
Energy Conscious Online Architecture Adaptation for
Varying Latency Constraints in Sensor Network

Applications

Sankalp Kallakuri
ECE Department

Stony Brook University
New York, USA

elsanky@ece.sunysb.edu

Alex Doboli
ECE Department

Stony Brook University
New York, USA

adoboli@ece.sunysb.edu

ABSTRACT
Sensor network applications face continuously changing en-
vironments, which impose varying processing loads on the
sensor node. This paper presents an online control method
which adapts the architecture to minimize energy consump-
tion while satisfying varying latency constraints. The method
predicts processing load requirements over a finite time win-
dow and accordingly adapts the architecture. The behaviour
of the hardware modules over time has been approximated
with a Continuous Time Markov Process. Adaptive image
processing for vehicle tracking was used as a case study for
this approach.

Categories and Subject Descriptors
C.5.4 [Computer System Implementation]: vlsi sys-
tems; C.1.3 [Processor Architectures]: Other Architec-
ture Styles, Adaptive Architectures

General Terms
Design

Keywords
Sensor Networks, Continuous Time Adaptation

1. INTRODUCTION
Sensor networks are emerging as a main technology for

many applications in national security, health care, envi-
ronmental monitoring, infrastructure security, food safety,
manufacturing automation and many more [10] [13]. In fact,
the vision is that sensor networks will offer ubiquitous in-
terfacing between the physical environment and centralized
databases and computing facilities [17]. Efficient interfac-
ing has to be provided over long periods of time and for a
variety of environment conditions, like moving objects, tem-
perature, weather, available energy resources and so on. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

this context, a key problem that ought to be tackled is that
of devising embedded software and hardware architectures
that can effectively operate in continuously changing, hard-
to-predict conditions. In addition, architectures should be
cheap and consume tiny amounts of energy - considering
that their batteries are hard to replac or replenish.

For moving vehicle tracking, one of the main applications
of sensor networks, the vehicle’s velocity, trajectory and po-
sition defines the required sampling rate, hence the latency
requirement for image processing [17]. In this case, architec-
ture adaptation is challenging because static, off-line predic-
tion of a vehicle’s movement is quite inaccurate in real-life.
Even if vehicle movement is predictable, the resulting off-
line model is highly non-linear and discontinuous in many
points. Therefor, it is quite inefficient to address this ar-
chitecture adaptation problem by using typical embedded
design methods [1] [3] [7] [12]. These consider static, quasi
static or stationary scenarios, which all can be described
through fixed, off-line models. As explained in the paper, ve-
hicle tracking requires on-line model identification as well as
continuous architecture adaptation to varying performance
needs.

This paper presents a novel approach for online customiza-
tion of embedded architectures that function in non-stationary
environments. The crux of the approach is a synthesis tech-
nique for developing online controllers that adapt the data-
path of an architecture to varying latency constraints while
minimizing energy consumption. The approach includes
three steps: (i) look ahead on performance parameters (like
image sampling rate and system latency) by buffering input
data coming in a given time window, (ii) dynamic processing
requirements prediction using a linear estimator activated at
the end of every window period, and (iii) on-line architec-
ture adaptation. Since our design is for a non-stationary en-
vironments, the control policy varies with the environment
but is stationary within a time window. Adaptive control
policy design is based on expressing the operation over time
of the data-path blocks as Continuous Time Markov Process
(CTMP). A set of linear equations is set-up to reflect block
utilization rates, buffer space constraints, and total energy
consumption. Obtained utilization rates affect the adap-
tation thresholds of control policies. For systems with high
utilization we could achieve upto 29% lesser power compared
to greedy policy.

The proposed architecture adaptation method is different

148

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

x 104

3000

4000

5000

6000

7000

8000

9000

10000

11000

node

1
2
3
4

sensing
range

object trajectories

meters

meters (A)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

2

4

6

8

10

12

14

16

18

samples
per sec

1

2

3

4

time (sec) (B)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time(sec)

Samples
per Sec

(C)

Figure 1: Trajectories and Sampling speeds

from other dynamic adaptation techniques including on-line
software optimization and run-time hardware reconfigura-
tion [5] [9] [16]. For example, dynamic partitioning for re-
configurable hardware selects the regions of the binary or
source code to be sent to hardware modules [14] [15]. Other
approaches are for reducing energy consumption by dynamic
resource allocation [7] [11]. They predetermine the hard-
ware configurations for certain static design requirements,
and then search among them by using heuristics to improve
energy consumption. We view the problem in a slightly dif-
ferent manner and feel there is a need to have a quick though
sub-optimal control methodology for systems functioning in
drastically varying dynamic environments, in which, opti-
mal static policies do not exist, or exist only in the case in
which under utilization of powered up hardware resources is
ignored. In the latter case, the system suffers drastic overde-
sign to meet performance constraints under all possible load
conditions.

The paper is organized as follows. Section 2 presents a
motivating example and Section 3 defines the adaptive con-
trol problem. Section 4 details the mathematical modeling
of the system and of the control policy. Section 5 is a dis-
cussion of results followed by conclusions in Section 6.

2. MOTIVATING EXAMPLE
In order to strengthen our case for the presence of highly

varying process load environments, we present an example
in which we show a relatively simple moving objects tracking
scenario. We considered a camera based sensor [17], which
is tracking a moving object, such as a person or vehicle. The
tracking granularity requirement demands one image sample
per meter of distance traveled by the object, in order to
have a trace of the object’s trajectory accurate to within one
meter distance of the object’s actual location at all times.
If the object is traveling at a speed of 20 m/s this sampling
speed would translate to having 20 samples/s for the camera.

Obviously, varying velocity of the object would require
variation in the sampling speed, but the distance of the ob-
ject from the sensor as well as the angle at which the object

is traveling with respect to the focal plane could cause ad-
ditional variation in the sampling speed requirements, as
shown in Figure 1. In Figure 1(a), though trajectories are
straight, the velocity component tangential to the camera’s
focal plane is varying, but varying smoothly. The sampling
speed requirement changes faster for the trajectories nearer
to the sensor, as observed in Figure 1(b). It may be possi-
ble in this case to create estimation models for the sampling
rate, but this is a simple and non realistic scenario as com-
pared to the one in Figure 1(c). Sampling rates in Figure
1(c) do not follow a smooth variation, and include points of
discontinuity due to sudden changes in the vehicle’s move-
ment, like stopping, changes in direction, acceleration, and
so on.

Through the mentioned example, we identified following
attributes for sampling speed (thus also system latency)
variation during vehicle tracking:

• Sampling speed and latency constraints are constantly
changing without following any particular mathemat-
ical law. Performance variations might include several
peak and bottom points and different convexities, con-
cavities and discontinuities.

• Performance requirement magnitudes pertain to broad
ranges of values. For example, the latency requirement
for a busy sampling period can be 10× or even 100×
higher than the sampling need for idle times.

• Performance variation gradients are in a wide range.
Figure 1(a) shows that some variations are quite mild
whereas others are very steep.

For this type of applications, it is difficult to formulate
a static mathematical model that estimates performance
needs without resulting in gross mispredictions. Such a ”hy-
pothetical” model would be highly nonlinear, discontinuous
and partially defined. Most of the existing embedded design
methods [3] [7] cannot be used in this case, as they need
well defined, static description of performance constraints.
It is intuitively understood that statically calculated opti-
mizations are of little relevance in cases not covered by the
estimation models. Stationary optimal control policies are
quite unsuitable [4] because of discontinuities that are diffi-
cult to be handled by ordinary differential calculus. Hence,
due to the discontinuous nature of the performance curves,
these systems fit better into the framework of discrete events
[2][8]. We modeled the system dynamics with discrete events
formulated over a fixed window of time used to sample the
future performance requirements of the system. As it is also
difficult to predict the possible changes in processing load,
a finite look ahead on this processing parameter is the best
way of learning future processing loads.

3. PROBLEM DESCRIPTION
Problem Definition: For a given hardware architecture,

device an adaptive, on-line control policy for each hardware
resource such that (a) fixed buffer space and (b) varying
latency constraints are met and (c) energy consumption is
minimized.

To address the specifics of moving vehicle tracking prob-
lems, we propose a processing approach based on following
three defining points:

1. There is a look ahead on performance parameters like
sampling rate and latency.

2. Based on the look ahead there is a dynamic processing
requirement prediction.

149

CONTROLLER
POOL OF HARDWARE

RESOURCES

CAMERA BUFFER
SAMPLING RATE

LOOK AHEAD

Figure 2: Architecture for proposed methodology

3. Online architectural adaptation takes place to reduce
energy consumption and meet buffer space and varying
latency constraints.

Look ahead and dynamic performance prediction is con-
ducted within a fixed time window over which the data col-
lected is to be processed.

Figure 2 presents the architecture that we used for im-
plementing dynamic adaptation. During look ahead for the
next window, the incoming data is buffered. The controller
uses the inputs from the sampling rate look ahead to update
its control policy. The controller makes changes to the pool
of hardware with the updated policy after each window.

The time window length (WL)is a design parameter, and
will have to be decided by the designer based on empirical
data obtained from simulations of the particular application.
Intuitvely, large time windows allow superior prediction but
lengthen the adaptive response time and need more stor-
age space. We ran several experiments to view the possible
trends in the processing load variation as well as looked at
the application’s specification to gauge what window size
would serve us. Although smaller window sizes would track
the variations in requirements better, we have a lower limit
to the window length. Specifically, we selected the limit to
be the time required to process one sample if all resources
of each type were used.

We defined data load (DL) as the data amount in terms
of number of samples, which must be procesed in a time
window. In the tracking example this amount of data may
vary, depending on the rate the object moves. If DL is high
then the number of hardware resources turned on is larger
in order to meet the tighter timing constraint. There is an
upper limit to DL based on the the hardware processing
blocks and memory space being made available for it by an
architecture.

4. MATHEMATICAL MODELING
We characterized the dynamics of the system architecture

in the following manner. The state of the sytem is defined
in terms of the resources that it is made up of. For example,
a system with L, M and N number of resources of types R1,
R2 and R3 would have a state space vector S of the form
S = {R1

1, R1
2...R1

L, R2
1, R2

2...R2
M , R3, R3

2...R3
N}. Hence, if there

are 10 elements for each of three types of resources, which
are, ALUs, shifters and multipliers, the possible values that
could be taken by each element of the state space is a cost
which depends on the status of that element. In addition,
each resource type Ri can be in one of its Z different modes.
Resource modes depend on the processing activity of a re-
source and its present power mode status. Every element of
each resource type has following four modes: (1) powered up
and processing, (2) powered up and idle, (3) powered down,
and (4) powered down and being requested. Please note

that there are only two control actions asociated with each
element, power up and power down. The obtained control
policy is used to implement the controller block in Figure 2.

We encountered two major decision making steps while
doing the mathematical modeling of this problem. The first
being what mathematical framework would best model the
variation of the system state over time, and the second being
what control policy could quickly adapt with the system.
The traditional methods [1] [7] [12] have been designed for
static or stationary environments where there isn’t a need
for adaptation in the control policies. These issues were
presented next.

A. System state variation modeling. As motivated in Sec-
tion 2, we decided to express the system state variation using
difference equations. The difference equation that charac-
terises the system is given by

Sk+1 = f{Sk, Uk, Ek} (1)

which states that the next state is a function of the current
state, the control vector Uk and certain look ahead Ek. The
control vector Uk is a set of control actions that were taken
at the kth time instant. The sampling rate variation has
been obtained by monitoring the incoming data rate, which
works at the granularity of the window length. The effect
of this look ahead is modeled by the term Ek.

Buffering data over the time window allows the control
method to obtain knowledge of the latency requirements of
the system for the window period, hence it can incorporate
this knowledge into the decisons it makes.

B. Control policy. The controller implements the follow-
ing control policy, which consists of certain state transitions
under certain conditions. The decisions taken in the control
policy are which hardware elements and how many of them
to turn on or turn off. The control policy scales in the fol-
lowing manner for all types of elements, though the actual
policy for each will differ in numbers.

U(w) =

8

<

:

NT
4 ,NT

2 ,NT
3 −→ N1 if SRw < SRw+1,

NT
2 −→ N3 and NT

4 −→ N1 if SRw = SRw+1,

NT
2 ,NT

4 ,NT
1 −→ N3 if SRw > SRw+1,

(2)
SRw and SRw+1 are the sampling requirements of the cur-
rent window and the next window respectively. SRMAX is
the maximum sampling speed the system can tackle. Be-
yond this sampling speed there will not be enough hardware
resources to speed up the processing. The number of el-
ements that make the transition from current state i are
given by NT

i . Nj is the number of devices that need to be
in next state j during next time window. The elements that
transit to state j follow the priority with which they are
listed. This has been formulated in the following manner
for the first case of the control policy shown above.

if SRw > SRw+1,

N1 =

 P

u∈Uw
λ1,u N(1 + ∆SRw) if SRw+1 < SRMAX ,

N otherwise,

(3)

NT
2 =

N2 if N1 ≥ N2

N1 − N2 otherwise
(4)

NT
4 =

8

<

:

0 if N1 < N2

N4 if N1 − NT
2 ≥ N4

N1 − N2 − N4 if N1 − NT
2 < N4

(5)

NT
3 =

8

<

:

0 if N1 − N2 < N4

N3 if N1 − NT
2 − NT

4 ≥ N3

N1 − N2 − N4 − N3 if N1 − NT
2 − NT

4 < N3

(6)
Equations (3)-(6) basically state the optimal control policy
according to which any element, which is idle and powered

150

CONTINUOUS TIME MARKOV CHAIN

q21 q12

q23

q32

q43 q34
q31

q24

1

2 3

4

q14

q41

q42

q13

Figure 3: State transitions for power modes

*
up should be either shut down or put to use depending on
the next windows latency requirements. The prediction of
the powered up elements in the next state N1 was done
by taking into consideration the change in sampling rate

∆SR =
SRw−SRw+1

SRw
, as well as the likelihood λ of an hard-

ware element being in state ”1” (power up and processing)
which we have approximated by the steady state probability
of an element being in state ”1” α1 =

P

u∈Uw
α1,u. Lin-

ear equations (7)-(11) are solved to find the steady state
probabilitiesαi,u. Likelihood captures the global influence
of a certain hardware resource on system performance, thus
it jointly reflects the criticality of the block with respect to
timing, buffer size needs and energy consumption, as well as
the amount of resources of that kind in an architecture.

The policy states that if any element is powered down and
being requested it should be turned on or shut down again
depending on sampling rates. The power down or power
up has to be done from different states depending on the
severity of the gradient. Thus, elements in state ”4” should
move to state ”1” first, then if N1 is not satisfied, elements
from state ”2” should make transitions, and so on. This is a
set of constraints for the elements of type R1 which are N1

in number. Similar constraints exist for the other elements
and for the two other cases of the control policy.

C. Finding the likelihood factors. Finding the precise like-
lihood value of a resource is an NP-complete problem, as
it requires finding the optimal architecture for given con-
straints. Instead, we approximated likelihood with the steady
state probability of a single hardware element modeled as
Continuous Time Markov Chain (CTMC) [4], as shown in
Figure 3. CTMC were previously used for control policy
design, including power mode controllers [1] [12] and bus
arbiters [6]. Another advantage of this modeling is that it
offers - for each hardware resource, a figure of merit that cu-
mulatively expresses its time criticality, usage, energy con-
sumption and impact on buffer size. Defining likelihood us-
ing an heuristic cost function would have been an alterna-
tive. However, having no rigorous mathematical support,
we avoided this possibility.

Steady state probabilities α1,u were calculated by mod-
eling the mode changes q(j, u) are the rates for choosing
certain transition u while in a certain mode j. The rates
q(i, j, u) and q(j, u) have been obtained by using a sim-
ple scheduling algorithm. The scheduling algorithm works
on a threshold of time after which the hardware element
powers down. The threshold depends on the energy con-
sumed in powering down Eturnoff +Eturnon and the en-

ergy saved by being in the power down mode over a certain
period of time Pdnt. The time threshold is given by Tth,

Tth =
Eturnoff +Eturnon

Pdn
Thus for all idle times tidle ≥ Tth

the hardware element will be powered down.
The rates q(i, j, u) are the rate for selecting a certain ac-

tion while being in state i and going to state j, as shown
in [12][4]. Bpropki, a are the buffer occupancy rates for the
hardware elements, and we treat them as costs which cannot
exceed a certain amount of available buffer space.

X

u∈U(j)

q(j, u)αj,u −
X

i∈I

X

u∈U(i)

q(i, j, u)αi,u = 0, j ∈ S, (7)

X

i∈S

X

u∈U(i)

Bpropk(i, u)αi,u ≤ Ck , k = x, y, z, (8)

X

i∈S

X

u∈U(i)

αi,u = 1, (9)

αi,u ≥ 0, i ∈ S, u ∈ U(i), (10)

The goal of minimizing the energy consumption of the
system while meeting buffer size constraints is expressed by
the following set of equations.

minimize Cwindow =
N

X

i=1

U(i)
X

u=1

D
X

k=1

Ckαi,u (11)

Cwindow is the total cost over the time window, and is the
sum of the cost incurred at each clock cycle.

Ck =

L
X

a=1

Cxa,k +

M
X

b=1

Cyb,k +

N
X

c=1

Czc,k (12)

The cost at kth clock cycle is given by a summation of the
costs incurred by all hardware elements. We would like to
state at this point that this summation of costs is simply
in the mathematical modeling, and the controller will not
be performing such summing operations, and will not be
looking at the cost function. These equations will be solved
offline and the solution shall be encoded into the controllers.
If each hardware processing block has the four modes pre-
sented in Section 3, the cost functions of the elements follow
the following pattern.

Cxi,k =

8

>

<

>

:

Pup∆t + Bprop if xi,k = 1,
Pup∆t + Bprop if xi,k = 2,
Pdn∆t + Bprop if xi,k = 3,
Pdn∆t + Bprop if xi,k = 4,

(13)

The cost of an element in the powered up states (state ”1”
and state ”2”) is the costs associated with being powered up
Pup. In state ”3” and state ”4” the cost is simply that of
powering down, and in each state there is an added penalty
based on the buffer space that got occupied while the ele-
ment was being requested Bprop.

The equations could be solved for the state space as a
whole but this would lead to too many equations due to the
large state space we are dealing with. We have made an
assumption that the steady state transitions probabilities of
an individual element would be the same for all elements
of its type. Another assumption we made is that it is safe
to consider the steady state transition probabilities of each
element independent of the probabilities of the other, since
the timing delays of the elements are different and obey the
following relationship Tmull >> Talu = Tshift and the oc-
currence of instructions that utilise these elements in an al-
gorithm is different too. The occurrence rates of intructions
which could use these resources in the RGB to CMY colour
conversion algorithm that we considered had a the highest

151

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

TIME [sec]

SAMPLING
RATE

REQUIRED

samples
per sec

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300
TOTAL

TIME [clock cycles]

POWER

[mw]

ADAPTIVE

GREEDY

Figure 4: Sampling Requirements and Total Power

rate for intructions which could use ALUs followed by mul-
tipliers and shifters. In other words the number of adders
powered up has no correlation with the number of multipli-
ers powered up as they wouldn’t make much difference in
satisfaction of overall timing constraints.

D. Controller circuit. The output of the set of equations
is the steady state probabilities for the state and control
action pairs given by αi,a as shown in [4]. These steady state
probabilities αi,as with the sampling rate are used in the
controller. They provide the basic structure for the control
policy and these are then scaled by the sampling rate as in
equation (3).

5. EXPERIMENTS
The task graphs used belong to the R,G,B to Y,Cb,Cr

colour space conversion algorithm, which is composed of
three task graphs executed in parallel [17]. Several instances
of thistask graphs may also be run on parallel on separte pix-
els of the image. Though the graphs have similar structure
their execution times will depend on the incoming data due
to the several data dependent branching operations. The
powering up and powering down of Hardware resources con-
sequently has differing rates even if the processing load or
samples per sec. remains the same.

We implemented a SystemC model of an architecture which
has a bank of 10 ALUs, 10 Multipliers and 10 Shifters. Each
of the resources has a controller which implements the con-
trol policy discussed in section 4. The elements are con-
nected to a data bus, which carries the sampled data. The
controllers are sensitive to the sampling rate and perform
a buffering operation depending on Data Load and a look
ahead on the sampling rate before powering up or powering
down resources during a window. The equations (7)-(11)
were solved using MATLAB6p1 to obtain steady state prob-
abilities αi,u. The steady state probabilities for each type
of resource were then embedded into the controllers.

The sampling rate variation has been shown in Figure 4.
The reason we chose such variation is we wanted to test
how well the control policy adapts to the varying required

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Greedy
Adaptive

ALU

POWER

mw

TIME [clock cycles]

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Greedy
Adaptive

MULTIPLIER

POWER

TIME [clock cycles]

[mw]

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Greedy
Adaptive

TIME [clock cycles]

POWER

mw

SHIFTER

Figure 5: Power trends for different resources

processing rate. The power consumption trend follows the
required sampling rate as more resources get turned on to
meet the smaller latency constraints for higher sampling
rates. The ”Greedy” policy which turns on every requested
resource and turns them off based on a time threshold Tth,
to which we compared our ”Adaptive” policy, tends turn on
more resources hence has a larger power consumption. To its
advantage the Greedy policy manages to track the variation
in processing requirements faster. For a window length of 10
clock cycles and a data load of 480 we found the total power
consumption in the adaptive policy was 29% lesser than that
of the greedy policy. The Data Load of 480 signifies that a
maximum of 480 samples could be buffered, though the ac-
tual maximum buffer space used was close to 200 samples
hence we could have applied tighter buffer space constraints
on the equations (7)-(11) and used a smaller buffer space.

The individual types of resources had their own controllers,
hence had different trends in terms of their power consump-
tion. The ALU had a high utilization rate due to the large
number of ALU operations in the task graphs. Due to the
large number ALU operations the ALU bank had fraction of
ALUs powered on all the time and extra ALUs were turned
on/off depending upon the requirements as shown in Fig-
ure 4. The greedy policy tracked the variation better but
overdesigned in terms of turning on more ALUs which be-
came idle over a certain fraction of the window length.

152

The shifters had a low utilization as there are only 2 shift
operations among the 81 total operations in the three task
graphs. The greedy policy turned on the shifters exactly
when needed and performed better than the adaptive policy
in terms of power consumption. The adaptive policy per-
formed poorly as it tried to adapt when there really wasn’t
need to adapt. The adaptive policy kept some shifters pow-
ered up even though they were idle as seen in Figure 5. It
also unnecessarily powered up extra shifters while trying to
adapt to the second peak in processing requirements shown
in Figure 4.

The multipliers had a low utilization rate similar to the
shifters and the greedy policy performed better in terms
of lower power consumption. We see a large spike in the
multipliers graph in Figure 5. This is because the adaptive
policy tried to turn off all multipliers when the sampling rate
went very low as shown in Figure 5. This created a backlog
of ”multiply” operations which were then serviced at once
by turning on extra multipliers.

The window length has to be carefully selected in order
to allow the adaptive policy to track the variation in the
sampling requirements yet conserve power. This can be ob-
served for the ALU bank from Figure 6, in which the adap-
tive policy tends to look more like the greedy policy and con-
sumes more power while trying to track varying processing
requirements, for example, when window length (WL)=2.
With longer window lengths (WL)=10, 50 and 100 the pol-
icy reduces power consumption while being insensitive to
the varying latency requirements, thus the adaptive policy
will require larger buffer space for larger windows. In case
the window length is large its possible that the hardware re-
source will become idle over a fraction of the window length
thus wasting power. Since the ALU had a high utilization
rate this did not occur. In resources with low utilization the
power trend with varying window size was different.

In the experiments the power savings from the ALU dom-
inate the poor performance of the control policy in the case
of shifters and multipliers. In case of low utilisation rates
of resources or low occurrence rates of instructions which
could utilise a particular resource the greedy policy, which
turns on all requested resources, may perform comparably
with the adaptive policy. In future attempts we shall apply
the adaptive policy to a commercial core which has power
down modes and selectively controllable resources.

6. CONCLUSIONS
We have shown that the adaptive policy performs well

for resources with high utilization rates under varying la-
tency constraints. We could obtain up to 29% lesser power
consumption compared to a greedy policy for certain design
constraints. With well chosen window length and data load
parameters we can get a control policy which is obtained
offline, yet can be near optimal for online adaptation of em-
bedded systems suffering varying latency constraints.

7. REFERENCES
[1] L. Benini, A.Bogliolo, and G. Micheli. A survey of design

techniques for system level dynamic power management. IEEE
Transactions on VLSI Systems, 8(3):299–316, June 2000.

[2] C. G. Cassandras and S. LaFortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.

[3] P. Eles, Z. Peng, K. Kuchinski, and A. Doboli. System Level
Hardware/Software Partitioning using Simulated Annealing
and Tabu Search. Kluwer Academic Publishers, 1997.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

POWER
[mw]

TIME[clock cycles]

WL = 2

WL = 10

WL = 50

WL=100

Figure 6: Varying Window Lengths

[4] E. Feinberg. Optimal control of average reward constrained
continuous time finite markov decision processes. Proceedings
of the IEEE Conference on Decision and Control, pages
3805–3810, 2002.

[5] S. Hauck, M. H. T.W. Fry, and J. Kao. The chimaera
reconfigurable functional unit. IEEE Symposium on FPGAs
for Custom Computing Machines, pages 87–96, 1997.

[6] S. Kallakuri, A. Doboli, and S. Doboli. Stochastic modeling
based environment for synthesis and comparison of bus
arbitration policies. Proceedings of IEEE Annual Symposium
on VLSI, pages 199–206, 2004.

[7] J. Khan and R. Vemuri. An iterative algorithm for battery
aware task scheduling on portable computing platforms.
Proceedings of Design Automation and Test in Europe, pages
622–627, 2005.

[8] A. M. Law and W. D. Kelton. Simulation Modeling and
Analysis. McGraw-Hill, 2000.

[9] R. Lysecky and F. Vahid. A study of speedups and
comptetiveness of fpga soft processors cores using dynamic
hardware/software partioning. Proceedings of Design
Automation and Test in Europe, pages 18–23, 2005.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat monitoring.
In Proc. of ACM International Worshop on Wireless Sensor
Network Applications, 2002.

[11] B. Miramond and J. Delsome. Design space expolration of
dynamically reconfigurable architectures. Proceedings of
Design Automation and Test in Europe, pages 366–371, 2005.

[12] Q. Qiu, Q.Wu, and M.Pedram. Stochastic modeling of a
power-managed system: Construction and optimisation. IEEE
Transactions on Computer Aided Design, 20(9):1200–1217,
October 2001.

[13] M. Rahimi, R. Pon, W. Kaiser, G. Sukhatme, D. Estrin, and
M. Srivastava. Adaptive sampling for environmental robots.
Proc. of International Conference on Robotics and
Automation, 2004.

[14] G. Stitt and F. Vahid. Hardware/software partitioning of
software binaries. Proceedings of the International Conference
on Computer Aided Design, pages 164–170, 2002.

[15] G. Stitt and F. Vahid. Dynamic hardware/software partioning:
A first approach. Proceedings of the Design Atomation
Conference, pages 250–255, 2003.

[16] M. Writhlin and H. B. Disc: The dynamic instruction set
computer. fpgas for fast board developement and reconfigurable
computing. Proceedings of the SPIE 2607, pages 92–103, 1995.

[17] Y.Weng and A. Doboli. Smart sensor architecture customized
for image processing applications. Proceedings of IEEE
Real-Time and Embedded Technology and Embedded
Applications, pages 396–403, 2004.

153

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

