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ABSTRACT 
This paper describes the design of a low-cost, low-power smart 
imaging core that can be embedded in cameras. The core 
integrates an ARM 9 processor, a camera interface and two 
specific hardware blocks for image processing: a smart imaging 
coprocessor and an enhanced motion estimator. Both coprocessors 
have been designed using high-level synthesis tools taking the C 
programming language as a starting point. The resulting RTL 
code of each coprocessor has been synthesized and verified on an 
FPGA board. Two automotive and two mobile smart imaging 
applications are mapped onto the resulting smart imaging core. 
This mapping process of the original C++ applications onto the 
smart imaging core is also presented in this paper. 
Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems]: Real-time 
and embedded systems, signal processing systems.  
General Terms 
Design, Performance, Algorithms, Verification 
Keywords 
System level design, Image processing 

1. INTRODUCTION 
The increasing integration of technology allows to enhance video 
compression cores with smart imaging functionality and to embed 
these cores even into low-cost camera devices. This is the  starting 
point for new smart imaging applications that are able to analyze 
the content of images and video sequences enabling new 
consumer applications that are targeting various domains such as 
mobile and automotive. Cameras embedded in mobile phones are 
now becoming a commodity supporting applications like 
capturing and transmission of still images as well as video clips 
(Multimedia Messaging Services). With the increase of network 
bandwidth (e.g. 3G UMTS) real time mobile video links will 
become feasible, enabling new applications like mobile video 
telephony and video chat. It has to be noted, that the ease of use 
of these applications is of high importance as this is expected to 

be a crucial requirement for market acceptance of such new 
services. Thereby not only quality issues like frame and image 
stabilization are to be focused but also the user comfort. The 
automatic detection and tracking of the user's head is such an 
example, which helps to keep one's face in view of the camera 
during a mobile video telephone conference In the automotive 
domain, cars are equipped with more and more electronic systems 
that support the driver to avoid accidents. These systems are used 
to analyze complex driving situations and provide important and 
reliable information to the driver. 
Some of these driving aids use radars like the automatic cruise 
control but driving assistance systems using cameras also appear 
since they have less interference with its surroundings. 
Furthermore, techniques like radar lack the possibility to classify 
detected objects. Here two examples are low speed obstacle 
detection [2], which deals with the detection of vehicles in a 
certain speed range, and pedestrian detection [3], which 
concerns the detection of pedestrians and an impact prediction in 
order to reduce the injuries of the pedestrians hit by a car. 
The aim of the work described in this paper was to develop a 
smart imaging core that can be embedded in a camera. This core 
should be low-cost, low-power and suitable of supporting the 
above mentioned automotive and mobile communication 
applications. The resulting architecture integrates two 
coprocessors that have been designed using high-level synthesis 
tools taking the C-language as a starting point. Furthermore, the 
verification and design of the system architecture was performed 
using abstract transaction level SystemC models. 
The remainder of this paper is organized as follows. In Section 2 
we will discuss the structure of the smart imaging algorithms used 
by the applications. In Section 3 we disclose the smart imaging 
architecture while Section 4 and 5 describe the coprocessors in 
detail. In Section 6 we will introduce a virtual prototype that has 
been used to map the applications onto the smart imaging core. 
Finally Section 8 presents some conclusions.  

2. SMART IMAGING ALGORITHMS 
The applications used as a reference for developing our smart 
imaging core, are built up using three types of algorithms: low-
level, medium-level, and high-level algorithms as depicted in 
Figure 1. Low-level algorithms (LLAs) process pixels typically on 
image segments. Examples of LLAs are linear kernel filtering, 
thresholding or morphological operations. The LLAs used for the 
smart imaging algorithms are standardized and provided through 
the CAMELLIA Image Processing Library (C-IPL) for which the 
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source code can be found at Sourceforge [1]. Medium-level 
algorithms (MLAs) are typically used for an abstraction of the 
scene contents (feature extraction). Their input data are mostly 
pixel data, whereas output data represent abstracted image data. 
MLAs use several LLAs to perform their task. High-level 
algorithms (HLAs) deal with abstract semantic information 
extracted from a video scene and are typically control dominated. 
HLAs make the fusion between several MLAs, which individually 
are not sophisticated enough to yield a good result and also 
comprises the output stage that produces the result of the system. 
As an example, the automotive application low speed obstacle 
detection [2] (LSOD) is composed of an HLA that combines the 
output of several vehicle detectors (MLAs) in order to obtain an 
exact detection and localization of vehicles. The MLAs used in 
LSOD are: shadow detection, edge detection, rear lights detection, 
symmetry detection and motion segmentation.  
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Figure 1. Smart imaging application structure 
Our goal is to bring smart imaging into the consumer market, in 
which high performance general-purpose processors are not 
accepted as a cost efficient solution. Typically the architectures in 
this domain contain a rather modest general-purpose processor 
(e.g ARM9) running at a few hundred MHz. The HLAs nicely fit 
on such a general-purpose processor as they are control 
dominated and their computational load is limited. The LLAs 
however are associated with a high amount of inherent parallelism 
and relatively simple operations. Due to the high throughput rate 
required for the execution of LLAs, efficiency can be significantly 
improved by exploiting data-level parallelism. This typically is 
not efficient on a general-purpose processor. As an example both 
scaling and 3x3 linear kernel filtering need a 225 Mhz ARM9 
(un-optimized C-code) to execute on video data at 25 frames per 
second with the resolution of 352x288 pixels per frame. With 
optimized C-code we might achieve each single LLA to execute 
for the specified frame size and rate at a 100Mhz processor. Still 
the smart imaging application would not fit as each MLA uses 
several LLAs and typically a couple of MLAs are used in each 
application (e.g. LSOD). Clearly some form of hardware 
acceleration that exploits the inherent parallelism of the LLAs is 
needed. 

3. SMART IMAGING CORE 
The architectural class that has been chosen for the realization of 
the system is the classical coprocessor architecture. The 
coprocessors execute a specific algorithm or a class of algorithms 
with similar computational requirements faster than a general-
purpose programmable architecture resulting in a significantly 
higher ratio of computational performance and system cost 
compared to other architectural approaches. Compared to [4] and 
[5], this core is low-cost, low-power and targets a wide 

application area unlike [6] that is optimized for a single 
application. Furthermore our solution has built-in logic to work 
on image segments instead of complete images, something not 
present in these other solutions. 
The core architecture is depicted in Figure 2. The HLA and the 
more control-oriented part of the MLAs are combined together in 
a task, which fits well to be mapped onto the embedded ARM9. 
All the LLAs are combined in a pixel-processing task, which is 
mapped onto a single smart imaging coprocessor (SI). Likewise, 
the pixel processing part of the motion segmentation MLA is 
distinguished as an independent task, which is mapped onto a 
motion estimation coprocessor (ME). Tasks in the CAMELLIA 
system communicate and synchronize with each other using a 
standardized TTL interface and corresponding primitives [8] 
thereby facilitating easy integration. 
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Figure 2. Architecture of the smart imaging core 
One of the major challenges for the definition of such a system is 
the specification of the coprocessor architectures. On one hand, it 
is generally desired to support a wide range of algorithms that can 
be accelerated with the defined coprocessors. On the other hand, 
the efficiency of the coprocessor should be as high as possible. As 
typically an increase of flexibility is associated with a decrease of 
efficiency, these two goals can easily be highly contradictory. The 
impact of this basic architectural issue can be reduced if the 
coprocessors are aiming at the implementation of a limited set of 
similar algorithms. In this case, the architecture can be adapted to 
the requirements of the envisaged algorithmic class while 
supporting a minimum amount of programmability. In the next 
sections the design of both coprocessors is explained. 

4. SMART IMAGING COPROCESSOR 
As smart imaging applications have a clear need for acceleration 
of basic image processing tasks, the architecture of the smart 
imaging coprocessor (SI) has been adapted for the efficient 
execution of this algorithmic class. The requirements of smart 
imaging applications have been extracted by the analysis of 
sample applications from different fields of smart imaging 
applications. The SI accelerates most of the functions of the C-
IPL and includes: Arithmetic and Morphological operations, 
Linear kernel filtering, Horizontal and vertical summing, Scaling, 
Lookup-Table, Histogram, Moments and Min-Max computation. 
The resulting architecture is depicted in Figure 3. It consists of an 
arithmetic data-path that is capable to process several image pixels 
concurrently. For the definition of this data path some well-known 
design approaches like SIMD parallelism have been incorporated 
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to achieve a reasonable flexibility/cost trade-off. Typically the 
data-path processes 4 grayscale pixels in parallel or, for some 
binary operation, 32 pixels. This type of processing is well known 
from multi-media extensions used in general-purpose CPUs. An 
example of these extensions is the MMX instruction set [10]. In 
contrast to these approaches, the SI implements a deeper 
arithmetic pipeline. This enables the encoding and execution of 
complex arithmetic operations with a single microinstruction. A 
more detailed overview of the SI is described in [9]. 

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu regsC
op

ro
ce

ss
or

 C
on

tro
l

U
ni

t (
C

C
U

)

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu regsC
op

ro
ce

ss
or

 C
on

tro
l

U
ni

t (
C

C
U

)

 
Figure 3. Smart imaging coprocessor 

As image processing tasks are typically associated with a highly 
predictable data access, the design complexity of transparent local 
memories, like caches, can be avoided and the area required to 
provide the SI local storage can be kept relatively small. The idea 
of adaptation to the envisaged set of algorithms has also been 
applied for the control part of the SI using an hierarchical 
approach. At the lower level of this hierarchy the arithmetic units 
and the memory accesses are controlled by a VLIW approach that 
supports a high degree of flexibility. In order to avoid the 
drawbacks of the classical memory- and bandwidth-hungry VLIW 
architectures, a second level of control hierarchy has been 
introduced in the SI. This level is used to translate mighty so-
called macroinstructions into a sequence of VLIW 
microinstructions. Several classes of macroinstructions have been 
defined: I/O instructions control the data traffic with system 
memory and allow to initiate a transfer of arbitrarily sized 2-
dimensional blocks of data with a single instruction. Execution 
instructions typically execute a basic image-processing algorithm 
on an image segment previously loaded into local memory. 
Configuration instructions are used to set pseudo-static data, like 
image base addresses, segment information and data like filter 
coefficients. The described hierarchical control approach can be 
viewed as another important extensions to the principle of the 
vector based SIMD programming model of current general-
purpose CPUs. The adaptation of the data-path’s arithmetic and 
the chosen hierarchical control strategy allows to chose a well-
suited trade-off between flexibility and area efficiency for the 
envisaged application domain. 

4.1 SI design 
The design approach chosen for the SI has applied a model-based 
strategy. In order to support the architectural refinement and 
verification on system level, a bit-true SystemC based reference 
implementation of the SI combined with a high-level environment 
comprising a functional CPU model, system memory, and a video 
I/O module has been created. The model is depicted in Figure 4. 
As a first step the basic arithmetic requirements have been derived 
by an analysis of LLAs mapped onto the SI. Based on this 
analysis the initial functionality of the data path has been selected 

and modeled in SystemC. Based on this model an exact 
performance analysis for the envisaged application range has been 
performed and the model has been adapted in an iterative way 
according to the findings of this analysis. The result of this work 
was a bit-true representation of the SI, which has been used as a 
reference for the actual implementation of the SI design. 
In order to support a smooth migration from the reference 
representation, written in SystemC, to the actual design it is 
reasonable to aim at a design flow that is entirely SystemC-based. 
This approach enables an iterative refinement of the reference 
implementation towards a bit- and cycle-true design on RT-Level. 
Another important advantage of this approach is the concurrent 
HW/SW design: As the application SW is developed in C/C++, 
the reference as well as the RTL database can be easily linked as a 
library together with the application code. Thus, the SW designer 
is able to derive detailed performance figures of the final system 
before the HW has been implemented in silicon. Moreover, the 
HW architect can perform final optimizations of the HW 
implementation based on the received feedback on performance of 
the applications. 
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Figure 4. SI Reference model  

Several vendors claim to support a set of tools achieving 
significant decrease of design time by applying a SystemC based 
behavioural synthesis flow. For a coarse classification of these 
tools, two basic approaches can be distinguished. Some tools are 
template based, i.e., the basic architectural concept is fixed and 
contains already a set of basic architectural components, like 
address generation units, basic controllers and arithmetic 
functions. The designer just adds the special functionality 
required for his application domain. Other tools give more 
architectural freedom to the designer and support the design on a 
lower level of granularity. The advantage of template-based 
approaches is the reduced design effort, because the tool itself 
provides already major infrastructure components. As the basic 
architectural template of these approaches is fixed, the 
opportunities for architectural optimization are restricted. The 
other tool class mentioned gives more control on the chosen 
architecture to the designer. As the architectural model does 
already sketch a clear view on the target architecture, the 
implementation of the SI has been based on a tool from this 
second class. 
One promising approach was Cocentric SystemC Compiler from 
Synopsys Inc. This tool supports a SystemC-based design entry 
and allows for behavioral as well as RTL synthesis. The 
behavioral synthesis option is based on the automatic generation 
of memory structures, datapath elements as well as the required 
control FSM for a specific design block. Moreover, the tool 
supports several useful features like operator and memory sharing 
or automated memory instantiation. During the design phase of 
the SI it turned out that the tool is especially useful for dataflow-
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oriented designs, aiming at a dedicated implementation of core 
functions of the envisaged application. The approach is less useful 
for microinstructions-controlled designs like the SI. The main 
issues observed were the missing support for the automated 
generation of flexible arbitration circuitry of embedded memories, 
shared by different modules or processes and a relatively rigid 
approach for applying pipelining in architectures controlled by 
microinstructions. Mainly these issues led to the final decision to 
migrate from the architectural SystemC model to a SystemC-based 
RTL description that was synthesized with Cocentric SystemC 
Compiler. However, the described advantages of a SystemC-based 
design have been exploited during the implementation of the SI. 
We expect that more advanced tools will enter the CAD market 
place and will solve the identified flow issues. For the time being 
a promising alternative is to apply template-based tools for the 
basic architecture implementation and to combine these with 
dataflow-oriented tools for the implementation of core arithmetic 
units. 
For the verification of the SI a test bench was developed that 
targets to perform the verification of the SI-Core with a 
reasonable coverage. Since the SI supports a certain range of 
programmability, i.e. different image segment sizes and 
instruction parameters, it is important to validate the functionality 
of all the SI coprocessor macroinstructions for various parameters 
in a structured way. Therefore the test bench was implemented 
based on scripts as an extension of the original SI SystemC 
reference model (see Figure 4). The test bench itself is executed 
on the CPU model. One major function of the test bench is the 
execution of the reference code of all macroinstructions. A 
macroinstruction is validated for a certain parameter set by first 
running the reference code on the CPU model producing the 
reference data that is written into the memory model. Afterwards 
the SI is programmed to perform exactly the same 
macroinstruction with the same parameter set. As the SI is writing 
its result into the memory model it is compared with the reference 
data by the checker module. Any deficiency is monitored and can 
be reported in various ways, depending on the validation settings. 
A DIFF file can be generated for instance, which indicates every 
pixel that differs between the SI and reference implementation 
including the results from both implementations. 

5. MOTION ESTIMATION COPROCESSOR 
Motion estimation is one of the time-critical tasks in the 
application algorithms. Apart from the typical sum-of-absolute-
difference operations performed at pixel level, the combination of 
the required sub-pixel (quarter-pixel) accuracy, the size of the 
blocks, the number of motion vector candidates, the number of 
passes (scans) per frame, the frame or region-of-interest size, the 
frame rate, contribute to a practically intractable problem if no 
optimizations at all design levels (e.g. system, algorithm, 
architecture) are performed. Therefore, one of the decisions at 
system level was to map the motion estimation task onto a 
coprocessor. The block-based Motion Estimation coprocessor 
(ME) accelerates the motion segmentation MLA. The goal of 
motion segmentation is to identify moving objects from their 
motion. The motion segmentation is integrated tightly with 
motion estimation through a loop in which candidates for motion 
estimation are generated based on the result of segmentation. First 
a motion model for each block is calculated after which blocks are 
grouped that have a similar motion model and low sum-of-
absolute-differences using a Breadth First Search algorithm.  

Currently, two contrasting implementations are often considered 
for high performance video processing: ASICs and DSPs. ASICs 
optimally meet performance and power requirements, but lack 
flexibility. DSPs are highly flexible, but have significant overhead 
in achieving the performance requirements for a low power 
budget. The ME has been designed as an Application Specific 
Instruction Processor (ASIP). ASIPs offer performance, power 
and area that are comparable to ASICs but are superior in terms of 
performance, power and area compared to DSPs for applications 
in their domain. ASIPs, tuned to an application domain, can be 
based on any processor architecture template such as a very long 
instruction word (VLIW) architecture , or a vector processing 
architecture. It is interesting to note that the choice of the ASIP 
template architecture greatly depends on the characteristics of the 
application domain and the tool flow available. Among the 
available tool flows for ASIP design, namely A|RT [13], LISA 
[12] and CHESS [10], the A|RT-based tool flow has been used 
that uses a VLIW architecture template. So in contrast to the SI 
design the ME uses a template-based approach. 
The data-path of the ME ASIP consists of standard functional 
units, e.g. Arithmetic-Logic Units (ALUs) and Address 
Calculation Units (ACUs), and Application Specific Units 
(ASUs), tailored for accelerating the inner kernels of motion 
estimation. The ME is flexible within an application domain and 
can be programmed for different video applications while 
benefiting from the instruction-set that accelerates motion 
estimation functionality. 
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Figure 5. Motion estimation coprocessor  

First a hardware/software partitioning by determining the 
compute- and control-intensive tasks of the application set has 
been performed. As a result four ASUs that can process 16 pixels 
in parallel have been used (see Figure 5). The ASUs are based on 
a previously developed general ME template [14]. The complete 
search area (from previous frame) is stored in the search area 
buffer (SA buffer) ASU and the reference block buffer (RB 
buffer) ASU is used to store the reference block (from the current 
frame). The bi-linear interpolation (BI) ASU is used for 
generating corresponding pixels for the SAD calculation in case 
sub-pixel accuracy of motion models is required. The sum-of-
absolute-differences (SAD) ASU is used to calculate the SAD of 
every candidate motion model. It compares a block within the 
current frame and the corresponding block within the previous 
frame shifted by the motion model candidates. The ALU and 
ACU perform the arithmetic operations of the ME core. These 
ASUs are standard A|RT Designer library components. In contrast 
to the motion estimator described in [14] the ME calculates SAD 
values per 16x16 macro-block as a weighted sum of SADs from 
both luminance and chrominance pixel data. Each video 
component (Y,U,V) is calculated sequentially using the single set 
of ASUs described above. As mostly in popular video formats the 
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chrominance pixel-data is sub-sampled the ASUs are also able to 
process 8x8 pixel blocks. 

5.1 ME Design 
The design of the ME starts from the C++ behavioral description 
of the motion estimator algorithm. First the behavioral description 
of the ME was partitioned into a SW task that prepares the motion 
model candidates and should run on the ARM CPU and a HW 
task that performs the main processing loop of the motion 
estimation algorithm. The input parameters to the HW task consist 
of two parts namely frame constants (e.g. frame size) and run-time 
parameters (e.g. motion model candidates and block coordinates). 
The C-code of the HW task was translated into ANSI-C, as 
required by A|RT Designer, and an initialization state was 
introduced such that frame constants are communicated only 
once. Furthermore several new data-types were introduced to 
allow communication of run-time parameters on a stripe (eight 
pixel blocks) basis. Next, we modified the C-code of the 
processing functions (data-path) in the HW task by integrating 
behavioral models of the ASUs. Finally bit and cycle true models 
of the ASUs are integrated replacing the behavioral code of the 
ASUs. Each step is verified with the reference C++ code of the 
ME by comparing the intermediate results of the motion estimator 
such as the generated candidate motion models and the resulting 
motion models calculated by the HW task of the ME. 
The C-code of the HW task resulting from this last step can 
directly be used as an input of A|RT Designer. The result is a 
synthesisable RTL description of a custom VLIW processor, 
consisting of a data-path and a controller. A|RT Designer connects 
the ASUs with a set of register files and generates their 
interconnects. The controller contains an FSM that determines the 
next instruction to be executed, and a micro-code ROM, that 
contains the scheduled VLIW code of the HW task C algorithm. 
For the validation of the RTL description a separate test bench has 
been created in which the SW task of the ME is simulated by 
means of a script. The script contents is generated by the 
partitioned and refined C-code described above and includes read 
and write commands of both run-time parameters and image data. 

6. Application mapping 
To validate the correctness (and quality) of the applications 
executed in the targeted system architecture an FPGA based 
demonstrator or prototype was built. This validation comprises the 
verification of both the implemented coprocessors (functionality 
and performance), as well as the software optimizations required 
for its execution in an embedded system. Instead of directly 
moving into the FPGA based prototype an intermediate step using 
a virtual prototype was used. This approach allows verifying the 
HW/SW integration in an early stage. Furthermore the ME and SI 
can be intensively verified together with the software before 
pursuing their actual FPGA implementation by using the virtual 
prototype as a system test bench. This helps in early bug detection 
and eases the tuning of different architectural parameters. 

6.1 Virtual prototype 
The virtual prototype was built using CASSE [7]. CASSE models 
the architectural elements at the higher abstraction level using 
transaction-level modeling techniques. Transaction-level mode-
ling (TLM) [15] has been promoted as the next abstraction level 
above RTL and its aim is to achieve increased simulation speeds, 
while keeping enough accuracy for system analysis and 

verification. Furthermore, CASSE eases the fast modeling of 
complex embedded systems by using an interface-based design 
approach, where the communication among architectural elements 
is based on predefined interfaces and protocols [8]. 
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Figure 6. Virtual prototype 

The virtual prototype, as shown in Figure 6, is composed of a 
Video-IO coprocessor, an embedded CPU, two dedicated 
coprocessors (ME and SI), a shared memory and a communication 
network that in turn is composed of several buses and bridges. 
This setup reflects the internal FPGA architecture. The TLM 
models developed for the SI and ME when compared with their 
equivalent RTL models result in equal functionality but hundred 
times faster simulation speed.  
Once the architectural model is finished the work of integrating 
the software application is started. Although the low-level 
communication and synchronization between the software and the 
coprocessors is solved by the usage of the TTL interface, still the 
application functionality has to be adapted to use the coprocessors 
instead of the software routines and low-level libraries used 
before (i.e. LLAs). Therefore, different hardware abstraction 
layers (HAL) are created (on top of the programming model) in 
order to provide the software tasks with a high level API to use 
the SI, ME and Video-IO coprocessor. The software structure is 
depicted in Figure 7. These HALs hide to the designer the low-
level details of the system and provides a well-structured API with 
function calls and parameters passing for embedded software 
development. This approach allows that further modifications in 
the system architecture would only required slight changes in the 
HAL and/or TTL implementation, keeping the rest of the software 
application unchanged. This eases significantly the porting of the 
reference and future applications (i.e. software reuse). 
Furthermore this approach allows also the use of an abstract CPU 
model instead of an instruction set simulator (ISS). The CPU 
model is an encapsulation of the embedded SW into a SystemC 
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model. This approach is significantly faster compared to using an 
ISS. Note that the encapsulated SW uses the address map of the 
real prototype and all relevant data structures such as image data 
and the TTL channel contents reside in the simulated memory 
model. This has been achieved by using the HALs that are build 
on top of the TTL interface. Each TTL port is configured with 
physical addresses from the embedded memory map as shown in  
Figure 6. 

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start-Up

VIO/HAL SI/HAL ME/HAL

Basic IO

C-IPL API

PC SW structure

MLA2 MLAn MSEG

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start-Up

VIO/HAL SI/HAL ME/HAL

Basic IO

C-IPL API

PC SW structure

MLA2 MLAn MSEG

 
Figure 7. Software structure 

6.2 FPGA prototype 
The FPGA prototype is build using a PCI based prototyping board 
with two Altera FPGA devices: an Excalibur XA10 device with 1 
million logic gates and an APEX-1500 with 1,5 million logic gates. 
The Excalibur also embeds an ARM9 subsystem that is used to run 
the embedded software parts of the applications. The FPGAs are 
used to implement the hardware coprocessors and the toplevel 
communication infrastructure. This FPGA prototype is very close to 
an actual chip implementation. Since the size of the SI logic after the 
synthesis and the place&route exceeded 1 million FPGA gates, the 
most likely partitioning of the smart imaging architecture on the 
prototyping board was to map the SI co-processor and its memory 
on the APEX1500 FPGA device. The ME and the infrastructure are 
mapped to the Excalibur device. The infrastructure comprises the 
multiple DTL, AHB and PCI bridges. 
Next to the various embedded TTL implementation such as ARM 
code the TTL interface has also been implemented on a PC on top 
of the PCI driver shipped with the prototyping board. By using 
this PC version of TTL it is now possible to migrate individual 
components from the smart imaging core such as the SI 
coprocessor into the FPGA board while keeping the rest of the 
architecture on the PC as a SystemC model. The part running on 
the PC serves as system test bench for the component integrated 
in the FPGA. This helps significantly to manage the verification 
complexity by gradually moving components from the virtual 
prototype into the FPGA. 

7. SYNTHESIS RESULTS 
The synthesis results for both the FPGA and standard cell 
implementation are listed in Table 1. In total ten single-ported 
256x32 bit RAM blocks are used as embedded memory inside the 
ASUs of the ME. All intermediate and motion model results are 
mapped into a single RAM with a size of 64 Kbits. Furthermore 
the controller of the ME integrates several ROM blocks with a 
total size of 172 Kbit. The SI integrates in total 40 Kbits RAM 
With a target clock frequency of 150 MHz, the arithmetic unit of 
the SI has a peak performance of about 3 GOPS and the ME can 
process 150 frames per second for a frame size of 352*288, using 
a single scan and 15 motion models per block. 

Table 1. FPGA and Standard cell synthesis results 
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8. CONCLUSIONS 
In this paper the design of a smart imaging core was presented. 
The core integrates two coprocessors that have successfully been 
designed using high-level synthesis tools. Furthermore SystemC 
based system level design tools have been applied both in the 
verification of the complete core (both hardware and software) 
and of the individual coprocessors. The major advantage of a 
SystemC-based design flow compared to traditional approaches, is 
the easy integration of SystemC design descriptions into a 
reference model that support concurrent HW and SW 
development. In terms of C-based synthesis flows we believe a 
promising approach is to apply template-based tools for the basic 
architecture implementation and to combine these with dataflow-
oriented tools for the implementation of core arithmetic units. 
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