identifying 
legal Echo regions in binary programs. The algorithm examines 
each instruction in their decoded order and tries to form an Echo 
region starting at this instruction with a corresponding Echo 
target in the instructions preceding the current instruction.   An 
illustration of the algorithm is shown in Figure 3 (assuming each 
instruction is 1-byte long).  The instructions 1, 2, …13, are 
examined in that order.  When instruction 5 is examined, the 

instructions 1 to 4 are checked to look for an Echo target for a 
potential Echo region starting at instruction 5.  In this example, 
Echo region {5, 6} is identified to match with the Echo target {1, 
2}, and the Echo region {5, 6} is replaced by Echo(4, 2).  
Although in the original code {9, 10} may match {4, 5}, since {5, 
6} is already replaced by an Echo instruction, {9, 10} must not be 
identified as an Echo region for Echo target {4, 5}.  Finally, Echo 
region {11, 12, 13} matched Echo target {2, 3, 4}, and the region 
can be replaced by an Echo(8, 3) instruction.  Notice that Echo 
targets {1, 2} and {2, 3, 4} overlap and that presents no problem. 
This is one of the advantages of Echo Technology over 
procedural abstraction. Procedural abstraction converts common 
code sequences into separate procedures and uses the normal 
function call and return mechanism to invoke the procedures [6].  
The code in different procedures cannot overlap. 
The ET algorithm must make sure that the Echo instructions used 
to replace the Echo regions are legal instructions supported by the 
architecture.  In particular, when an Echo instruction Echo(offset, 
length) is used to replace an Echo region, there must be an Echoi( 
offseti, lengthi) supported by the hardware such that offset <= 
max_offseti and length <= max_lengthi.  If multiple Echo 
instructions satisfy this condition, we will select the smallest 
Echo instruction to replace the Echo region.  If none of the Echo 
instructions is shorter than the Echo region, we will not replace 
the Echo region with an Echo instruction. 

5.1 Other Algorithms  
The sequential search algorithm described above is effective at 
finding ET opportunities.  An interesting property of the 
algorithm is that when determining whether or not to compress an 
Echo region, the corresponding Echo target is before the Echo 
region and all the compression decisions about the code between 
the Echo target and the Echo region have already been made.  
Thus the exact offset value can be used to select the best Echo 
instruction.   
There are cases, however, where a non-sequential search 
algorithm may discover better Echo opportunities.  For example, 
rather than realizing each Echo region as soon as it is seen, 
sometime it is possible to skip the Echo region so that a larger 
Echo region can be recognized later.  The SEQUITUR [14] or 
suffix tree [15][18] based approaches are promising in this 
regard.    
SEQUITUR takes a sequence of symbols (e.g. instructions) and 
produces a context-free grammar that produces the sequence. 
Each non-terminal that appears multiple times in the string’s 
parse tree is a candidate to be an echo region. A non-terminal that 
generates a long string and appears multiple times in the grammar 
should be considered an Echo region prior to non-terminals that 
generate short strings or do not repeat many times. 
A suffix tree is another compact data structure that encodes 
information about instruction repetition within a string.  For each 
path from the tree’s root to a leaf node, the edge labels along the 
path describe a specific suffix of the string.  If an interior node 
heads a subtree with M leaves, the substring on the path from the 
root to that node appears M times in the input string.  An interior 
node that has a long path from root to it and has a subtree with 
many leaves should be considered an Echo region with a higher 
priority than others. 
Since ET supports various lengths of Echo instructions, 
determining the offset in an Echo instruction can be hard in a 
non-sequential search algorithm, because the code between the 
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Echo target and the Echo region may have not been finalized yet. 
The size of the Echo instruction depends on the offset from the 
Echo region to the Echo target, which may be unknown when a 
non-terminal or an interior node is examined.  For these reasons, 
we use the Sequential Search algorithm for all the experiments in 
this paper. Our ongoing research is to develop an efficient non-
sequential search algorithm that out-performs the sequential 
search algorithm used in this paper.   

6. EXPERIMENTAL RESULTS   
We experiment with Echo Technology on the EEMBC1.1 and 
SPEC2kINT benchmark suites.  The effect of ET on code size 
reduction is shown by the following compression ratio: 

Compression ratio = 
ET without size code

ET with size code  

6.1 IA32 Echo Instructions 
The notation Echo.operand_size.length_size designates the IA32 
Echo instructions shown below:   

Echo.1.0        8-bit-offset, 0-bit-counter 
Echo.1.1        7-bit-offset, 1-bit-counter 
Echo.2.2      14-bit-offset, 2-bit-counter 
Echo.3.4      20-bit-offset, 4-bit-counter 

For example, Echo.1.0 uses 1-byte to encode the two operands 
and the length field uses 0 bits (with a default Echo region of one 
instruction).  Therefore, the offset field uses 8 bits for a 
maximum offset of 255. Similarly, Echo.1.1 uses 1-byte to 
encode the two operands so the offset field uses 7 bits (for a 
maximum offset of 127) and the length field uses 1 bit (for a 
maximum of 2 instructions per Echo region).  The four Echo 
instructions all have 1-byte opcodes1 and will be 2, 2, 3, and 4 
bytes long, respectively.    

6.2 Effects of the Echo instructions 
Figure 4 shows compression ratio with ET for EEMBC and 
SPEC2kINT benchmarks. The compression ratios for individual 
EEMBC benchmarks ar omitted as they cannot fit in the graph. 
On the average, Echo instructions reduce code size by about 17% 
and 20% for EEMBC and SPEC2kINT, respectively.  The 
SPEC2kINT benchmarks have slightly better compression ratio, 
probably because that they are larger binaries and have more 
repeated code.  The code size reduction is relatively consistent, 
ranging from 15% to 23% for individual SPEC2kINT 
benchmarks.  
Figure 5 shows the percentage of Echo regions that are replaced 
by each of the four Echo instructions.  All the 4 Echo instructions 
are useful, although Echo.1.1 is the least useful one for 
SPEC2kINT benchmarks, and Echo.3.4 is the least frequently 
used one for EEMBC benchmarks.  Interestingly, the most 
beneficial instruction is Echo.2.2, which is three bytes long, and 
this instruction may not be supported in RISC processors (e.g. 
ALPHA or ARM/THUMB).  Furthermore, if opcode becomes 
scarce, we can remove Echo.1.1 without sacrificing compression 
ratio much.  

                                                                 
1 The new 64-bit extensions to IA32 have freed up several 1-byte 

opcodes and it seems possible that more 1-byte opcodes may be 
freed up when new IA32 extensions appear in the embedded 
domain. 

Figure 6 shows the distribution of the Echo region sizes, in terms 
of both the number of instructions and the number of bytes.  
Although there are Echo regions with more than 60 bytes, the 
majority of the Echo regions are relatively small, with about 3 to 
20 bytes.  The majority of the Echo regions have 1 to 10 
instructions.  EEMBC has relatively more big Echo regions than 
SPEC2kINT, because that EEMBC programs are more regular 
than SPEC2kINT. 

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bz
ip2 cc

1
cra

ft eo
n

ga
p

gz
ip mcf

pa
rse

r
pe

rlb
tw

olf

vo
rte

x vp
r 

sp
ec

Mean

ee
mbcM

ea
n

C
om

pr
es

si
on

 R
at

io

 
Figure 4. Compression ratios with Echo instructions 
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Figure 5. Relative usefulness of Echo Instructions 
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Figure 6. Distribution of Echo region sizes  
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Figure 7. Distribution of the offset values 

Figure 7 shows the distribution of the offset values in the Echo 
instructions.  There are two “knees” at 28 and 214 for EEMBC 
benchmarks and two “knees” at 28 and 217 for SPEC benchmarks.  
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The majority of the offset values are smaller than 213 for EEMBC 
benchmarks and 217 for SPEC benchmarks.   
In the above experiments, we have allowed Echo regions to 
include call, return, and branch instructions that have the same 
target addresses as their counterparts in the Echo target. We also 
used four 1-byte opcodes for Echo instructions.  The compression 
ratios with these assumptions are shown in Figure 8 by the bars 
marked with “Call/ret/br”.  Figure 8 also shows the results when 
call/return, and branch instructions are selectively disallowed in 
Echo regions, or 2-byte opcodes are used.  When branches are 
disallowed inside Echo regions, the compression ratio gets 
slightly worse from 83% to about 84% for EEMBC and from 
80% to 82% for SPEC2kINT (See the bars marked with “Call/ret 
only”).  When branches are allowed but call/returns are 
disallowed, the compression ratio gets worse to 86% for EEMBC 
and 84% for SPEC2kINT (see the bar marked with “Br only”).  If 
all call, return, and branches are disallowed, the compression 
ratio further degrades to 88% for EEMBC and 86% for 
SPEC2kINT (see the bars marked with “No call/ret/br”). 
Furthermore, if we add one more byte overhead to each Echo 
instruction and allow call/ret/br in Echo regions (see the bars 
marked “Echo.II”), the compression ratio is similar to the case 
with “No call/ret/br”. This result suggests that even with the least 
costly HW alternative (“No call/ret/br”) or using 2-byte opcode, 
we can expect to see 12% to 14% code size reduction with ET. 

6.3 Performance Comparison 
Our experiment with a simulated IA32 processor scaled to a 
similar ARM processor in terms of process technology, power 
consumption, and die area, shows that the two processors 
perform similarly when compiled for maximal performance.  Our 
timing measurement shows that the THUMB code compiled for 
minimal code size incurs about 35% performance drop.  In 
contrast, the IA32 code compiled for minimal code size loses 
only about 14% performance.   Furthermore, early study shows 
that ET only has minor (e.g. 1% to 3%) performance overhead 
[12].  We believe the 3% overhead should be an upper bound for 
ET, although we have not extended our simulator to simulate the 
Echo instructions yet. Basically, the Echo instruction is similar to 
a direct jump, which can be ‘executed’ by the CPU fetch stage 
with zero cycle delay without affecting later pipeline stages, as 
long as the branch target hits i-cache. Furthermore, ET reduces 
code size by up to 20% and this should improve i-cache 
performance.  In conclusion, IA32 with ET should out perform 
THUMB by about 18% (35% - 14% - 3%).  
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Figure 8. Compression ratios of variants of ET 

6.4 Comparison to Procedural Abstraction 
Procedural abstraction [3][6][10] converts common code 
sequences into separate procedures and uses the normal function 
call/ret mechanism  This approach has several disadvantages 

compared to ET.  First, the overlap of echo targets is now 
impossible.  Second, Echo target is in the original code while 
procedural abstraction needs to produce new code for the target.  
Third, each “call” instruction takes 3 to 5 bytes in IA32, the “ret” 
and stack manipulation operations take additional instructions, 
and this is much longer than an Echo instruction (2 to 4 bytes).  
Kunchithapadam et al [10] shows that the Procedural Abstraction 
reduces the static code size of SPEC95INT programs by 0.85% to 
2.37%. Fraser [6] combines procedural abstraction with tail 
merging and achieves about 7% size reductions for VAX 
assembly code (which was optimized with early 80’s compilation 
technology).  Cooper [3] shows that procedural abstraction, 
combined with tail merging, register abstraction and re-coloring, 
obtains about 5% size reduction measured in terms of 
intermediate-code instructions. 

6.5 Discussions 
The above results show that the ET algorithm can reduce IA32 
code size by 17% to 20%.  If calls and returns are disallowed in 
Echo regions, the code size reduction is still around 14% to 16%.  
A similar amount of code size reduction (15%) for Alpha is 
achieved in [12] with a much more complicated algorithm that 
requires instruction reordering, register renaming, and a new type 
of “bitmask” Echo instruction.  We believe that by adding Lau’s 
techniques into our algorithm we would significantly improve our 
results.  This demonstrates the advantage of IA32’s variable 
length instructions.  When the offset and length fields for an Echo 
region fit into one byte (or two bytes), we can use a two-byte (or 
three byte) Echo instruction to replace the Echo region in IA32.  
The same Echo region would have to use a 4-byte Echo 
instruction for Alpha code.  Furthermore, we may use a 5-byte 
Echo instruction to compress the Echo regions, which may be 
impossible for RISC processors. 
Arguably, ET can also be supported in THUMB to reduce it code 
size.  However, THUMB instructions are all two-bytes long.  As 
the data in Figure 5 shows, the two-byte Echo instructions can 
cover less than 50% of the compressible regions in EEMBC and 
less than 40% of those in SPEC2kINT.  To retain most benefit of 
ET, we need 3-byte and 4-byte Echo instructions to allow longer 
offset and length fields. If Echo instructions are implemented as 
32-bits ARM instructions, the frequent transitions between ARM 
and THUMB modes may degrade the performance too much for 
the Echo instructions to be useful.   

7. FUTURE ENHANCEMENT  
The major barrier to achieve higher code size reduction with ET 
is that the ECHO instruction needs to specify the offset from the 
Echo instruction to the Echo target.  It is easy to see that when 
more code is searched, more Echo opportunities can be found.  
The Echo opportunities discovered via wide range searches may 
require a larger offset field in the Echo instructions.  The larger 
offset requires longer versions of the Echo instruction, which 
may lose Echo opportunities when the Echo instruction itself is 
not shorter than the Echo region.    
For a set of Echo instructions with long offsets, say, o1, o2, o3, 
…, ot, we may subtract a common “base” value from them all so 
that the new (delta) offsets o1-base, o2-base, …, ot-base are all 
much smaller than the original value.  To compensate for the 
difference between the old offsets and the new offsets, we insert a 
new instruction “setEchoBase base” that will be executed before 
any of the Echo instructions dominated by it.  This instruction 
will place the “base” value in a hardware “base_offset” register.  
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When an Echo(offset, length) instruction is executed, the actual 
offset will be base_offset + offset, and this updated offset will be 
used to perform the Echo operation.  We call this technique the 
boosted Echo Technology. We are currently evaluating its 
effects. 
Currently we only allow call/ret/branch instruction with the same 
target address as that in the Echo target to be included inside the 
Echo region. It should be possible to allow them even when they 
have different absolute addresses in the Echo region and the Echo 
target.  To compensate the address difference, the Echo 
instruction may take an additional operand for the difference to 
be added to the branch target address. 
As proposed in [2], recognizing Echo regions at the data flow 
level can potentially obtain much higher code size reduction.  
The challenge is to keep Echo region correctly maintained 
throughout optimizations after they are formed.  This requires 
significant compiler changes.  We will explore this avenue in the 
future. 
Profile information may be used to guide the Echo algorithm to 
recognize Echo regions only in the infrequently executed code to 
reduce the performance impact of code compression [9].   
Although performance critical code should not be recognized as 
Echo regions and replace them with Echo instructions, they still 
can be used as the Echo targets.  In fact, allowing performance 
critical code to be Echo targets may enable the code to be more 
likely found in instruction cache and thus improve performance. 
We are also actively pursuing an efficient non-sequential (e.g. 
SEQUITUR and Suffix Tree based) search algorithms that may 
obtain better compression than our current sequential search 
algorithm. 

8. CONCLUSION 
In this paper we first show that the current IA32 has code density 
disadvantage when compared to THUMB although its code 
density is much better than ARM.  We then show that IA32 
equipped with ET can achieve similar code density as THUMB, 
and incurs significantly less performance loss.  For IA32 
targeting memory constrained systems, we believe ET presents 
an attractive new technology. 
We also believe the techniques in this paper apply to other ISAs. 
We have chosen the IA32 architecture due to several reasons, 
among which its ubiquity. The distinguishing characteristic of the 
IA32 architecture that makes it particularly suited for this 
technique is the fact that it supports variable-length instruction 
encodings, thus enabling compact encoding of ECHO 
instructions. Also, some Echo instructions may grow to be 4 to 6 
bytes in length, thus exacerbating the savings from Echo 
Technology.   In contrast, many 32-bit RISC architectures adopt a 
uniform 32-bit instruction encoding, raising the ceiling at which 
ECHO regions become interesting. 
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