
The Design of a Smart Imaging Core for Automotive and
Consumer Applications: A Case Study

Wido Kruijtzer1, Winfried Gehrke2, Victor Reyes3 , Ghiath Alkadi1,
Thomas Hinz2, Jörn Jachalsky4, and Bruno Steux5

1Philips Research, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
 2Philips Semiconductors Hamburg, Germany 3University of Las Palmas GC, Spain

 4University of Hannover, Germany 5École des Mines de Paris, France
Wido.Kruijtzer@philips.com

ABSTRACT
This paper describes the design of a low-cost, low-power smart
imaging core that can be embedded in cameras. The core
integrates an ARM 9 processor, a camera interface and two
specific hardware blocks for image processing: a smart imaging
coprocessor and an enhanced motion estimator. Both coprocessors
have been designed using high-level synthesis tools taking the C
programming language as a starting point. The resulting RTL
code of each coprocessor has been synthesized and verified on an
FPGA board. Two automotive and two mobile smart imaging
applications are mapped onto the resulting smart imaging core.
This mapping process of the original C++ applications onto the
smart imaging core is also presented in this paper.
Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems, signal processing systems.
General Terms
Design, Performance, Algorithms, Verification
Keywords
System level design, Image processing

1. INTRODUCTION
The increasing integration of technology allows to enhance video
compression cores with smart imaging functionality and to embed
these cores even into low-cost camera devices. This is the starting
point for new smart imaging applications that are able to analyze
the content of images and video sequences enabling new
consumer applications that are targeting various domains such as
mobile and automotive. Cameras embedded in mobile phones are
now becoming a commodity supporting applications like
capturing and transmission of still images as well as video clips
(Multimedia Messaging Services). With the increase of network
bandwidth (e.g. 3G UMTS) real time mobile video links will
become feasible, enabling new applications like mobile video
telephony and video chat. It has to be noted, that the ease of use
of these applications is of high importance as this is expected to

be a crucial requirement for market acceptance of such new
services. Thereby not only quality issues like frame and image
stabilization are to be focused but also the user comfort. The
automatic detection and tracking of the user's head is such an
example, which helps to keep one's face in view of the camera
during a mobile video telephone conference In the automotive
domain, cars are equipped with more and more electronic systems
that support the driver to avoid accidents. These systems are used
to analyze complex driving situations and provide important and
reliable information to the driver.
Some of these driving aids use radars like the automatic cruise
control but driving assistance systems using cameras also appear
since they have less interference with its surroundings.
Furthermore, techniques like radar lack the possibility to classify
detected objects. Here two examples are low speed obstacle
detection [2], which deals with the detection of vehicles in a
certain speed range, and pedestrian detection [3], which
concerns the detection of pedestrians and an impact prediction in
order to reduce the injuries of the pedestrians hit by a car.
The aim of the work described in this paper was to develop a
smart imaging core that can be embedded in a camera. This core
should be low-cost, low-power and suitable of supporting the
above mentioned automotive and mobile communication
applications. The resulting architecture integrates two
coprocessors that have been designed using high-level synthesis
tools taking the C-language as a starting point. Furthermore, the
verification and design of the system architecture was performed
using abstract transaction level SystemC models.
The remainder of this paper is organized as follows. In Section 2
we will discuss the structure of the smart imaging algorithms used
by the applications. In Section 3 we disclose the smart imaging
architecture while Section 4 and 5 describe the coprocessors in
detail. In Section 6 we will introduce a virtual prototype that has
been used to map the applications onto the smart imaging core.
Finally Section 8 presents some conclusions.

2. SMART IMAGING ALGORITHMS
The applications used as a reference for developing our smart
imaging core, are built up using three types of algorithms: low-
level, medium-level, and high-level algorithms as depicted in
Figure 1. Low-level algorithms (LLAs) process pixels typically on
image segments. Examples of LLAs are linear kernel filtering,
thresholding or morphological operations. The LLAs used for the
smart imaging algorithms are standardized and provided through
the CAMELLIA Image Processing Library (C-IPL) for which the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19-21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009…$5.00.

124

source code can be found at Sourceforge [1]. Medium-level
algorithms (MLAs) are typically used for an abstraction of the
scene contents (feature extraction). Their input data are mostly
pixel data, whereas output data represent abstracted image data.
MLAs use several LLAs to perform their task. High-level
algorithms (HLAs) deal with abstract semantic information
extracted from a video scene and are typically control dominated.
HLAs make the fusion between several MLAs, which individually
are not sophisticated enough to yield a good result and also
comprises the output stage that produces the result of the system.
As an example, the automotive application low speed obstacle
detection [2] (LSOD) is composed of an HLA that combines the
output of several vehicle detectors (MLAs) in order to obtain an
exact detection and localization of vehicles. The MLAs used in
LSOD are: shadow detection, edge detection, rear lights detection,
symmetry detection and motion segmentation.

MLA1 MLA3MLA2 MLA4

HLA

LLAs LLAs LLAs LLAs

Motion
segmentation

Data
fusion engine

Output stage

MLAs
Call to LLAs

MLA1 MLA3MLA2 MLA4

HLA

LLAs LLAs LLAs LLAs

Motion
segmentation

Data
fusion engine

Output stage

MLAs
Call to LLAs

Figure 1. Smart imaging application structure
Our goal is to bring smart imaging into the consumer market, in
which high performance general-purpose processors are not
accepted as a cost efficient solution. Typically the architectures in
this domain contain a rather modest general-purpose processor
(e.g ARM9) running at a few hundred MHz. The HLAs nicely fit
on such a general-purpose processor as they are control
dominated and their computational load is limited. The LLAs
however are associated with a high amount of inherent parallelism
and relatively simple operations. Due to the high throughput rate
required for the execution of LLAs, efficiency can be significantly
improved by exploiting data-level parallelism. This typically is
not efficient on a general-purpose processor. As an example both
scaling and 3x3 linear kernel filtering need a 225 Mhz ARM9
(un-optimized C-code) to execute on video data at 25 frames per
second with the resolution of 352x288 pixels per frame. With
optimized C-code we might achieve each single LLA to execute
for the specified frame size and rate at a 100Mhz processor. Still
the smart imaging application would not fit as each MLA uses
several LLAs and typically a couple of MLAs are used in each
application (e.g. LSOD). Clearly some form of hardware
acceleration that exploits the inherent parallelism of the LLAs is
needed.

3. SMART IMAGING CORE
The architectural class that has been chosen for the realization of
the system is the classical coprocessor architecture. The
coprocessors execute a specific algorithm or a class of algorithms
with similar computational requirements faster than a general-
purpose programmable architecture resulting in a significantly
higher ratio of computational performance and system cost
compared to other architectural approaches. Compared to [4] and
[5], this core is low-cost, low-power and targets a wide

application area unlike [6] that is optimized for a single
application. Furthermore our solution has built-in logic to work
on image segments instead of complete images, something not
present in these other solutions.
The core architecture is depicted in Figure 2. The HLA and the
more control-oriented part of the MLAs are combined together in
a task, which fits well to be mapped onto the embedded ARM9.
All the LLAs are combined in a pixel-processing task, which is
mapped onto a single smart imaging coprocessor (SI). Likewise,
the pixel processing part of the motion segmentation MLA is
distinguished as an independent task, which is mapped onto a
motion estimation coprocessor (ME). Tasks in the CAMELLIA
system communicate and synchronize with each other using a
standardized TTL interface and corresponding primitives [8]
thereby facilitating easy integration.

Motion
Estimator

ARM 9xx
CPU

embed.
RAM &
(boot)
ROM

Memory
Controller

(Flash & DRAM)

ext. Flash

Peripherals*

ext. SDRAM

I/O Interface

* Timers,
Watchdog,
Interrupt Controller

I/D Cache

CCIR /
Camera
Frontend

Video Input
Smart

Imaging
Copro

off-chip communication

Communication Interconnect

Data IF

Data IF

Copro

Data IF Data IF

HW Shell

Data IF

HW Shell

TTL

TTL

DTL

DTL

SW Shell

SW Shell

Data IFData IFData IF

Motion
Estimator

ARM 9xx
CPU

embed.
RAM &
(boot)
ROM

Memory
Controller

(Flash & DRAM)

ext. Flash

Peripherals*

ext. SDRAM

I/O Interface

* Timers,
Watchdog,
Interrupt Controller

I/D Cache

CCIR /
Camera
Frontend

Video Input
Smart

Imaging
Copro

off-chip communication

Communication Interconnect

Data IF

Data IFData IF

Copro

Data IF Data IF

HW Shell

Data IF

HW Shell

TTL

TTL

DTL

DTL

SW ShellSW Shell

SW ShellSW Shell

Data IFData IFData IFData IFData IFData IF

Figure 2. Architecture of the smart imaging core
One of the major challenges for the definition of such a system is
the specification of the coprocessor architectures. On one hand, it
is generally desired to support a wide range of algorithms that can
be accelerated with the defined coprocessors. On the other hand,
the efficiency of the coprocessor should be as high as possible. As
typically an increase of flexibility is associated with a decrease of
efficiency, these two goals can easily be highly contradictory. The
impact of this basic architectural issue can be reduced if the
coprocessors are aiming at the implementation of a limited set of
similar algorithms. In this case, the architecture can be adapted to
the requirements of the envisaged algorithmic class while
supporting a minimum amount of programmability. In the next
sections the design of both coprocessors is explained.

4. SMART IMAGING COPROCESSOR
As smart imaging applications have a clear need for acceleration
of basic image processing tasks, the architecture of the smart
imaging coprocessor (SI) has been adapted for the efficient
execution of this algorithmic class. The requirements of smart
imaging applications have been extracted by the analysis of
sample applications from different fields of smart imaging
applications. The SI accelerates most of the functions of the C-
IPL and includes: Arithmetic and Morphological operations,
Linear kernel filtering, Horizontal and vertical summing, Scaling,
Lookup-Table, Histogram, Moments and Min-Max computation.
The resulting architecture is depicted in Figure 3. It consists of an
arithmetic data-path that is capable to process several image pixels
concurrently. For the definition of this data path some well-known
design approaches like SIMD parallelism have been incorporated

125

to achieve a reasonable flexibility/cost trade-off. Typically the
data-path processes 4 grayscale pixels in parallel or, for some
binary operation, 32 pixels. This type of processing is well known
from multi-media extensions used in general-purpose CPUs. An
example of these extensions is the MMX instruction set [10]. In
contrast to these approaches, the SI implements a deeper
arithmetic pipeline. This enables the encoding and execution of
complex arithmetic operations with a single microinstruction. A
more detailed overview of the SI is described in [9].

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu regsC
op

ro
ce

ss
or

 C
on

tro
l

U
ni

t (
C

C
U

)

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu regsC
op

ro
ce

ss
or

 C
on

tro
l

U
ni

t (
C

C
U

)

Figure 3. Smart imaging coprocessor

As image processing tasks are typically associated with a highly
predictable data access, the design complexity of transparent local
memories, like caches, can be avoided and the area required to
provide the SI local storage can be kept relatively small. The idea
of adaptation to the envisaged set of algorithms has also been
applied for the control part of the SI using an hierarchical
approach. At the lower level of this hierarchy the arithmetic units
and the memory accesses are controlled by a VLIW approach that
supports a high degree of flexibility. In order to avoid the
drawbacks of the classical memory- and bandwidth-hungry VLIW
architectures, a second level of control hierarchy has been
introduced in the SI. This level is used to translate mighty so-
called macroinstructions into a sequence of VLIW
microinstructions. Several classes of macroinstructions have been
defined: I/O instructions control the data traffic with system
memory and allow to initiate a transfer of arbitrarily sized 2-
dimensional blocks of data with a single instruction. Execution
instructions typically execute a basic image-processing algorithm
on an image segment previously loaded into local memory.
Configuration instructions are used to set pseudo-static data, like
image base addresses, segment information and data like filter
coefficients. The described hierarchical control approach can be
viewed as another important extensions to the principle of the
vector based SIMD programming model of current general-
purpose CPUs. The adaptation of the data-path’s arithmetic and
the chosen hierarchical control strategy allows to chose a well-
suited trade-off between flexibility and area efficiency for the
envisaged application domain.

4.1 SI design
The design approach chosen for the SI has applied a model-based
strategy. In order to support the architectural refinement and
verification on system level, a bit-true SystemC based reference
implementation of the SI combined with a high-level environment
comprising a functional CPU model, system memory, and a video
I/O module has been created. The model is depicted in Figure 4.
As a first step the basic arithmetic requirements have been derived
by an analysis of LLAs mapped onto the SI. Based on this
analysis the initial functionality of the data path has been selected

and modeled in SystemC. Based on this model an exact
performance analysis for the envisaged application range has been
performed and the model has been adapted in an iterative way
according to the findings of this analysis. The result of this work
was a bit-true representation of the SI, which has been used as a
reference for the actual implementation of the SI design.
In order to support a smooth migration from the reference
representation, written in SystemC, to the actual design it is
reasonable to aim at a design flow that is entirely SystemC-based.
This approach enables an iterative refinement of the reference
implementation towards a bit- and cycle-true design on RT-Level.
Another important advantage of this approach is the concurrent
HW/SW design: As the application SW is developed in C/C++,
the reference as well as the RTL database can be easily linked as a
library together with the application code. Thus, the SW designer
is able to derive detailed performance figures of the final system
before the HW has been implemented in silicon. Moreover, the
HW architect can perform final optimizations of the HW
implementation based on the received feedback on performance of
the applications.

Memory
Model

CPU
Model

SI-
Core
Model
SI-

Copro

Handshake

Data, Address

Settings,
Macro Ins.

Hand-
shake

Video
IO

GUI

High-Level Ctrl

Data

SI and TB
result files

DIFF
files

Log
file

Validation
scripts

Validation
images/
kernels

ch
ec

k

Te
st

Be
nc

h

Memory
Model

CPU
Model

SI-
Core
Model
SI-

Copro

Handshake

Data, Address

Settings,
Macro Ins.

Hand-
shake

Video
IO

GUI

High-Level Ctrl

Data

SI and TB
result files

DIFF
files

Log
file

Validation
scripts

Validation
images/
kernels

ch
ec

k

Te
st

Be
nc

h

Figure 4. SI Reference model

Several vendors claim to support a set of tools achieving
significant decrease of design time by applying a SystemC based
behavioural synthesis flow. For a coarse classification of these
tools, two basic approaches can be distinguished. Some tools are
template based, i.e., the basic architectural concept is fixed and
contains already a set of basic architectural components, like
address generation units, basic controllers and arithmetic
functions. The designer just adds the special functionality
required for his application domain. Other tools give more
architectural freedom to the designer and support the design on a
lower level of granularity. The advantage of template-based
approaches is the reduced design effort, because the tool itself
provides already major infrastructure components. As the basic
architectural template of these approaches is fixed, the
opportunities for architectural optimization are restricted. The
other tool class mentioned gives more control on the chosen
architecture to the designer. As the architectural model does
already sketch a clear view on the target architecture, the
implementation of the SI has been based on a tool from this
second class.
One promising approach was Cocentric SystemC Compiler from
Synopsys Inc. This tool supports a SystemC-based design entry
and allows for behavioral as well as RTL synthesis. The
behavioral synthesis option is based on the automatic generation
of memory structures, datapath elements as well as the required
control FSM for a specific design block. Moreover, the tool
supports several useful features like operator and memory sharing
or automated memory instantiation. During the design phase of
the SI it turned out that the tool is especially useful for dataflow-

126

oriented designs, aiming at a dedicated implementation of core
functions of the envisaged application. The approach is less useful
for microinstructions-controlled designs like the SI. The main
issues observed were the missing support for the automated
generation of flexible arbitration circuitry of embedded memories,
shared by different modules or processes and a relatively rigid
approach for applying pipelining in architectures controlled by
microinstructions. Mainly these issues led to the final decision to
migrate from the architectural SystemC model to a SystemC-based
RTL description that was synthesized with Cocentric SystemC
Compiler. However, the described advantages of a SystemC-based
design have been exploited during the implementation of the SI.
We expect that more advanced tools will enter the CAD market
place and will solve the identified flow issues. For the time being
a promising alternative is to apply template-based tools for the
basic architecture implementation and to combine these with
dataflow-oriented tools for the implementation of core arithmetic
units.
For the verification of the SI a test bench was developed that
targets to perform the verification of the SI-Core with a
reasonable coverage. Since the SI supports a certain range of
programmability, i.e. different image segment sizes and
instruction parameters, it is important to validate the functionality
of all the SI coprocessor macroinstructions for various parameters
in a structured way. Therefore the test bench was implemented
based on scripts as an extension of the original SI SystemC
reference model (see Figure 4). The test bench itself is executed
on the CPU model. One major function of the test bench is the
execution of the reference code of all macroinstructions. A
macroinstruction is validated for a certain parameter set by first
running the reference code on the CPU model producing the
reference data that is written into the memory model. Afterwards
the SI is programmed to perform exactly the same
macroinstruction with the same parameter set. As the SI is writing
its result into the memory model it is compared with the reference
data by the checker module. Any deficiency is monitored and can
be reported in various ways, depending on the validation settings.
A DIFF file can be generated for instance, which indicates every
pixel that differs between the SI and reference implementation
including the results from both implementations.

5. MOTION ESTIMATION COPROCESSOR
Motion estimation is one of the time-critical tasks in the
application algorithms. Apart from the typical sum-of-absolute-
difference operations performed at pixel level, the combination of
the required sub-pixel (quarter-pixel) accuracy, the size of the
blocks, the number of motion vector candidates, the number of
passes (scans) per frame, the frame or region-of-interest size, the
frame rate, contribute to a practically intractable problem if no
optimizations at all design levels (e.g. system, algorithm,
architecture) are performed. Therefore, one of the decisions at
system level was to map the motion estimation task onto a
coprocessor. The block-based Motion Estimation coprocessor
(ME) accelerates the motion segmentation MLA. The goal of
motion segmentation is to identify moving objects from their
motion. The motion segmentation is integrated tightly with
motion estimation through a loop in which candidates for motion
estimation are generated based on the result of segmentation. First
a motion model for each block is calculated after which blocks are
grouped that have a similar motion model and low sum-of-
absolute-differences using a Breadth First Search algorithm.

Currently, two contrasting implementations are often considered
for high performance video processing: ASICs and DSPs. ASICs
optimally meet performance and power requirements, but lack
flexibility. DSPs are highly flexible, but have significant overhead
in achieving the performance requirements for a low power
budget. The ME has been designed as an Application Specific
Instruction Processor (ASIP). ASIPs offer performance, power
and area that are comparable to ASICs but are superior in terms of
performance, power and area compared to DSPs for applications
in their domain. ASIPs, tuned to an application domain, can be
based on any processor architecture template such as a very long
instruction word (VLIW) architecture , or a vector processing
architecture. It is interesting to note that the choice of the ASIP
template architecture greatly depends on the characteristics of the
application domain and the tool flow available. Among the
available tool flows for ASIP design, namely A|RT [13], LISA
[12] and CHESS [10], the A|RT-based tool flow has been used
that uses a VLIW architecture template. So in contrast to the SI
design the ME uses a template-based approach.
The data-path of the ME ASIP consists of standard functional
units, e.g. Arithmetic-Logic Units (ALUs) and Address
Calculation Units (ACUs), and Application Specific Units
(ASUs), tailored for accelerating the inner kernels of motion
estimation. The ME is flexible within an application domain and
can be programmed for different video applications while
benefiting from the instruction-set that accelerates motion
estimation functionality.

Co
nt

ro
l I/

F

Da
ta

 I/FSAD BI SAB I/OACU RAM ROMALU

Co
pr

oc
es

so
r C

on
tro

l
Un

it

Communication Bus/Network

Distributed Register Files

RB
Mem Mem

Co
nt

ro
l I/

F

Da
ta

 I/FSAD BI SAB I/OACU RAM ROMALU

Co
pr

oc
es

so
r C

on
tro

l
Un

it

Communication Bus/Network

Distributed Register Files

RB
Mem Mem

Figure 5. Motion estimation coprocessor

First a hardware/software partitioning by determining the
compute- and control-intensive tasks of the application set has
been performed. As a result four ASUs that can process 16 pixels
in parallel have been used (see Figure 5). The ASUs are based on
a previously developed general ME template [14]. The complete
search area (from previous frame) is stored in the search area
buffer (SA buffer) ASU and the reference block buffer (RB
buffer) ASU is used to store the reference block (from the current
frame). The bi-linear interpolation (BI) ASU is used for
generating corresponding pixels for the SAD calculation in case
sub-pixel accuracy of motion models is required. The sum-of-
absolute-differences (SAD) ASU is used to calculate the SAD of
every candidate motion model. It compares a block within the
current frame and the corresponding block within the previous
frame shifted by the motion model candidates. The ALU and
ACU perform the arithmetic operations of the ME core. These
ASUs are standard A|RT Designer library components. In contrast
to the motion estimator described in [14] the ME calculates SAD
values per 16x16 macro-block as a weighted sum of SADs from
both luminance and chrominance pixel data. Each video
component (Y,U,V) is calculated sequentially using the single set
of ASUs described above. As mostly in popular video formats the

127

chrominance pixel-data is sub-sampled the ASUs are also able to
process 8x8 pixel blocks.

5.1 ME Design
The design of the ME starts from the C++ behavioral description
of the motion estimator algorithm. First the behavioral description
of the ME was partitioned into a SW task that prepares the motion
model candidates and should run on the ARM CPU and a HW
task that performs the main processing loop of the motion
estimation algorithm. The input parameters to the HW task consist
of two parts namely frame constants (e.g. frame size) and run-time
parameters (e.g. motion model candidates and block coordinates).
The C-code of the HW task was translated into ANSI-C, as
required by A|RT Designer, and an initialization state was
introduced such that frame constants are communicated only
once. Furthermore several new data-types were introduced to
allow communication of run-time parameters on a stripe (eight
pixel blocks) basis. Next, we modified the C-code of the
processing functions (data-path) in the HW task by integrating
behavioral models of the ASUs. Finally bit and cycle true models
of the ASUs are integrated replacing the behavioral code of the
ASUs. Each step is verified with the reference C++ code of the
ME by comparing the intermediate results of the motion estimator
such as the generated candidate motion models and the resulting
motion models calculated by the HW task of the ME.
The C-code of the HW task resulting from this last step can
directly be used as an input of A|RT Designer. The result is a
synthesisable RTL description of a custom VLIW processor,
consisting of a data-path and a controller. A|RT Designer connects
the ASUs with a set of register files and generates their
interconnects. The controller contains an FSM that determines the
next instruction to be executed, and a micro-code ROM, that
contains the scheduled VLIW code of the HW task C algorithm.
For the validation of the RTL description a separate test bench has
been created in which the SW task of the ME is simulated by
means of a script. The script contents is generated by the
partitioned and refined C-code described above and includes read
and write commands of both run-time parameters and image data.

6. Application mapping
To validate the correctness (and quality) of the applications
executed in the targeted system architecture an FPGA based
demonstrator or prototype was built. This validation comprises the
verification of both the implemented coprocessors (functionality
and performance), as well as the software optimizations required
for its execution in an embedded system. Instead of directly
moving into the FPGA based prototype an intermediate step using
a virtual prototype was used. This approach allows verifying the
HW/SW integration in an early stage. Furthermore the ME and SI
can be intensively verified together with the software before
pursuing their actual FPGA implementation by using the virtual
prototype as a system test bench. This helps in early bug detection
and eases the tuning of different architectural parameters.

6.1 Virtual prototype
The virtual prototype was built using CASSE [7]. CASSE models
the architectural elements at the higher abstraction level using
transaction-level modeling techniques. Transaction-level mode-
ling (TLM) [15] has been promoted as the next abstraction level
above RTL and its aim is to achieve increased simulation speeds,
while keeping enough accuracy for system analysis and

verification. Furthermore, CASSE eases the fast modeling of
complex embedded systems by using an interface-based design
approach, where the communication among architectural elements
is based on predefined interfaces and protocols [8].

0x02000000

0x02200000

0x02900000

0x02A00000

0x03FFFFFF

SDRAM

SDRAM CTRL

SRAM0 CTRL DPRAM0 CTRL

SRAM0

AHB1

DPRAM0

AHB
BRIDGE

STR2PLD
BRIDGE

PLD2STR
BRIDGE

Altera Excalibur stripe model

AHB2DTL
BRIDGE

DTL2AHB
BRIDGE

VIO COPRO SI COPRO ME COPRO

PLD area model

SDRAM

ARM

SRAM

VIO COPRO SI COPRO ME COPRO

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

Application area

TTL channels

Stack & Heap

Program code

Reg
Filedemux

TTL HW shell

VIO core SI core ME core

mux

AHB

SDRAM CTRL

STR2PLD PLD2STR

AHB2DTL DTL2AHB

Reg
File

Reg
File

TTL HW shell TTL SW shell

TTL SW shell

VIO
HAL

APPLICATION

ME
HAL

SI
HAL

BRIDGE

BRIDGE BRIDGE

BRIDGE BRIDGE

0x02000000

0x02200000

0x02900000

0x02A00000

0x03FFFFFF

SDRAM

SDRAM CTRL

SRAM0 CTRL DPRAM0 CTRL

SRAM0

AHB1

DPRAM0

AHB
BRIDGE

STR2PLD
BRIDGE

PLD2STR
BRIDGE

Altera Excalibur stripe model

AHB2DTL
BRIDGE

DTL2AHB
BRIDGE

VIO COPRO SI COPRO ME COPRO

PLD area model

SDRAM

ARM

SRAM

VIO COPRO SI COPRO ME COPRO

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

Application area

TTL channels

Stack & Heap

Program code

Reg
Filedemux

TTL HW shell

VIO core SI core ME core

mux

AHB

SDRAM CTRL

STR2PLD PLD2STR

AHB2DTL DTL2AHB

Reg
File

Reg
File

TTL HW shell TTL SW shell

TTL SW shell

VIO
HAL

APPLICATION

ME
HAL

SI
HAL

BRIDGE

BRIDGE BRIDGE

BRIDGE BRIDGE

Figure 6. Virtual prototype

The virtual prototype, as shown in Figure 6, is composed of a
Video-IO coprocessor, an embedded CPU, two dedicated
coprocessors (ME and SI), a shared memory and a communication
network that in turn is composed of several buses and bridges.
This setup reflects the internal FPGA architecture. The TLM
models developed for the SI and ME when compared with their
equivalent RTL models result in equal functionality but hundred
times faster simulation speed.
Once the architectural model is finished the work of integrating
the software application is started. Although the low-level
communication and synchronization between the software and the
coprocessors is solved by the usage of the TTL interface, still the
application functionality has to be adapted to use the coprocessors
instead of the software routines and low-level libraries used
before (i.e. LLAs). Therefore, different hardware abstraction
layers (HAL) are created (on top of the programming model) in
order to provide the software tasks with a high level API to use
the SI, ME and Video-IO coprocessor. The software structure is
depicted in Figure 7. These HALs hide to the designer the low-
level details of the system and provides a well-structured API with
function calls and parameters passing for embedded software
development. This approach allows that further modifications in
the system architecture would only required slight changes in the
HAL and/or TTL implementation, keeping the rest of the software
application unchanged. This eases significantly the porting of the
reference and future applications (i.e. software reuse).
Furthermore this approach allows also the use of an abstract CPU
model instead of an instruction set simulator (ISS). The CPU
model is an encapsulation of the embedded SW into a SystemC

128

model. This approach is significantly faster compared to using an
ISS. Note that the encapsulated SW uses the address map of the
real prototype and all relevant data structures such as image data
and the TTL channel contents reside in the simulated memory
model. This has been achieved by using the HALs that are build
on top of the TTL interface. Each TTL port is configured with
physical addresses from the embedded memory map as shown in
Figure 6.

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start-Up

VIO/HAL SI/HAL ME/HAL

Basic IO

C-IPL API

PC SW structure

MLA2 MLAn MSEG

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start-Up

VIO/HAL SI/HAL ME/HAL

Basic IO

C-IPL API

PC SW structure

MLA2 MLAn MSEG

Figure 7. Software structure

6.2 FPGA prototype
The FPGA prototype is build using a PCI based prototyping board
with two Altera FPGA devices: an Excalibur XA10 device with 1
million logic gates and an APEX-1500 with 1,5 million logic gates.
The Excalibur also embeds an ARM9 subsystem that is used to run
the embedded software parts of the applications. The FPGAs are
used to implement the hardware coprocessors and the toplevel
communication infrastructure. This FPGA prototype is very close to
an actual chip implementation. Since the size of the SI logic after the
synthesis and the place&route exceeded 1 million FPGA gates, the
most likely partitioning of the smart imaging architecture on the
prototyping board was to map the SI co-processor and its memory
on the APEX1500 FPGA device. The ME and the infrastructure are
mapped to the Excalibur device. The infrastructure comprises the
multiple DTL, AHB and PCI bridges.
Next to the various embedded TTL implementation such as ARM
code the TTL interface has also been implemented on a PC on top
of the PCI driver shipped with the prototyping board. By using
this PC version of TTL it is now possible to migrate individual
components from the smart imaging core such as the SI
coprocessor into the FPGA board while keeping the rest of the
architecture on the PC as a SystemC model. The part running on
the PC serves as system test bench for the component integrated
in the FPGA. This helps significantly to manage the verification
complexity by gradually moving components from the virtual
prototype into the FPGA.

7. SYNTHESIS RESULTS
The synthesis results for both the FPGA and standard cell
implementation are listed in Table 1. In total ten single-ported
256x32 bit RAM blocks are used as embedded memory inside the
ASUs of the ME. All intermediate and motion model results are
mapped into a single RAM with a size of 64 Kbits. Furthermore
the controller of the ME integrates several ROM blocks with a
total size of 172 Kbit. The SI integrates in total 40 Kbits RAM
With a target clock frequency of 150 MHz, the arithmetic unit of
the SI has a peak performance of about 3 GOPS and the ME can
process 150 frames per second for a frame size of 352*288, using
a single scan and 15 motion models per block.

Table 1. FPGA and Standard cell synthesis results

246 Kbits

40 Kbits

Memory

0,850,140,260,450,8 MgatesME
0,85-0,130,721,2 MgatesSI

Logic

AlteraFPGA

TotalROMRAMLogicResources

CMOS 90nm @ 150 Mhz (mm2)Technology

246 Kbits

40 Kbits

Memory

0,850,140,260,450,8 MgatesME
0,85-0,130,721,2 MgatesSI

Logic

AlteraFPGA

TotalROMRAMLogicResources

CMOS 90nm @ 150 Mhz (mm2)Technology

8. CONCLUSIONS
In this paper the design of a smart imaging core was presented.
The core integrates two coprocessors that have successfully been
designed using high-level synthesis tools. Furthermore SystemC
based system level design tools have been applied both in the
verification of the complete core (both hardware and software)
and of the individual coprocessors. The major advantage of a
SystemC-based design flow compared to traditional approaches, is
the easy integration of SystemC design descriptions into a
reference model that support concurrent HW and SW
development. In terms of C-based synthesis flows we believe a
promising approach is to apply template-based tools for the basic
architecture implementation and to combine these with dataflow-
oriented tools for the implementation of core arithmetic units.

9. REFERENCES
[1] Camellia Image Processing Library http://camellia.sourceforge.net
[2] B. Steux, Y. Abramson, “Robust real-time on-board vehicle tracking

system using particles filter”, IFAC IAV’04, July 2004
[3] Abramson, Y., B. Steux, “Hardware-friendly pedestrian detection

and impact prediction,” IEEE IVS’04, June 2004
[4] Kyo, S., et al “A 51.2GOPS Scalable Video Recognition Processor

for Intelligent Cruise Control Based on a Linear Array of 128 4-Way
VLIW Processing Elements”, IEEE ISSCC’03, February 2003

[5] Raab, W., Bruels, N., Hachmann, U., Harnisch, J., Ramacher, U.,
Sauer, C., “A 100-GOPS Programmable Processor for Vehicle
Vision Systems”, IEEE Design & Test of Computers, 2003.

[6] Imagawa, K.; Iwasa, K.; Kataoka, T.; Nishi, T.; Matsuo, H., “Real-
time face detection with mpeg4 codec lsi for a mobile multimedia
terminal”,.ICCE’03, June 2003

[7] Reyes, V.; Bautista, T.; Marrero, G.; Carballo, P.P.; Kruijtzer, W.;
“CASSE: A system-level modeling and design-space exploration
tool for multiprocessor systems-on-chip”, DSD’04, August 2004

[8] Pieter van der Wolf, et al “Design and Programming of Embedded
Multiprocessors: An Interface-Centric Approach”, CODES +ISSS
’04, Stockholm, September 2004,

[9] Jörn Jachalsky, et al, “A Coprocessor for Intelligent Image and
Video Processing in the Automotive and Mobile Communication
Domain, ISCE2004,September 2004.

[10] A. Peleg, and U. Weiser, "The MMX Technology Extension to the
Intel Architecture," IEEE Micro, Vol. 16(4), Aug. 1996.

[11] D. Lanneer., et al, “CHESS: retargetable code generation for
embedded DSP processors”, Code Generation for Embedded
Processors, P. Marwedel, ed., Kluwer Academic Publishers, 1995.

[12] A. Hoffmann, et al “A novel methodology for the design of
application-specific instruction-set processors (ASIP) using a
machine description language”, IEEE TCAD, Nov. 2001.

[13] A|RT Designer and A|RT Builder tools, formerly from Adelante
Technologies, now marketed by ARM Ltd. as OptimoDE,
http://www.arm.com/products/CPUs/families/OptimoDE.html

[14] H. Peters et al, “Application Specific Instruction-Set Processor
Template for Motion Estimation in Video Applications”, IEEE
TCSVT, Vol. 15, No.4, April 2005.

[15] Lukai Cai and Daniel Gajski, “Transaction Level Modeling: An
Overview”, in CODES+ISSS’03, California, USA, October 2003

129

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

