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Abstract 
Caches may consume half of a microprocessor’s total power and 
cache misses incur accessing off-chip memory, which is both time 
consuming and energy costly. Therefore, minimizing cache power 
consumption and reducing cache misses are important to reduce 
total energy consumption of embedded systems. Direct mapped 
caches consume much less power than that of same sized set 
associative caches but with a poor hit rate on average. Through 
experiments, we observe that memory space of direct mapped 
instruction caches is not used efficiently in most embedded 
applications. We design an efficient cache – a configurable 
instruction cache that can be tuned to utilize the cache sets 
efficiently for a particular application such that cache memory is 
exploited more efficiently by index remapping. Experiments on 11 
benchmarks drawn from Mediabench show that the efficient cache 
achieves almost the same miss rate as a conventional two-way set 
associative cache on average and with total memory-access energy 
savings of 30% compared with a conventional two-way set 
associative cache.  

Categories and Subject Descriptors 
B 3.2 [Memory Structures]: Design Style, Cache memories 
General Terms 
Design, Algorithm 

Keywords 
Instruction cache, low power cache, efficient cache design  

1. Introduction! 
Cache may consume up to 50% of a microprocessor’s total power 
[8][10], including both dynamic and static power. Cache misses 
incur accessing to off-chip memory, which is both time consuming 
and energy costly, because of the high capacitance of off-chip 
buses and large storage of off-chip memory. Embedded processors 
need low power and low energy techniques to prevent overheating 
and to prolong battery life. 

Direct-mapped (DM) caches are popular in embedded 
microprocessor architectures due to their simplicity. A DM cache 
consumes less power per access than a same sized set-associative 
cache that has to access multiple cache ways simultaneously. 
Furthermore, a DM cache does not have a multiplexor that is used 
to select the desired way data among cache ways as in a set 
associative cache, thus a DM cache has faster access time, which is 
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often on the microprocessor’s critical path and thus influences 
clock frequency. 

DM caches have poor hit rates on average than the same sized 
set associative caches. A low hit rate means more access to off-
chip memory and off-chip buses, which are both energy and time 
costly. One way to solve this problem is to use set associative 
caches. Set associative caches have a low miss rate hence less 
accesses to off-chip memory, but set associative caches have a 
much higher per access energy consumption than that of a same 
size direct mapped cache. A two way set associative cache 
consumes around 40% more energy than a same sized direct 
mapped cache [9].  

A particular embedded system may run one or just a few 
applications in the system’s lifetime. Embedded system designers 
are increasingly using application-specific architectures tuned to 
that one or few applications (e.g., Tensilica’s application-specific 
processor [11]). We examine the usage of direct-mapped 
instruction caches in embedded systems for particular applications 
and observe that cache memory is not used efficiently during the 
execution of most applications. Many cache sets are not used 
efficiently for a particular application. We name these sets as 
underused sets. Furthermore, we notice that some cache sets are 
overused and accessed more frequently than average. We name 
these cache sets as overused sets. Because an embedded system 
will typically execute one or just a few fixed applications during its 
lifetime, we design a configurable instruction cache that the 
accesses to overused cache sets are reduced and hence the conflict 
miss rate. Furthermore, the reduced cache accesses are remapped 
to the underused cache sets to improve the hit rate. Balancing the 
accesses to all cache sets would not increase the per access 
dynamic and static energy consumption of the instruction cache. 
However, the hit rate of the efficient cache is increased therefore 
the accesses to off-chip memory are reduced, which means the 
execution time of an application is reduced hence the total static 
energy, since static energy consumption is proportional to the 
execution time. Dynamic energy is also reduced due to fewer visits 
to off-chip bus and memory, which are power costly.  

The rest of the paper is organized as follows. We discuss 
related work in Section 2. We present data on our observation of 
the overused and underused cache sets in Section 3,. We discuss 
the design of our efficient cache in Section 4 and describe how to 
use an efficient cache in a configurable pre-fabricated platform in 
Section 5. We discuss experimental results in Section 6. The 
limitations of the efficient cache are discussed in Section 7. We 
conclude the paper in Section 8.  

2. Related Work 
Peir[5] found that 40% of the cache frames in a direct-mapped data 
cache contain less recently used sets during the execution of TPC-
C benchmarks. He developed an adaptive group-associative cache 

45



 

that dynamically identified these less accessed cache sets and 
utilized these cache sets to approximate the global least-recently 
used replacement policy to improve the performance of a direct-
mapped cache. His technique improved the hit rate of a direct-
mapped cache to that of a same sized four-way set-associative 
cache. Another approach, cache set decay [4], dynamically turns 
off cache sets that have not been visited for a designated period, 
reducing the L1-cache leakage energy dissipation by 4x in 
SPEC2000 applications.  

Compared with our efficient cache, Peir’s design maps cache 
sets to less frequently used cache sets to reduce conflict miss in a 
direct-mapped cache and thus requires a complex design, such as 
to distinguish a hit as a hit on a direct-mapped location or a hit in 
an out of position cache set that needs an extra cycle to access. The 
extra cycle would prolong the execution time and consume more 
energy even if the hit rate is improved. The cache decay method 
requires special circuit techniques to make the cache sets consume 
less static energy. These techniques may not easily available to 
embedded system designers.  

Several researchers proposed to tune cache size to fit a 
particular application. Albonesi [1] dynamically tuned the size of a 
set-associative cache by shutting down cache ways to save 
dynamic power. Zhang [12] proposed a configurable cache whose 
size and number of ways can be tuned to a particular application to 
save dynamic and static power. Both of them tune the cache size at 
the granularity of cache ways, which may incur extra misses and 
need special shut down circuits.  

An optimal direct mapped cache index mapping[3] is proposed 
to reduce direct mapped cache’s miss rate of a synthesizable core 
for embedded systems. A heuristic is also proposed to determine 
the optimal index mapping for a particular application.   

Our efficient cache is intended to be used in a pre-fabricated 
platform. A pre-fabricated platform is a chip that has already been 
designed but is intended for use in a variety of possible 
applications with advantages of mass production and shorter time-
to-market. To perform efficiently for the largest variety of 
applications, recent platforms come with parameterized 
architecture that a designer can configure for his/her particular set 
of applications. Recent architectures include cache parameters 
[8][12][1] that can be configured by setting a few configuration 
register bits. We therefore developed a configurable efficient 
instruction cache whose index mapping can be configured by 
setting bits in a configuration register. 

3. Overused/underused cache sets observation 
Through experiments, we observe that some cache sets are 

overused and visited much more than average for an application. 
Furthermore, some other cache sets are underused and accessed 
much less than average.  

  Figure 1 shows one example of the benchmark adpcm_enc, 
drawn from the MediaBench [7] benchmark suite. The underused 
sets are scattered among the whole cache space, which means that 
simple shut down schemes, such as shutting down a cache 
subarray, may incur extra misses because useful cache sets may be 
taken out unexpectedly.  

The other observation we make is that even at the subarray 
level, there are still overused and underused subarrays. These 
overused cache subarrays generate conflict misses that otherwise 
would be reduced if the accesses to theses cache subarrays are 
reduced.  

Based on the above two observations, we design an efficient 
instruction cache architecture for embedded systems in which the 
accesses to overused cache subarrays are reduced and the accesses 
to underused subarrays are increased without increasing the cache 
access time. The benefit of our efficient cache is that we reduce the 
miss rate of efficient cache without increasing the cache’s size, 
associativity, or cache access time. 

4. Efficient Instruction Cache Design 
4.1 Basic design 
Figure 2 shows the design of our efficient instruction cache. Cache 
memories are divided into subarrays to achieve the best trade-off 
of area, performance (access time), and power consumption [9]. 
There are four subarrays in a conventional four and eight Kbyteyte 
direct-mapped cache [9]. The original subarray decoders, four two-
input AND gates, have been replaced by configurable decoders. 
Each subarray has two rows of configurable decoders, while each 
row has five bits. The contents in the new configurable decoders, 
which are shown in Figure 2, implement the same decoding 
function as the original four two-input AND gates.  

In Figure 3, we show two cases that the contents of the 
configurable decoder is configured to effectively use the cache 
space. In Figure 3(a), the accesses to subarray 0 is reduced by 
extending the decoder from “00” to “000”. The accesses to 
subarray 1 is increased by re-mapping “100” from the original 
subarray 0 to the subarray 1.In Figure 3(b), the accesses to the 
subarray 0 is reduced by extending the decoder from “00” to 
“0000”, which means that only one fourth of the original address 
space is mapped to the subarray 0. The other addresses, “0100”, 
“1000”, and “1100” are remapped to subarray 1, 2, and 3, 
respectively. The “X” in Figure 3 means  “don’t care.” The two 
XCAM bits of the configurable decoders in addition to the second 
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  Figure 1: Instruction cache set access counts for adpcm_enc from Mediabench for an 8 Kbyte cache. 
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row of the decoder may need don’t care functions. The Vi , i = 1, 
2,…8, are valid signals of the configurable decoder. When V1, V3, 
V5, and V7 are zeros, the two XCAM bits of the corresponding 
decoders are not used; otherwise, the original decoder is extended 
to include the two XCAM bits. Therefore, accesses to 
corresponding subarrays are reduced. When V2, V4, V6, and V7 are 
zeros, the corresponding decoders are not used; otherwise 
increasing the width of the decoder from one row to two rows 
increases accesses to corresponding subarrays.      

4.2 Cache access time       
To avoid increasing the cache access time, the new configurable 
decoders must run as fast as or faster than the 6-to-64 decoders. 
The programmable decoder consists of two rows of decoders. The 
first row has two conventional CAM cells, two XCAM cells that 
are conventional CAM cells with “don’t care” function 
implemented, one SRAM for the valid bit of the decoder. The 
second row has one bit SRAM for valid bit and four XCAM cells. 
We use standard ten-transistor CAM cells, shown Figure 6. The 
XCAM cell needs an extra NMOS transistor, shown Figure 6, to 
implement the “don’t care” function. HSPICE simulation shows 
that we can easily choose appropriate parameters of the transistors 
in the SRAM, CAM, and XCAM cells to make the comparison of 
the programmable decoder runs faster than that of the  6-to-64 
decoder.  

To avoid faulty cache hits, tag length must be extended to 
include the subarray index. In a four-subarray direct-mapped 
cache, the proposed cache tag is two bits longer than that of the 
original tag. This will increase the time spent on activating the 
word line, bit lines of tags, and the time needed to compare the 
tags. We collect access times for both the tag and the data side for 
our efficient cache with four subarrays at cache size of 4Kbyte, 
8Kbyte, and 16Kbyte, using CACTI model at technology 0.18µm. 
Table 1 shows the cache access times. From the table, we can see 
that the data side access time is still longer than that of the tag side 
after we extend the length of the tag by two bits.  

4.3 Power per cache access 
The extra power consumption comes from the fact that we use 
eight rows of five-bit long programmable decoders to replace the 

original four AND gates decoders. We measure the power 
consumption of the programmable decoders using Cadence layout 
tools at technology 0.18um. The power consumption per access of 
the decoders is 0.70pJ. The total power consumption of an 8 Kbyte 
direct mapped cache is 0.38nJ per cache access from our own 
cache layout. Therefore, the power overhead due to replacing the 
original decoder with programmable decoders is 0.70pJ/0.38nJ = 
0.18%. 

5. Using an Efficient Instruction Cache 
The proposed efficient cache is intended to be used in a pre-
fabricated platform that has already been designed but is intended 
for use in a variety of possible applications. To perform efficiently 
for the largest variety of applications, recent platforms come with 
parameterized architectures that a designer can configure for 
his/her particular set of applications.  

Figure 4 shows the procedure of designing an efficient 
instruction cache. First, we need a simulation tool to profile the 
application and an algorithm to search for the optimal configurable 
subarray decoders. The usage of the cache sets is recorded from the 
simulation tool. Then the number and location of the overused and 
underused cache sets are fed to the algorithm to set up the 
configurable decoder that produces the desired index mapping 
cache structure. 

First, we need to determine both the overused and under used 
subarrays. Let SA0, SA1, SA2, and SA3 denote the accesses to 
subarray 0,1,2, and 3, respectively. Ave represents the average 
access to the subarrays. We define a subarray to be overused when 
SAi /Ave > threshold1, and a subarray to be underused when   SAi 
/Ave < threshold2, where i = 0,1,2,3. We determine the two 
thresholds through experiments and find out that threshold1 = 1.3 
and threshold2 = 0.8 are appropriate for the benchmarks we 
simulated. We point out that these two thresholds just tell us 
whether there exist chances to balance the subarray accesses; 
therefore, we tend to select a small value of threshold1 and large 
value of threshold2. 

Last, we need an algorithm to search for the optimal 
configurable subarray decoder. There are two rows of decoders for 
a subarray with each decoder has four bits but only the two XCAM 
bits are configurable for the first row. The possible configurations 
of the two XCAM bits in Figure 2, defined as decoder 
configuration (DC) are: DC = {xx, x0, 0x, x1, 1x, 00,01,10, 11}. xx 
means the decoder remain unchanged, x0, 0x, x1, and 1x means the 
address space mapped to the overused subarray decoders is 
reduced by half, while 00,01,10,and 11 means that only one fourth 
of the original address space is mapped to the original overused 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 2:The organization of an efficient cache. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:Two examples of the configurable subarray decoder.  
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subarray and three fourths of the address space to the overused 
subarray is remapped to underused subarray.   

Figure 5 shows the algorithm we use to determine the optimal 
subarray decoder configuration. The inputs include both the 
overused, OS, and underused subarrays, US. The set of OS may be 
empty, no overused subarrays, or contain at most three subarrays, 
so does the US. The outputs are the XCAM bits of the first-row 
decoder configuration (FDCk) of the overused subarray and second 
row decoder configuration (SDCk) of the underused subarray. The 
algorithm simply tries all possible decoder configurations and 
selects the configuration that has the lowest miss rate. 

In terms of running time complexity, although the algorithm 
has four loops, the number of subarrays is just four (for cache size 
is less than or equal to 64Kbyte, which is larger than typical cache 
size of embedded systems [12]). There are nine possible decoder 
configurations of the first row decoder, FDCk, and the second row 
decoder, SDCk. However, the FDCk and SDCk are dependent of 
each other. For example, assume subarray 0 is overused and 
subarray 3 is underused, then we can only reduce the access to 
subarray 0 by half. The configuration of the first row decoder can 
be any of the four possibilities: 0x, x0, 1x, x1, correspondingly, the 
second row decoder of subarray 3 must be 1x, x1, 0x, x0, 
respectively. In other words, if the first row decoder is 0x, then the 
second row decoder of subarray 3 must be 1x. For one of the worst 
case, where there are one overused subarray but three under used 
subarrays, the total simulations is 3x4 = 12 when reducing the 
access by half, and 4! = 24 when reducing the access by three 
fourths. Therefore, the total simulation we need to run is 36. It 
takes around six hours on a Pentium IV machine using 
SimpleScalar[2] simulation tool to search for the optimal 
configurable decoder.   

6. Experiments 
To determine the benefits of our efficient cache, we simulated a 
variety of benchmarks for a variety of cache sizes using 
SimpleScalar [2]. The benchmarks included programs from 
MediaBench [7] (adpcm_enc, adpcm_dec, epic_enc, epic_dec, 
jpeg_enc, jpeg_dec, mpeg2, pegwit_enc, pegwit_dec). We used the 
data sets that came with each benchmark as program stimuli.  

6.1 Results 
We show, in Figure 7 and Figure 9, the reduction of instruction 
miss rate with respect to a 4 Kbyteyte and 8 K byte direct-mapped 
cache for all the benchmarks, respectively. 4K-E and 8K-E 
represent the instruction cache miss rate our efficient cache at 
cache size of 4 Kbyteyte and 8 Kbyteyte, respectively. 4K-2W and 
8K-2W represent the miss rate of two way set associative cache at 
size of 4 Kbyteyte and 8 Kbyteyte, respectively.   

6.2 Observations 
From  Figure 7 and Figure 9, we can observe that the miss rate 
reduction of our efficient cache is almost as good as that of a 

conventional two-way set associative cache on average at cache 
size of 4 Kbyteyte and 8 Kbyteyte.  

Table 2 lists the contents of the configurable decoder for all 
the benchmarks we simulated at cache size of 4Kbyteyte. The 
result for cache size at 8Kbyteyte is not shown due to space limit. 

       Energy Evaluation 
We consider both dynamic and static energy consumption of in our 
energy evaluations. We used similar energy evaluations as shown 
in [12]. Our equation for computing the total energy due to 
memory accesses is as follows:   
         energy_mem=energy_dynamic+ energy_static 

 where:   energy_dynamic  =  cache_hits * energy_hit  + 
cache_misses * energy_miss 

  

cache size 
(KB)

original tag 
side access 

time(ns)

tag side 
access time 
when two 

bits 
longer(ns)

original data 
side access 
time (ns)

access time 
change

4 0.83 0.85 0.87 NO
8 0.86 0.87 0.96 NO

16 0.93 0.95 1.13 NO  
Table 1: Access Time of our proposed cache. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Design procedure for an efficient cache. 

                    
 

Figure 6: CAM cell circuitry. One extra NMOS is used to 
implement “don’t care” CAM cell. Don’t care means that the 

“Match” is always high. 

Algorithm
Input: overused subarrays: osi ∈OS, 0≤ i ≤ 2 
Input: underused subarrays: usj ∈US, 0≤ j ≤ 2  
Output: decoder configuration FDCk and SDCk, k=0,1,2,3  
initialize both FDCk and SDCk to xx 
    for each osi ∈ OS 
 for each FDCk ∈ DC 
            for each usi ∈ US 
         for each SDCk∈DC 
                  calculate miss rate through simulation   
      select the FDCk and SDCk with the smallest miss rate 

Figure 5: Algorithm to determine the optimal subarray 
decoder configuration 
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energy_miss =  energy_offchip_access   +  energy_uP_stall 
+ energy_cache_block_refill 

energy_static =  cycles * energy_static_per_cycle 
We obtain the underlined terms through measurements or 
simulations. We compute cache_hits, cache_misses, and cycles by 
running SimpleScalar [2] simulations. We compute energy_hit and 
energy_cache_block_refill using the CACTI [9] model. The 
energy_offchip_access value is the energy due to accessing off-
chip memory and the energy_uP_stall is the energy consumed 
when the microprocessor is stalled to wait for the memory system 
to provide an instruction. energy_cache_block_fill is the energy for 
refilling a cache block due to a cache miss. These terms highly 
depend on particular memory and microprocessor. Instead of 
evaluating the energy to a particular microprocessor system and off 
chip memory configuration, we try to figure out a method that may 
be used for different microprocessors and off chip memory 
configurations. We examined the three terms of 
energy_offchip_access, energy_uP_stall, and 
energy_cache_block_fill for typical commercial memories and 
microprocessors, and found that energy_miss ranged from 50 to 
200 times bigger than energy_hit. Thus, we redefined energy_miss 
as: 

energy_miss =  k_miss_energy * energy_hit 
we considered the situations of  k_miss_energy equal to 50 and 
200.  

Finally, cycles is the total number of cycles for the benchmark 
to execute, as computed by SimpleScalar, using a cache with single 
cycle access on a hit and using 100 cycles on a miss. 
energy_static_per_cycle is the total static energy consumed per 
cycle. This value is also highly system dependent, so we again 

consider a variety of possibilities, by defining this value as a 
percentage of total energy including both dynamic and static 
energy: 

energy_static_per_cycle = k_static * energy_total 
k_static is a percentage that we can set. To consider the CMOS 
technology trend, we evaluate the situations where k_static is 30% 
and 50% of the total energy. 

6.4 Energy savings 
We show the energy savings of all benchmarks for cache sizes 
ranging from 4 Kbyteyte to 8 Kbyteyte when k_static=50%, 
k_miss_energy=200 in Figure 8 and Figure 10. Energy data at 
other combinations of k_miss_energy and k_static are not shown 
due to space limit. The energy savings are on average 12% and 8% 
compared with a same sized conventional direct mapped cache. 
The negative value stands for that the efficient cache consumes 
less energy than that of a conventional direct mapped cache. 
Compared with the conventional two-way set associative caches, 
which have almost the same miss rate as our efficient cache, the 
energy consumption of the two-way set associative cache is on 
average 20% and 15% more than a direct mapped cache.    

Therefore, our efficient cache can achieve almost the same 
miss rate but consume 30% and 23% less energy than a 
conventional two-way set associative cache at cache size of 4 
Kbyte and 8 Kbyte, respectively.  

Compared with conventional direct mapped caches, the 
energy savings of the efficient cache come form the fact that 
accesses to off chip buses and memory are reduced due to the 
reduction of the miss rate. Compared with two way set associative 
cache, the efficient cache has almost the same miss rate hence 
consumes comparable off chip energy. However, the efficient 
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Figure 7: Miss rate reductions of Mediabench benchmarks at 

cache size of 4 Kbyteyte compared with same size direct 
mapped cache. 
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Figure 8: Miss rate reductions of Mediabench benchmarks at 
cache size 8 Kbyteyte compared with same size direct mapped 

cache. 
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Figure 9:Energy savings of the efficient cache at cache size 

4Kbyteyte compared with direct mapped cache respectively. 
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Figure 10: Energy savings of the efficient cache at cache size 
8Kbyteyte compared with direct mapped cache. 
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cache consumes much less energy per cache access than that of a 
two way set associative cache. Therefore, the total energy is 
reduced.   

7. Limitations of the efficient cache 
The design of the efficient cache requires simulating the 
applications beforehand to determine what is the best index 
decoding schemes that can be implemented by the configurable 
decoder. However, different input data sets may change the 
distribution of both overused and underused cache sets. The 
efficient cache may experience a worse miss rate if the best index 
decoding changes, causing both performance and power overhead. 
If the input data sets changes are not frequent, we may choose a set 
of best decoding schemes for each input data sets and store the best 
decoding schemes in a special memory buffer, therefore the best 
decoding is used for different input data sets. On the other hand, 
we may use the original decoding scheme for applications whose 
best decoding highly depends on input data sets.  

To determine the prevalence of this situation, we simulated all 
the benchmarks using a secondary input data set that comes with 
Mediabench. We haven’t found that the best index decoding has 
been changed due to the change of the input data sets for the 
benchmarks we simulated.  

8. Conclusion  
We have designed an efficient instruction cache for application-
specific embedded systems. We observe that there are cache sets 
that are overused by some applications during execution and 
generate conflict misses. In addition, some other cache sets are 
underused that the miss rate can be reduced if the underused cache 
space is used efficiently. We proposed to re-map the cache 
memory reference from the overused subarrays to underused 
subarrays for a particular application. We showed that an efficient 
cache achieves almost the same hit rate of a conventional same 
sized two-way set associative cache while consumes 25% less 
energy. 
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subarray0 subarray1 subarray2 subarray3

1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x100 1x101
1x000 0xx01 0xx10 0xx11
0xxxx 0xxxx 1x100 0xxx
10000 0xx01 0xx10 0xx11
0xxxx 10100 11000 11100
1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x101 1x100
0xx00 0xx01 1x010 1x011
0xxxx 1x1x1 0xxxx 0xxxx
0xx00 0xx01 1x010 0xx11
0xxxx 1x101 0xxxx 0xxxx
1x000 0xx01 0xx10 0xx11
0xxxx 1x100 0xxxx 0xxxx
0xx00 0xx01 0xx10 1x011
0xxxx 0xxxx 1x111 0xxxx
1x000 1x001 0xx10 0xx11
0xxxx 0xxxx 1x101 1x100
1x000 0xx01 0xx10 0xx11
0xxxx 0xxxx 0xxxx 1x100
0xx00 0xx01 1x010 1x011
1x1x1 0xxxx 0xxxx 0xxxx

adpcmdec

adpcmenc

epic

unepic

mpeg2dec

pegwitdec

pegwitenc

g721dec

g721enc

jpegdec

jpegenc

 
 

Table 2: The configurable decoder contents of the efficient 
cache at 4 Kbyteyte. 
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