

An Efficient Direct Mapped Instruction Cache
for Application-Specific Embedded Systems

Chuanjun Zhang
Computer Science and Electrical Engineering Department

University of Missouri-Kansas City
Kansas City, MO 64110

zhangchu@umkc.edu
Abstract
Caches may consume half of a microprocessor’s total power and
cache misses incur accessing off-chip memory, which is both time
consuming and energy costly. Therefore, minimizing cache power
consumption and reducing cache misses are important to reduce
total energy consumption of embedded systems. Direct mapped
caches consume much less power than that of same sized set
associative caches but with a poor hit rate on average. Through
experiments, we observe that memory space of direct mapped
instruction caches is not used efficiently in most embedded
applications. We design an efficient cache – a configurable
instruction cache that can be tuned to utilize the cache sets
efficiently for a particular application such that cache memory is
exploited more efficiently by index remapping. Experiments on 11
benchmarks drawn from Mediabench show that the efficient cache
achieves almost the same miss rate as a conventional two-way set
associative cache on average and with total memory-access energy
savings of 30% compared with a conventional two-way set
associative cache.

Categories and Subject Descriptors
B 3.2 [Memory Structures]: Design Style, Cache memories
General Terms
Design, Algorithm

Keywords
Instruction cache, low power cache, efficient cache design

1. Introduction!
Cache may consume up to 50% of a microprocessor’s total power
[8][10], including both dynamic and static power. Cache misses
incur accessing to off-chip memory, which is both time consuming
and energy costly, because of the high capacitance of off-chip
buses and large storage of off-chip memory. Embedded processors
need low power and low energy techniques to prevent overheating
and to prolong battery life.

Direct-mapped (DM) caches are popular in embedded
microprocessor architectures due to their simplicity. A DM cache
consumes less power per access than a same sized set-associative
cache that has to access multiple cache ways simultaneously.
Furthermore, a DM cache does not have a multiplexor that is used
to select the desired way data among cache ways as in a set
associative cache, thus a DM cache has faster access time, which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

often on the microprocessor’s critical path and thus influences
clock frequency.

DM caches have poor hit rates on average than the same sized
set associative caches. A low hit rate means more access to off-
chip memory and off-chip buses, which are both energy and time
costly. One way to solve this problem is to use set associative
caches. Set associative caches have a low miss rate hence less
accesses to off-chip memory, but set associative caches have a
much higher per access energy consumption than that of a same
size direct mapped cache. A two way set associative cache
consumes around 40% more energy than a same sized direct
mapped cache [9].

A particular embedded system may run one or just a few
applications in the system’s lifetime. Embedded system designers
are increasingly using application-specific architectures tuned to
that one or few applications (e.g., Tensilica’s application-specific
processor [11]). We examine the usage of direct-mapped
instruction caches in embedded systems for particular applications
and observe that cache memory is not used efficiently during the
execution of most applications. Many cache sets are not used
efficiently for a particular application. We name these sets as
underused sets. Furthermore, we notice that some cache sets are
overused and accessed more frequently than average. We name
these cache sets as overused sets. Because an embedded system
will typically execute one or just a few fixed applications during its
lifetime, we design a configurable instruction cache that the
accesses to overused cache sets are reduced and hence the conflict
miss rate. Furthermore, the reduced cache accesses are remapped
to the underused cache sets to improve the hit rate. Balancing the
accesses to all cache sets would not increase the per access
dynamic and static energy consumption of the instruction cache.
However, the hit rate of the efficient cache is increased therefore
the accesses to off-chip memory are reduced, which means the
execution time of an application is reduced hence the total static
energy, since static energy consumption is proportional to the
execution time. Dynamic energy is also reduced due to fewer visits
to off-chip bus and memory, which are power costly.

The rest of the paper is organized as follows. We discuss
related work in Section 2. We present data on our observation of
the overused and underused cache sets in Section 3,. We discuss
the design of our efficient cache in Section 4 and describe how to
use an efficient cache in a configurable pre-fabricated platform in
Section 5. We discuss experimental results in Section 6. The
limitations of the efficient cache are discussed in Section 7. We
conclude the paper in Section 8.

2. Related Work
Peir[5] found that 40% of the cache frames in a direct-mapped data
cache contain less recently used sets during the execution of TPC-
C benchmarks. He developed an adaptive group-associative cache

45

that dynamically identified these less accessed cache sets and
utilized these cache sets to approximate the global least-recently
used replacement policy to improve the performance of a direct-
mapped cache. His technique improved the hit rate of a direct-
mapped cache to that of a same sized four-way set-associative
cache. Another approach, cache set decay [4], dynamically turns
off cache sets that have not been visited for a designated period,
reducing the L1-cache leakage energy dissipation by 4x in
SPEC2000 applications.

Compared with our efficient cache, Peir’s design maps cache
sets to less frequently used cache sets to reduce conflict miss in a
direct-mapped cache and thus requires a complex design, such as
to distinguish a hit as a hit on a direct-mapped location or a hit in
an out of position cache set that needs an extra cycle to access. The
extra cycle would prolong the execution time and consume more
energy even if the hit rate is improved. The cache decay method
requires special circuit techniques to make the cache sets consume
less static energy. These techniques may not easily available to
embedded system designers.

Several researchers proposed to tune cache size to fit a
particular application. Albonesi [1] dynamically tuned the size of a
set-associative cache by shutting down cache ways to save
dynamic power. Zhang [12] proposed a configurable cache whose
size and number of ways can be tuned to a particular application to
save dynamic and static power. Both of them tune the cache size at
the granularity of cache ways, which may incur extra misses and
need special shut down circuits.

An optimal direct mapped cache index mapping[3] is proposed
to reduce direct mapped cache’s miss rate of a synthesizable core
for embedded systems. A heuristic is also proposed to determine
the optimal index mapping for a particular application.

Our efficient cache is intended to be used in a pre-fabricated
platform. A pre-fabricated platform is a chip that has already been
designed but is intended for use in a variety of possible
applications with advantages of mass production and shorter time-
to-market. To perform efficiently for the largest variety of
applications, recent platforms come with parameterized
architecture that a designer can configure for his/her particular set
of applications. Recent architectures include cache parameters
[8][12][1] that can be configured by setting a few configuration
register bits. We therefore developed a configurable efficient
instruction cache whose index mapping can be configured by
setting bits in a configuration register.

3. Overused/underused cache sets observation
Through experiments, we observe that some cache sets are

overused and visited much more than average for an application.
Furthermore, some other cache sets are underused and accessed
much less than average.

 Figure 1 shows one example of the benchmark adpcm_enc,
drawn from the MediaBench [7] benchmark suite. The underused
sets are scattered among the whole cache space, which means that
simple shut down schemes, such as shutting down a cache
subarray, may incur extra misses because useful cache sets may be
taken out unexpectedly.

The other observation we make is that even at the subarray
level, there are still overused and underused subarrays. These
overused cache subarrays generate conflict misses that otherwise
would be reduced if the accesses to theses cache subarrays are
reduced.

Based on the above two observations, we design an efficient
instruction cache architecture for embedded systems in which the
accesses to overused cache subarrays are reduced and the accesses
to underused subarrays are increased without increasing the cache
access time. The benefit of our efficient cache is that we reduce the
miss rate of efficient cache without increasing the cache’s size,
associativity, or cache access time.

4. Efficient Instruction Cache Design
4.1 Basic design
Figure 2 shows the design of our efficient instruction cache. Cache
memories are divided into subarrays to achieve the best trade-off
of area, performance (access time), and power consumption [9].
There are four subarrays in a conventional four and eight Kbyteyte
direct-mapped cache [9]. The original subarray decoders, four two-
input AND gates, have been replaced by configurable decoders.
Each subarray has two rows of configurable decoders, while each
row has five bits. The contents in the new configurable decoders,
which are shown in Figure 2, implement the same decoding
function as the original four two-input AND gates.

In Figure 3, we show two cases that the contents of the
configurable decoder is configured to effectively use the cache
space. In Figure 3(a), the accesses to subarray 0 is reduced by
extending the decoder from “00” to “000”. The accesses to
subarray 1 is increased by re-mapping “100” from the original
subarray 0 to the subarray 1.In Figure 3(b), the accesses to the
subarray 0 is reduced by extending the decoder from “00” to
“0000”, which means that only one fourth of the original address
space is mapped to the subarray 0. The other addresses, “0100”,
“1000”, and “1100” are remapped to subarray 1, 2, and 3,
respectively. The “X” in Figure 3 means “don’t care.” The two
XCAM bits of the configurable decoders in addition to the second

1

100

10000

1000000

1 74 147 220 293 366 439 512

No. of Access Ave. per Subarray

 Figure 1: Instruction cache set access counts for adpcm_enc from Mediabench for an 8 Kbyte cache.

Subarray 1

Subarray 0 Subarray 2 Subarray 3

underused underused

overused

46

row of the decoder may need don’t care functions. The Vi , i = 1,
2,…8, are valid signals of the configurable decoder. When V1, V3,
V5, and V7 are zeros, the two XCAM bits of the corresponding
decoders are not used; otherwise, the original decoder is extended
to include the two XCAM bits. Therefore, accesses to
corresponding subarrays are reduced. When V2, V4, V6, and V7 are
zeros, the corresponding decoders are not used; otherwise
increasing the width of the decoder from one row to two rows
increases accesses to corresponding subarrays.

4.2 Cache access time
To avoid increasing the cache access time, the new configurable
decoders must run as fast as or faster than the 6-to-64 decoders.
The programmable decoder consists of two rows of decoders. The
first row has two conventional CAM cells, two XCAM cells that
are conventional CAM cells with “don’t care” function
implemented, one SRAM for the valid bit of the decoder. The
second row has one bit SRAM for valid bit and four XCAM cells.
We use standard ten-transistor CAM cells, shown Figure 6. The
XCAM cell needs an extra NMOS transistor, shown Figure 6, to
implement the “don’t care” function. HSPICE simulation shows
that we can easily choose appropriate parameters of the transistors
in the SRAM, CAM, and XCAM cells to make the comparison of
the programmable decoder runs faster than that of the 6-to-64
decoder.

To avoid faulty cache hits, tag length must be extended to
include the subarray index. In a four-subarray direct-mapped
cache, the proposed cache tag is two bits longer than that of the
original tag. This will increase the time spent on activating the
word line, bit lines of tags, and the time needed to compare the
tags. We collect access times for both the tag and the data side for
our efficient cache with four subarrays at cache size of 4Kbyte,
8Kbyte, and 16Kbyte, using CACTI model at technology 0.18µm.
Table 1 shows the cache access times. From the table, we can see
that the data side access time is still longer than that of the tag side
after we extend the length of the tag by two bits.

4.3 Power per cache access
The extra power consumption comes from the fact that we use
eight rows of five-bit long programmable decoders to replace the

original four AND gates decoders. We measure the power
consumption of the programmable decoders using Cadence layout
tools at technology 0.18um. The power consumption per access of
the decoders is 0.70pJ. The total power consumption of an 8 Kbyte
direct mapped cache is 0.38nJ per cache access from our own
cache layout. Therefore, the power overhead due to replacing the
original decoder with programmable decoders is 0.70pJ/0.38nJ =
0.18%.

5. Using an Efficient Instruction Cache
The proposed efficient cache is intended to be used in a pre-
fabricated platform that has already been designed but is intended
for use in a variety of possible applications. To perform efficiently
for the largest variety of applications, recent platforms come with
parameterized architectures that a designer can configure for
his/her particular set of applications.

Figure 4 shows the procedure of designing an efficient
instruction cache. First, we need a simulation tool to profile the
application and an algorithm to search for the optimal configurable
subarray decoders. The usage of the cache sets is recorded from the
simulation tool. Then the number and location of the overused and
underused cache sets are fed to the algorithm to set up the
configurable decoder that produces the desired index mapping
cache structure.

First, we need to determine both the overused and under used
subarrays. Let SA0, SA1, SA2, and SA3 denote the accesses to
subarray 0,1,2, and 3, respectively. Ave represents the average
access to the subarrays. We define a subarray to be overused when
SAi /Ave > threshold1, and a subarray to be underused when SAi
/Ave < threshold2, where i = 0,1,2,3. We determine the two
thresholds through experiments and find out that threshold1 = 1.3
and threshold2 = 0.8 are appropriate for the benchmarks we
simulated. We point out that these two thresholds just tell us
whether there exist chances to balance the subarray accesses;
therefore, we tend to select a small value of threshold1 and large
value of threshold2.

Last, we need an algorithm to search for the optimal
configurable subarray decoder. There are two rows of decoders for
a subarray with each decoder has four bits but only the two XCAM
bits are configurable for the first row. The possible configurations
of the two XCAM bits in Figure 2, defined as decoder
configuration (DC) are: DC = {xx, x0, 0x, x1, 1x, 00,01,10, 11}. xx
means the decoder remain unchanged, x0, 0x, x1, and 1x means the
address space mapped to the overused subarray decoders is
reduced by half, while 00,01,10,and 11 means that only one fourth
of the original address space is mapped to the original overused

 Figure 2:The organization of an efficient cache.

Figure 3:Two examples of the configurable subarray decoder.

Configurable
subarray decoder

000X

10
001X
01

11

+

+

+

+

V1

V6

V5

V7

V3

V8

V4

V2

 Configurable
subarray decoder

00 0 0

10

00 1 0
01

11
00 0 1

00 1 1

+

+

+

+

V1

V6

V5

V7

V3

V8

V4

V2

Subarray 2

Subarray 1

Subarray 3

Subarray 0

Subarray 2

Subarray 1

Subarray 3

Subarray 0

(a) (b)

Su
ba

rr
ay

 1

Su
ba

rr
ay

 2

6

6 6

Su
ba

rr
ay

 0

2

 1

3

offsettag

C3 C2 C1 C0 I5 I0

Cache line index

4

Su
ba

rr
ay

 3

new configurable
subarray decoder

CAM

+

+

+

+

0 1

1 1

0 0

1 0

V1

V6

V5

V7

V3

V8

V4

V2

SRAM
XCAM

original
subarray
decoder
I7

I7

I6

I7

I6

I7

I6

I6
6x

64

6x
64

47

subarray and three fourths of the address space to the overused
subarray is remapped to underused subarray.

Figure 5 shows the algorithm we use to determine the optimal
subarray decoder configuration. The inputs include both the
overused, OS, and underused subarrays, US. The set of OS may be
empty, no overused subarrays, or contain at most three subarrays,
so does the US. The outputs are the XCAM bits of the first-row
decoder configuration (FDCk) of the overused subarray and second
row decoder configuration (SDCk) of the underused subarray. The
algorithm simply tries all possible decoder configurations and
selects the configuration that has the lowest miss rate.

In terms of running time complexity, although the algorithm
has four loops, the number of subarrays is just four (for cache size
is less than or equal to 64Kbyte, which is larger than typical cache
size of embedded systems [12]). There are nine possible decoder
configurations of the first row decoder, FDCk, and the second row
decoder, SDCk. However, the FDCk and SDCk are dependent of
each other. For example, assume subarray 0 is overused and
subarray 3 is underused, then we can only reduce the access to
subarray 0 by half. The configuration of the first row decoder can
be any of the four possibilities: 0x, x0, 1x, x1, correspondingly, the
second row decoder of subarray 3 must be 1x, x1, 0x, x0,
respectively. In other words, if the first row decoder is 0x, then the
second row decoder of subarray 3 must be 1x. For one of the worst
case, where there are one overused subarray but three under used
subarrays, the total simulations is 3x4 = 12 when reducing the
access by half, and 4! = 24 when reducing the access by three
fourths. Therefore, the total simulation we need to run is 36. It
takes around six hours on a Pentium IV machine using
SimpleScalar[2] simulation tool to search for the optimal
configurable decoder.

6. Experiments
To determine the benefits of our efficient cache, we simulated a
variety of benchmarks for a variety of cache sizes using
SimpleScalar [2]. The benchmarks included programs from
MediaBench [7] (adpcm_enc, adpcm_dec, epic_enc, epic_dec,
jpeg_enc, jpeg_dec, mpeg2, pegwit_enc, pegwit_dec). We used the
data sets that came with each benchmark as program stimuli.

6.1 Results
We show, in Figure 7 and Figure 9, the reduction of instruction
miss rate with respect to a 4 Kbyteyte and 8 K byte direct-mapped
cache for all the benchmarks, respectively. 4K-E and 8K-E
represent the instruction cache miss rate our efficient cache at
cache size of 4 Kbyteyte and 8 Kbyteyte, respectively. 4K-2W and
8K-2W represent the miss rate of two way set associative cache at
size of 4 Kbyteyte and 8 Kbyteyte, respectively.

6.2 Observations
From Figure 7 and Figure 9, we can observe that the miss rate
reduction of our efficient cache is almost as good as that of a

conventional two-way set associative cache on average at cache
size of 4 Kbyteyte and 8 Kbyteyte.

Table 2 lists the contents of the configurable decoder for all
the benchmarks we simulated at cache size of 4Kbyteyte. The
result for cache size at 8Kbyteyte is not shown due to space limit.

 Energy Evaluation
We consider both dynamic and static energy consumption of in our
energy evaluations. We used similar energy evaluations as shown
in [12]. Our equation for computing the total energy due to
memory accesses is as follows:
 energy_mem=energy_dynamic+ energy_static

 where: energy_dynamic = cache_hits * energy_hit +
cache_misses * energy_miss

cache size
(KB)

original tag
side access

time(ns)

tag side
access time
when two

bits
longer(ns)

original data
side access
time (ns)

access time
change

4 0.83 0.85 0.87 NO
8 0.86 0.87 0.96 NO

16 0.93 0.95 1.13 NO
Table 1: Access Time of our proposed cache.

Figure 4: Design procedure for an efficient cache.

Figure 6: CAM cell circuitry. One extra NMOS is used to
implement “don’t care” CAM cell. Don’t care means that the

“Match” is always high.

Algorithm
Input: overused subarrays: osi ∈OS, 0≤ i ≤ 2
Input: underused subarrays: usj ∈US, 0≤ j ≤ 2
Output: decoder configuration FDCk and SDCk, k=0,1,2,3
initialize both FDCk and SDCk to xx
 for each osi ∈ OS
 for each FDCk ∈ DC
 for each usi ∈ US
 for each SDCk∈DC
 calculate miss rate through simulation
 select the FDCk and SDCk with the smallest miss rate

Figure 5: Algorithm to determine the optimal subarray
decoder configuration

D$

I $
Proc Mem

SOC

Embedded
Applications

Simulation
Tools

Cache sets usage
data

Determine the best

decoder configuration
through the proposed

algorithm

Configured
decoder

FXi Implements the XCAM cell

6.3

48

energy_miss = energy_offchip_access + energy_uP_stall
+ energy_cache_block_refill

energy_static = cycles * energy_static_per_cycle
We obtain the underlined terms through measurements or
simulations. We compute cache_hits, cache_misses, and cycles by
running SimpleScalar [2] simulations. We compute energy_hit and
energy_cache_block_refill using the CACTI [9] model. The
energy_offchip_access value is the energy due to accessing off-
chip memory and the energy_uP_stall is the energy consumed
when the microprocessor is stalled to wait for the memory system
to provide an instruction. energy_cache_block_fill is the energy for
refilling a cache block due to a cache miss. These terms highly
depend on particular memory and microprocessor. Instead of
evaluating the energy to a particular microprocessor system and off
chip memory configuration, we try to figure out a method that may
be used for different microprocessors and off chip memory
configurations. We examined the three terms of
energy_offchip_access, energy_uP_stall, and
energy_cache_block_fill for typical commercial memories and
microprocessors, and found that energy_miss ranged from 50 to
200 times bigger than energy_hit. Thus, we redefined energy_miss
as:

energy_miss = k_miss_energy * energy_hit
we considered the situations of k_miss_energy equal to 50 and
200.

Finally, cycles is the total number of cycles for the benchmark
to execute, as computed by SimpleScalar, using a cache with single
cycle access on a hit and using 100 cycles on a miss.
energy_static_per_cycle is the total static energy consumed per
cycle. This value is also highly system dependent, so we again

consider a variety of possibilities, by defining this value as a
percentage of total energy including both dynamic and static
energy:

energy_static_per_cycle = k_static * energy_total
k_static is a percentage that we can set. To consider the CMOS
technology trend, we evaluate the situations where k_static is 30%
and 50% of the total energy.

6.4 Energy savings
We show the energy savings of all benchmarks for cache sizes
ranging from 4 Kbyteyte to 8 Kbyteyte when k_static=50%,
k_miss_energy=200 in Figure 8 and Figure 10. Energy data at
other combinations of k_miss_energy and k_static are not shown
due to space limit. The energy savings are on average 12% and 8%
compared with a same sized conventional direct mapped cache.
The negative value stands for that the efficient cache consumes
less energy than that of a conventional direct mapped cache.
Compared with the conventional two-way set associative caches,
which have almost the same miss rate as our efficient cache, the
energy consumption of the two-way set associative cache is on
average 20% and 15% more than a direct mapped cache.

Therefore, our efficient cache can achieve almost the same
miss rate but consume 30% and 23% less energy than a
conventional two-way set associative cache at cache size of 4
Kbyte and 8 Kbyte, respectively.

Compared with conventional direct mapped caches, the
energy savings of the efficient cache come form the fact that
accesses to off chip buses and memory are reduced due to the
reduction of the miss rate. Compared with two way set associative
cache, the efficient cache has almost the same miss rate hence
consumes comparable off chip energy. However, the efficient

0%

10%

20%

30%

40%

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

g7
21

de
c

g7
21

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc av

e

4K-E 4K-2W

Figure 7: Miss rate reductions of Mediabench benchmarks at

cache size of 4 Kbyteyte compared with same size direct
mapped cache.

0%
10%
20%
30%
40%
50%

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

g7
21

de
c

g7
21

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc av
e

8K-E 8K-2W

Figure 8: Miss rate reductions of Mediabench benchmarks at
cache size 8 Kbyteyte compared with same size direct mapped

cache.

-45%

-30%

-15%

0%

15%

30%

45%

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

g7
21

de
c

g7
21

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc av
e

4K -E 4K-2W

Figure 9:Energy savings of the efficient cache at cache size

4Kbyteyte compared with direct mapped cache respectively.

-45%

-30%

-15%

0%

15%

30%

45%

ad
pc

m
de

c

ad
pc

m
en

c

ep
ic

un
ep

ic

g7
21

de
c

g7
21

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc av
e

8K-E 8K-2W

Figure 10: Energy savings of the efficient cache at cache size
8Kbyteyte compared with direct mapped cache.

49

cache consumes much less energy per cache access than that of a
two way set associative cache. Therefore, the total energy is
reduced.

7. Limitations of the efficient cache
The design of the efficient cache requires simulating the
applications beforehand to determine what is the best index
decoding schemes that can be implemented by the configurable
decoder. However, different input data sets may change the
distribution of both overused and underused cache sets. The
efficient cache may experience a worse miss rate if the best index
decoding changes, causing both performance and power overhead.
If the input data sets changes are not frequent, we may choose a set
of best decoding schemes for each input data sets and store the best
decoding schemes in a special memory buffer, therefore the best
decoding is used for different input data sets. On the other hand,
we may use the original decoding scheme for applications whose
best decoding highly depends on input data sets.

To determine the prevalence of this situation, we simulated all
the benchmarks using a secondary input data set that comes with
Mediabench. We haven’t found that the best index decoding has
been changed due to the change of the input data sets for the
benchmarks we simulated.

8. Conclusion
We have designed an efficient instruction cache for application-
specific embedded systems. We observe that there are cache sets
that are overused by some applications during execution and
generate conflict misses. In addition, some other cache sets are
underused that the miss rate can be reduced if the underused cache
space is used efficiently. We proposed to re-map the cache
memory reference from the overused subarrays to underused
subarrays for a particular application. We showed that an efficient
cache achieves almost the same hit rate of a conventional same
sized two-way set associative cache while consumes 25% less
energy.

Reference
[1] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache

Resource Allocation,” Journal of Instruction Level
Parallelism, May 2000.

[2] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Univ. of Wisconsin-Madison Computer
Sciences Dept. Technical Report #1342, June 1997.

[3] T. Givargis, “Improved Indexing for Cache Miss Reduction in
Embedded Systems,” Design Automation Conference,
Anaheim CA, 2003.

[4] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay:
Exploiting General Behavior to Reduce Cache Leakage
Power,” International Symposium on Computer Architecture,
2001.

[5] J. Peir, Y. Lee, W. Hsu, “Capturing Dynamic Memory
Reference Behavior with Adaptive Cache Topology,” in the

Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1998.

[6] L. Lee, B. Moyer, J. Arends, “Instruction Fetch Energy
Reduction Using Loop Caches For Embedded Applications
with Small Tight Loops,” International Symposium on Low
Power Electronics and Design, 1999.

[7] C. Lee, M. Potkonjak and W. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” International
Symposium on Microarchitecture, 1997.

[8] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility,” International Symposium on Low Power
Electronics and Design, June 2000.

[9] G. Reinmann and N.P. Jouppi. CACTI2.0: An Integrated
Cache Timing and Power Model, 1999. COMPAQ Western
Research Lab.

[10] S. Segars, “Low power design techniques for
microprocessors,” International Solid-State Circuits
Conference Tutorial, 2001.

[11] Tensilica Inc. http://www.tensilica.com/.
[12] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable

Cache Architecture for Embedded Systems,” International
Symposium on Computer Architecture, 2003.

subarray0 subarray1 subarray2 subarray3

1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x100 1x101
1x000 0xx01 0xx10 0xx11
0xxxx 0xxxx 1x100 0xxx
10000 0xx01 0xx10 0xx11
0xxxx 10100 11000 11100
1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x101 1x100
0xx00 0xx01 1x010 1x011
0xxxx 1x1x1 0xxxx 0xxxx
0xx00 0xx01 1x010 0xx11
0xxxx 1x101 0xxxx 0xxxx
1x000 0xx01 0xx10 0xx11
0xxxx 1x100 0xxxx 0xxxx
0xx00 0xx01 0xx10 1x011
0xxxx 0xxxx 1x111 0xxxx
1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x101 1x100
1x000 0xx01 0xx10 0xx11
0xxxx 0xxxx 0xxxx 1x100
0xx00 0xx01 1x010 1x011
1x1x1 0xxxx 0xxxx 0xxxx

adpcmdec

adpcmenc

epic

unepic

mpeg2dec

pegwitdec

pegwitenc

g721dec

g721enc

jpegdec

jpegenc

Table 2: The configurable decoder contents of the efficient
cache at 4 Kbyteyte.

50

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

