
Comparing the Size of .NET Applications with Native Code

Roberto Costa
STMicroelectronics
Via Cantonale 16/E

6928 Manno, Switzerland

roberto.costa@st.com

Erven Rohou
STMicroelectronics
Via Cantonale 16/E

6928 Manno, Switzerland

erven.rohou@st.com

ABSTRACT
Byte-code based languages are slowly becoming adopted in
embedded domains because of improved security and porta-
bility. Another potential reason for their adoption is the
reputation for smaller code size than native. This is criti-
cal in contexts in which a small memory footprint is crucial
to reduce production costs. This paper compares the code
size of applications compiled for .NET framework with the
same natively compiled for various processors. The paper
shows that the assumption of an impressive code size re-
duction is not reachable and it suggests that the adoption
of such languages in embedded contexts be justified by ad-
ditional arguments. The paper also studies the reasons for
this and it compares with the compression ratios achievable
for various applications through alternative techniques.

Categories and Subject Descriptors
D.3 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization, Run-time environments

General Terms
Measurement, Experimentation, Languages

Keywords
Bytecode, code size, .NET, managed environments

1. INTRODUCTION
Microsoft .NET is a framework that defines a platform

independent format for executables and a run-time environ-
ment for the execution of applications. Parts of the frame-
work have then been standardized by the European Com-
puter Manufacturers Association (ECMA) and by the Inter-
national Organization for Standardization (ISO).

The core of the framework is the Common Language Run-
time (CLR), a runtime engine that provides any .NET ap-
plication with services like machine independence, cross-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

language interoperability, code access security, memory
management and garbage collection, thread facilities.

.NET executables are encoded in a Common Intermediate
Language (CIL, sometimes called MSIL by Microsoft), an in-
struction set both language and machine-independent. The
independence from the programming language is achieved by
defining a Common Type System (CTS), a system of types
adopted by all .NET-compliant programming languages, and
a full set of standard libraries available at run-time. These li-
braries offer a wide set of functionalities, covering basic data
structures, network services, database connectivity, graphi-
cal interface, localization, reflection and thread support.

The independence from the machine is guaranteed by the
fact that CIL is not bound to the instruction set of the ma-
chine on which .NET applications are executed. Since a
.NET application does not contain native code, it is not di-
rectly executable. One of the most important services made
available by the CLR is the ability to translate CIL code into
native code just before its execution. This kind of transla-
tion is called JIT (just-in-time). Though not specifically
designed for it, CIL code can also be interpreted; however,
this can significantly reduces the execution performance and
is not desirable on code executed often.

Tools compliant with .NET framework produce code spec-
ified in CIL, that uses the CTS and that relies upon the
standard libraries.

.NET has many similarities with Java [8, 13], a framework
proposed by Sun in 1995. Java achieves the same purposes of
platform-independence and security of applications through
identical concepts. As a matter of fact, Java applications
are specified in Java byte-code, a machine-independent in-
struction set executed by Java virtual machine, and rely on
the classpath, a standard set of libraries.

Put aside these similarities, .NET has a few key differen-
tiating features. First, unlike Java, .NET is designed to sup-
port several programming languages and to offer full inter-
operability among them. Second, .NET framework is an
open standard, published by ECMA [7] and by ISO [10].
Third, .NET code is designed to be effectively translated
just-in-time as opposed to be interpreted.

Byte-code based frameworks initially built a reputation
of being slowly and inefficiently executed and of not being
adapted to real-time contexts because of the overhead of
the virtual machine services (i.e.: garbage collection). This
prevented them at first from being used in the embedded
world.

This reputation is no longer deserved. Since then, just-
in-time compilation techniques have much evolved and in-

99

cremental algorithms for garbage collection improved [22];
in addition, languages like C do not even need any garbage
collection. Sun supplies several versions of Java framework
especially tailored for embedded domains [11] and Java ap-
plications are successfully being used in digital assistants,
mobile phones, set-top-boxes and SIM-based smart cards.

.NET is attractive in the embedded domain for security
and portability. The possibility of targeting C language (by
eventually sacrificing some services) is another big advan-
tage that facilitates the support of legacy code.

In addition to these advantages, a claim commonly ac-
cepted is that byte-code instruction sets lead to significantly
smaller code than native binaries. In the embedded domain,
code size is much more critical than for desktops because of
the high cost of flash and ROM memories and of lack of
big mass storage devices. Code reduction may represent yet
another key reason why in the next generation embedded
devices byte-code and dynamic translation techniques are
going to play a major role.

The goal of this paper is to verify up to which degree the
myth of code size reduction brought by byte-code holds.

Empirical results for a meaningful set of multimedia and
general-purpose applications are shown and explained for
CIL; x86 and ARM Thumb codes are also considered as
other terms of comparisons. Finally, code compression is
taken into account as an orthogonal way to reduce the code
size, in order to check if CIL and native code behave differ-
ently in this respect.

The results show that, while CIL instruction streams are
in average from 50% to 70% smaller than native code, they
also carry (and depend on) higher-level information that oc-
cupies storage space (the metadata section); by counting it,
the overall size of an algorithm implementation in CIL and
in native instruction set is comparable.

Despite order-of-magnitude code size savings are out of
reach and left to urban legends, the value of .NET frame-
work in the embedded world is fully confirmed by the exper-
imental findings. With a comparable code size, CIL code in-
cludes the additional information required by services more
and more crucial (i.e.: security) without leading to a code
size expansion.

Section 2 reviews related work. In Section 3 we present
the most important features of a .NET executable. Our
experimental setup is detailed in Section 4 and we present
our results in 5. We conclude in Section 6.

2. RELATED WORK
Despite the youth of the framework, there is a large body

of literature about .NET. ECMA specification [7] is the place
to start from; then, many books have already been published
[3, 19].

Following the existence of an open standard, .NET has
risen an interest in the open source community. For in-
stance, two open-source in-progress implementations of
.NET framework are Mono [15] and Portable.NET [6].

It is a common belief that, in general, byte-code is more
compact than native code for most machines. Nonetheless,
to the best of our knowledge, there is no work that supports
this conjecture or that publishes quantitative results about
it.

Given the importance of memory footprint reduction for
embedded applications, several code compression techniques
have recently appeared. In order to increase the code den-

sity, modern ARM processors understand Thumb [20] as
well, a separate 16-bit instruction set; MIPS’ solution is
very similar with the introduction of MIPS16e instruction
set [14]. Additional reduced instruction sets usually have
a price in terms of performance and they allow achieving a
code size reduction of about 20 - 30%.

PowerPC architecture introduced CodePack [17], an on-
the-fly decompression system. The compression scheme sep-
arates the opcode stream from the other bits of the instruc-
tion encoding. On average, it saves 20 - 30% of code size.
The SlimCode [18] compression technique for ST200 directly
compares with CodePack and it achieves an average com-
pression ratio of 40%.

[12] compresses Java byte-code by using canonical Huff-
man codes; no decompression is needed. A 40% compression
ratio is achieved with minimum slowdown.

3. OVERVIEW OF .NET APPLICATIONS
From a high level point of view, a .NET application con-

sists of two parts: the actual code, or CIL, and the metadata.

CIL is a stream a byte-codes similar to a processor instruc-
tion set. Most of the opcodes are 1-byte long, a few
are 2-byte long. One major difference with a processor
instruction-set architecture (ISA) is that the evalua-
tion of expressions uses a stack. A function consists
of a header, a body and possible a footer. The header
is 1 or 12 bytes. When present, the footer describes
how exceptions should be handled. The function body
contains the stream of byte-codes.

Metadata is a structured way to encode all the bits and
pieces needed by the run-time engine to properly ex-
ecute the application, namely to enforce security, dy-
namically resolve symbols, lay out classes, etc. Meta-
data contains the description of the classes and struc-
tures contained in .NET executable, the method and
field information of classes, the dependencies on other
modules, and much else. These sections do not con-
cern only applications compiled from object-oriented
languages like C# or C++; C programs compiled for
.NET framework generate a good amount of such in-
formation as well.

Since CIL is a stack-based language, it does not need to
encode registers. A typical arithmetic operation fits on 1
byte, whereas a typical 32-bit processor needs 4 bytes. How-
ever, the usage of an evaluation stack imposes constraints on
the code, and more instructions might be needed to achieve
the same computation. Section 5 gives more details.

It is important to understand that the metadata is not
optional information added for the convenience of other tools
(like debug information for example). It is necessary for the
proper execution of the code. In other words, it has to be
put in the flash memory of an embedded system.

4. EXPERIMENTAL SETUP
The experiments are performed on a set of C-language

benchmarks composed of a mix of dedicated and general
purpose applications, as reported in Table 1. aes4 and igp
are proprietary implementations of image processing or en-
cryption algorithms respectively. vvideo is a large video
encoding proprietary application. Many are classical and
publicly available algorithms.

100

This paper is interested in the evaluation of the code size
for embedded systems, with respect to native code. The
proprietary algorithms are optimized for embedded systems.

The benchmarks are compiled for .NET framework, for In-
tel x86 architecture and for Thumb [20], the 16-bit compact
instruction set available in modern ARM processors. Com-
piler flags that optimize for code size are specified, when
available; in particular, loop unrolling, software pipelining
and inlining are disabled. Microsoft Visual C++ Toolkit
2003 and Microsoft Visual Studio 8 Beta are used as refer-
ence tools for .NET compilation; compilation flag /O1 (min-
imize space) is selected. Other compilers used are gcc 3 for
x86 and ARM ADS 1.2 for Thumb (with -Ospace command-
line option, which reduces the image size at the expense of
performance).

source name description
ST aes4 aes encryption

igp graphic quality improvement
adpcmc adpcm audio encoder
adpcmd adpcm audio decoder
anagram anagram finder
cjpeg jpeg still picture encoding
compress standard Unix utility
dijkstra Dijkstra’s shortest path alg.
djpeg jpeg still picture decoding
fp integer floating-point emul.
ks graph partitioning algorithm
wc standard Unix utility
yacr2 routing algorithm

idSoftware quake2 Quake2 in .NET
vvideo Video encoding

Table 1: Benchmarks

5. RESULTS
This section presents the code size obtained for the var-

ious considered architectures (subsection 5.1), followed by
the reasons that explain the differences (subsections 5.2 and
5.3). Since the metadata is a significant chunk of the total
.NET size, subsection 5.4 gives insights about its contents.
Finally, the code size gains brought by .NET are compared
with reasonable code compression ratios (subsection 5.5).

5.1 Raw Numbers
Table 2 shows the code size of the benchmarks compiled

for the various architectures considered. The code size is
computed as the sum of the sizes of the functions in the
executable that correspond to C functions in the source file
(i.e.: run-time support static libraries linked within the ex-
ecutable are not counted). Particular care is used to make
sure that no function is inlined. For .NET, the sizes of CIL
and metadata are separately shown; padding bytes present
in .NET executables are not counted.

In spite of native instruction-set architectures’ reputa-
tion of poor code density, native code compares favorably
with .NET executables. While CIL size typically varies
from 60 to 70% of native code size, the situation
changes when metadata too is counted. This is especially
true for small benchmarks, showing that a minimum
size of metadata is about 2000 bytes; beyond this

threshold, the metadata size grows more or less linearly as
CIL.

x86 code is more compact than many embedded cores on
general-purpose algorithms, in which it confirms its fame of
very dense CISC instruction encoding. In multimedia code
the situation is different and emdedded processors typically
outperforms x86. The reason is that these algorithms are
well suited for architectures with many registers and the
very few visible registers of x86 ISA force it to spill many
temporary variables to memory.

Finally, Thumb code proves to be the most compact by
far: even without counting .NET metadata, Thumb executa-
bles are significantly smaller than CIL in all benchmarks.

.NET
bench. CIL meta total x86 Thumb
adpcmc 581 2184 2765 831 n/a
adpcmd 520 2188 2708 702 n/a
aes4 2092 3156 5248 2272 1224
anagram 2117 4684 6801 2845 n/a
cjpeg 115897 83452 199349 148124 n/a
compress 4661 6992 11653 6234 n/a
dijkstra 943 3256 4199 1217 558
djpeg 115849 84496 200345 148607 n/a
fp 5012 4176 9188 5653 n/a
igp 3047 2984 6031 5910 2204
ks 3991 7428 11419 5342 3440
wc 204 1796 2000 306 160
vvideo 152600 45788 198388 249707 n/a
yacr2 14399 11264 25663 24170 11800

Table 2: Code Size Comparison

5.2 Reasons that could make CIL larger
There are a number of reasons that can make CIL code

larger than native code. We identified some that are inher-
ent to the language specification. We also investigated the
role of the compiler in the generated code.

5.2.1 Address Computation
Many instruction sets support several addressing modes

for memory operations. For instance, the Intel x86 ISA has
a very wide range, allowing a single address to be composed
of a base, an offset and a scaling factor. On the other hand,
.NET supports only one addressing mode for ldind: load
the value whose address is on the evaluation stack. As a
consequence, some addresses have to be explicitly computed
in CIL.

5.2.2 Lack of Conditional Assignment
CIL lacks of any conditional assignment instruction or any

form of predication. Many modern processors implement a
limited form of if-conversion, which simplifies the control-
flow graph when applied. CIL code must instead contain
the code corresponding to the original control-flow.

For instance, let us consider the following C statement:

e = (a < b) ? c : d;

The corresponding CIL code takes up to 14 bytes, while
conditional assignment could simplify the control-flow and
reduce the code to 8 bytes for a typical 32-bit machine (see

101

Figure 1, the right side shows pseudo-code for a 32-bit pro-
cessor with conditional assignment).

size code

2 ldloc.s a

2 ldloc.s b

2 bge.s → L1

2 ldloc.s c

2 br.s → L2

L1:

2 ldloc.s d

L2:

2 stloc.s e

size code

4 compare p = a, b

4 select e = p, c, d

Figure 1: Lack of conditional assignment

5.2.3 Conversions
CIL is a strongly-typed language, there are only a few

implicit coercions and all the other type conversions are ex-
plicit. Consider the following piece of C code:

char x, *p;

*p = x + 1;

The C language standard [9] specifies that the addition
be performed on int type. That is: x has to be converted
to int, before 1 is added. The result is then converted back
to char. CIL does pretty much the same. On the contrary,
the native instruction set is not typed. Instead, x86 movb

instruction is a move-byte instruction that stores only one
byte to memory, making the conversion useless. This same
example also shows the difference in terms of address com-
putation between CIL and x86. CIL code takes 8 bytes,
while 5 bytes are sufficient for x86.

size code

2 ldloc.s p

2 ldloc.s x

1 ldc.i4.1

1 add

1 conv.i1

1 stind.i1

size code

3 add $0x1,%ebx

2 movb %ebx,0x1(%eax)

CIL x86

Figure 2: Type Conversions

5.2.4 Maturity of Compilers
Surprisingly, even a quick visual inspection of the gen-

erated byte-code reveals missed opportunities for optimiza-
tions. Consider the code of Figure 3. Some value is com-
puted and stored in the local variable 2. Then, the value
of this variable is retrieved and used. This is the only use
of the variable. Clearly, the compiler could have optimized
away the stloc and the ldloc and directly used the value
on the stack. This optimization is similar to register promo-
tion [16].

Another simple optimization regards the allocation of lo-
cal variables. The variables with indices 0 to 3 can be ac-
cessed with one byte (ldloc.0 - ldloc.3). Other variables
require two (ldloc.s) or four bytes (ldloc). It is straight-
forward to allocate the most used values to the first four

size code

.. compute value

1 stloc.2

1 ldloc.2

.. last use of value

Figure 3: Missed “register promotion”

variables. Portable.NET compiler currently fails to do it,
which results in code larger than necessary; Microsoft com-
pilers do not miss this optimization.

In some cases, the code generated by the compiler could
be made much smaller, possibly at the cost of a slower execu-
tion. Consider the example of Figure 4: the code is loading
the constant value 1.0 on the stack. The straightforward
way to do this is to use a ldc.r8 operation, with the value
inlined on the following 8 bytes. A much smaller way to
do it is to load the integer value 1 and convert it to float.
One could argue that this might make the execution slightly
slower if the JIT is not able to recognize the pattern, but the
real impact is target dependent and it is debatable whether
CIL should be written with a specific target in mind.

size code

9 ldc.r8 1.000

size code

1 ldc.i4.1

1 conv.r8

Figure 4: Loading a floating point value

Finally, in rare circumstances Microsoft Visual C++
Toolkit 2003 C compiler applies control-flow graph simpli-
fications that increase the code size, like peeling part of a
loop iteration. When code size reduction is the main con-
cern, such transformations should be disabled.

5.3 Reasons that could make CIL smaller
There are also reasons that tend to make CIL smaller than

traditional native code.

5.3.1 Evaluation Stack versus Registers
The typical CIL opcode is 1 byte long. CIL is stack-based:

operands are not explicitly encoded in the instruction and
are expected to be at the top of an evaluation stack. This
makes it possible to use very short operations.

However, when operands are not in the right stack posi-
tion, they have to be explicitly copied on top of it. Some
code intrinsically requires more such copies because of its
data-flow structure. Therefore, the code size reduction due
to this reason much depends on the kind of code.

5.3.2 Floating Point
Many embdedded processors lack of floating point units,

and all computations are simulated in software. On the
other hand, CIL provides polymorphic operators, like ADD,
MUL, etc., which apply on integer as well as on floating point
operands. This means that CIL simply emits one byte for a
floating point operation (assuming the operands are already
on the evaluation stack). A core without a floating point
unit has to emit a call to an intrinsic function, and to place
the operands in the proper registers according to the ABI.
This requires extra register transfers.

102

5.4 Metadata
The metadata contains symbolic information about the

objects contained in the executable. It consists of four heaps
and several tables. The heaps are named #Strings, #GUID,
#US (for user string), and #Blob. See [7] for a complete
specification of the metadata.

Table 3 shows the metadata size for the benchmarks and
the contribution of each heap to the total. Since #US al-
ways empty or comparatively very small, it is omitted in
the figure. Similarly, #GUID is empty or contains a 16 byte
signature.

Almost half the size of a .NET executable is used by the
#Strings heap. In brief, it contains the symbolic names of
all the entities present in the module (type and class names,
methods, fields, etc.) as defined by the programmer. [2]
made a similar experiment on the Java byte-code and found
a similar result: the size of the constant pool is 60% of the
total size on average, and 60% of it is what they called type
and link information, i.e. what is needed for the run-time
type checking and dynamic linking.

benchmark metadata tables Strings Blob
adpcmc 2184 40% 41% 14%
adpcmd 2188 40% 41% 14%
aes4 3156 38% 46% 13%
anagram 4684 42% 42% 13%
cjpeg 83452 32% 55% 13%
compress 6992 40% 47% 12%
dijkstra 3256 41% 43% 12%
djpeg 84496 32% 55% 13%
fp 4176 36% 54% 7%
igp 2984 38% 39% 19%
ks 7428 35% 50% 13%
wc 1796 37% 43% 14%
yacr2 11264 34% 52% 13%
quake2 233036 37% 56% 7%

Table 3: Distribution of Size in Metadata

In many cases, the symbolic names are quite long, espe-
cially when they come from C++ mangled names [4]. Often,
the names could be shortened to a few bytes, drastically re-
ducing the heap size. Attention must be paid to those used
by external modules for linking, and to those used by reflec-
tion [5].

Some commercial tools exist that strip the metadata to
reduce the code size, for example Xenocode [1].

5.5 Compression
An obvious way to address code size is to use compression.

Many techniques have been proposed, from pure hardware
to pure software [14, 12, 17, 18, 20].

Compression techniques are closely related to information
theory and entropy. [2] measure the entropy of a large set
of Java byte-codes by using Shannon’s formula:

H = −

X

i

pi × log
2
pi

They find it to be between 3.2 and 3.6. The same formula,
applied to the benchmarks compiled for the .NET environ-
ment, yields values close to 5 (see column H on Table 4). Ap-
plied to the opcode stream of embedded applications, typical
values for the formula are from 4 to 6.

In order to evaluate how much space can be saved with
compression, the experiment consists in extracting the code
from the executable, and compress it with the standard tool
bzip2 [21], at maximum compression level. Table 4 shows
the results. Please, notice that x86 datas refer to the overall
size of the text section of the final executable, which typi-
cally includes statically linked code that is not part of the
application; this explains why the figures slightly differ from
those published in Table 2. The compression ratios for x86
are not significantly affected by that.

This approach works reasonably well for .NET executa-
bles, which are composed of a stream of bytes. Higher
compression rates could be achieved for native executables
by taking into account the instruction encoding, like done
in [17, 18]; the reason is that opcodes and registers have dif-
ferent and often uncorrelated dynamics. Instruction-
encoding sensitive compression for STMicroelectronics
ST200 is exploited in [18], with improved compression ra-
tios.

6. CONCLUSION
This paper studies the code size of applications developed

in the .NET framework. It finds that the metadata is a
substantial part of the total size. Several aspects of the CIL
representation that differ from traditional native instruction
sets and that have an impact on size are analyzed. The
findings show characteristics similar to a previous study on
Java [2].

The code that is needed to run an application is not only
the CIL, but also the metadata. Contrarily to a common
belief, the total code size is not significantly more com-
pact that a native ISA, and it is actually much larger than
ARM/Thumb.

Still, areas not yet covered by the existing tools are iden-
tified, which should further reduce the code size; they might
be promising directions when using .NET in embedded sys-
tems.

7. REFERENCES
[1] XenoCode Corp. http://www.xenocode.com.

[2] D. N. Antonioli and M. Pilz. Analysis of the java class
file format. Technical Report 98.4, Department of
Computer Science, University of Zürich, April 1998.

[3] D. Box and C. Sells. Essential .NET Volume 1: The
Common Language Runtime. Addison-Wesley, 2003.

[4] CodeSourcery, Compaq, EDG, HP, IBM, Intel,
R. Hat, and SGI. Itanium C++ ABI.
http://www.codesourcery.com/cxx-abi/abi.html,
2001.

[5] D. Curran, F. C. Ferracchiati, S. F. Gilani,
M. Gillespie, S. Gopikrishna, J. Hart, B. K. Mathew,
A. Olsen, J. Pinnock, T. Titus, and S. Sivakumar. Pro
.NET 1.1 Remoting, Reflection, and Threading.
Apress, 2005.

[6] DotGNU Portable.NET.
http://www.dotgnu.org/pnet.html.

[7] ECMA. ECMA-335: Common Language
Infrastructure (CLI), 2nd edition, Dec. 2002.

[8] Gosling, Joy, Steele, and Bracha. The Java Language
Specification. Addison-Wesley, 2nd edition, Apr. 1999.

[9] International Org. for Standardization. ISO/IEC
9899:1990: Programming languages — C. 1990.

103

benchmark x86 .NET
orig bzip2 ratio orig bzip2 ratio H

adpcmc 1201 760 37% 581 462 20% 5.13
adpcmd 1171 741 37% 520 432 17% 5.16
aes4 3851 1435 63% 2092 819 61% 4.70
anagram 2872 1504 48% 2117 1269 40% 5.18
cjpeg 149138 47470 68% 115897 44335 62% 4.96
compress 6297 2656 58% 4661 2369 49% 5.30
dijkstra 1217 677 44% 943 517 45% 4.90
djpeg 149618 47594 68% 115849 44470 62% 4.97
fp 12147 3467 71% 5012 1748 65% 4.37
igp 5910 1951 67% 3047 1381 55% 4.43
ks 5342 1987 63% 3991 1852 54% 4.83
wc 306 278 9% 204 214 -5% 4.54
vvideo 263669 66977 75% 152600 60129 61% 5.04
yacr2 24170 5917 76% 14399 5907 59% 4.99

Table 4: Compression ratios of .NET and native code

[10] International Org. for Standardization. ISO/IEC
23271:2003: Common Language Infrastructure. 2003.

[11] Java 2 platform, micro edition (J2ME).
http://java.sun.com/j2me.

[12] M. Latendresse and M. Feeley. Generation of fast
interpreters for Huffman compressed bytecode. In
Interpreters, Virtual Machines and Emulators
(IVME ’03), pages 32–40, 2003.

[13] Lindholm and Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 2nd edition, June 2000.

[14] MIPS32 Architecture For Programmers, Volume IV-a:
The MIPS16e Application-Specific Extension to the
MIPS32 Architecture. MIPS Technologies
Documentation, 2001.

[15] Mono. http://www.mono-project.com.

[16] S. S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufmann Publishers, Inc.,
1997.

[17] A. Orpaz and S. Weiss. A study of CodePack:
optimizing embedded code space. In Proceedings of the
Tenth International Symposium on Hardware/Software
Codesign, pages 103–108. ACM Press, 2002.

[18] E. Piccinelli and R. Sannino. Code compression for
VLIW embedded processors. ST Journal of Research,
1(2):32–46, 2004.

[19] J. Richter. Applied Microsoft .NET Framework
Programming. Microsoft Press, 2002.

[20] D. Seal. ARM Architecture Reference Manual.
Addison-Wesley, 2nd edition, Dec. 2000.

[21] J. Seward. bzip2. http://sources.redhat.com/bzip2.
bzip2 is a freely available, patent free, high-quality
data compressor.

[22] P. R. Wilson. Uniprocessor garbage collection
techniques. In Proceedings of the International
Workshop on Memory Management, number 637,
Saint-Malo (France), 1992. Springer-Verlag.

104

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

