
Energy-Efficient Address Translation for
Virtual Memory Support in

Low-Power and Real-Time Embedded Processors

Xiangrong Zhou
University of Maryland

College Park, USA

xrzhou@glue.umd.edu

Peter Petrov
University of Maryland

College Park, USA

ppetrov@ece.umd.edu

ABSTRACT
In this paper we present an application-driven address translation
scheme for low-power and real-time embedded processors with vir-
tual memory support. The power inefficiency and nondeterministic
execution times of address-translation mechanisms have been ma-
jor barriers in adopting and utilizing the benefits of virtual memory
in embedded processors with low-power and real-time constraints.
To address this problem, we propose a novel, Customizable Trans-
lation Table (CTT) organization, where application knowledge re-
garding the virtual memory footprint is used in order to eliminate
conflicts in the hardware translation buffer and, thus, achieve tag-
free address translation lookups. The set of virtual pages is parti-
tioned into groups, such that for each group only a few of the least
significant bits are used as an index to obtain the physical page
number. We outline an efficient compile-time algorithm for identi-
fying these groups and allocate their translation entries optimally
into the CTT. The proposed methodology relies on the combined ef-
forts of compiler, operating system, and hardware architecture to
achieve a significant power reduction. The experiments that we
have performed on a set of embedded applications show power
reductions in the range of 55% to 80% compared to a general-
purpose Translation Lookaside Buffer (TLB).

Categories and Subject Descriptors
B.3 [Hardware]: Memory structures; C.1 [Computer Systems
Organization]: Processor Architectures; C.3 [Computer Systems
Organization]: Special-Purpose and Application-Based Systems

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
Since its conception, virtual memory [1] has been shown to be

an elegant and efficient solution for abstracting away from the ap-
plication the complexity of memory allocation, and code/data re-
location and sharing, while efficiently providing memory protec-
tion between user applications and system software; all these be-
ing completely transparent to the application and controlled by the
operating system (OS). Such features would tremendously bene-
fit many embedded systems, if virtual memory is to be supported
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

for them. General-purpose virtual memory, however, requires un-
acceptably high amounts of power and introduces execution time
nondeterminism, thus rendering itself unusable for a large number
of embedded systems with stringent power constraints and real-
time requirements.

The program accesses a virtual address space separated into pages,
typically 4K in size, and at each such access a translation is needed
to map the virtual address into a physical one. The translation is
performed at a page granularity in order to control the complexity
of the translating mechanism. The Translation Lookaside Buffer
(TLB) is a hardware cache responsible for capturing the most re-
cently used Page Table Entries (PTE) for dynamically translating
virtual addresses generated by the processor to physical addresses.
The mapping between virtual and physical addresses is typically
maintained by the OS and established by the OS loader, dynamic
linker and memory manager. TLB misses typically result in trap-
ping into the OS where the missed PTE is retrieved from page
tables maintained by the kernel. Consequently, the TLB is usu-
ally implemented as a highly associative cache structure, which
consumes a significant amount of power. It has been shown that
the TLB power consumption constitutes 20-25% of the total cache
power consumption [2].

The presence of a data cache does not eliminate the need for ad-
dress translation since physical tags need to be used when accessing
the cache. If, instead, virtual addresses are directly used to access
the cache, this introduces the cache synonym problem [3], a situ-
ation where a shared data is relocated to distinct cache locations
for each process, thus introducing consistency hazards and cache
capacity underutilization. In order to avoid increasing cache access
time and to facilitate the solution of the synonym problem, caches
are typically indexed with the virtual address and tagged with the
physical address. In such virtually-indexed and physically-tagged
caches, the cache index is obtained from the virtual address while
the tag is obtained from the Physical Page Number (PPN), which
is translated from the Virtual page Number (VPN). Consequently,
an address translation is needed each time a memory location is
referred to by the processor.

The need for energy costly address translation on each mem-
ory reference, as well as the introduced execution time uncertainty
caused by the cache-like TLB lookups, have been the two major
factors preventing the introduction of virtual memory and its con-
comitant benefits to low-power and real-time processors.

The novel address translation approach that we outline in this pa-
per, attacks these two problems. Through the utilization of application-
specific information regarding the virtual memory footprint of the
application, the set of VPNs accessed by the program is partitioned
into groups so that by using only a small number of least significant
VPN bits as an index into a special translation buffer, a conflict-

33



PTE1
PTE2
PTE3

PTE0
01
10
11

00
PTE1
PTE2
PTE3

PTE0

SRAM indexed 
with 2 LSBs 

01
10
11

00

 VPNs  PTEs  PTEs

000110
000110
000110

000110

VPN<−>PTE

Figure 1: Set of consecutive VPNs

free, and thus tag-less lookup can be achieved. This not only results
in low-power address translation, but also to highly predictable exe-
cution times as the conflict free CTT access guarantees a translation
with no OS intervention or additional page table lookups.

2. RELATED WORK
A low-power TLB organization for chip-multiprocessors has been

proposed in [2]. By incorporating a special Page Sharing Table to
the TLB and using virtual caches, the authors reduce the amount
of TLB activities, at the same time eliminating a large number
of snoop accesses. A similar work in the direction of employing
virtual caches with specialized TLB support is presented in [4].
The authors propose replacing the TLB with the more scalable and
power efficient Synonym Lookaside Buffer, as it stores only the cur-
rent synonym instances. In [5], the authors evaluate the power con-
sumption of a number of TLB organizations and propose a new cell
implementation for low-power set-associative TLBs. A low-power
and high-performance TLB architecture has been proposed in [6].
A TLB organization is proposed that dynamically supports up to
two pages per entry with a banked fully-associative structure. In
[7], the TLB accesses are redirected to a register file which holds a
few recent TLB entries.

All the aforementioned techniques target the architectural orga-
nization of general-purpose virtual memory support. In contrast,
our work takes a step further into the domain of embedded proces-
sors where application knowledge can be exploited and the archi-
tecture dynamically customized. A noteworthy difference of our
approach is that it does not trade-off performance for power and
is also orthogonal to many of the proposed approaches. Since the
proposed technique eliminates accesses to the TLB for most of the
memory accesses by replacing them with deterministic and tag-less
indexing, the number of TLB misses is drastically reduced. Con-
sequently, our approach slightly improves performance and signif-
icantly improves predictability of execution times - a characteristic
of great importance to any real-time embedded system.

3. FUNCTIONAL OVERVIEW
General-purpose processor architectures are typically designed

with the assumption that a large variety of programs will be exe-
cuted and that there is no program information made available to
the microarchitecture prior of its execution. It is also assumed that
the program to be executed could come in a binary only form. Em-
bedded processors and systems, however, have the distinctive ad-
vantage of complete application knowledge, as the embedded soft-
ware is usually developed concurrently with the hardware design or
is available in a source code format. The low-power address trans-
lation methodology that we outline in this paper, is fundamentally a
technique that with the help of the compiler and the operating sys-
tems exploits dynamically such an application-specific knowledge.

The set of virtual pages accessed by the application is available
when compiling and linking the program. The general-purpose
TLB architecture features tag arrays and comparators, which pur-
pose is to ensure that conflicts within the data arrays are identified

PTE1
PTE2
PTE3

PTE0
01
10
11

00
PTE1
PTE2
PTE3

PTE0

SRAM indexed 
with 2 LSBs 

000110
010010
011111

000110
01
10
11

00

 VPNs  PTEs  PTEs

VPN<−>PTE

Figure 2: Indexing SRAM table with LSBs

and handled properly. This organization assumes no knowledge re-
garding the set of VPNs accessed by the application. If, however,
information regarding the virtual pages is used in the address trans-
lation process in such a way so that all conflicts are eliminated,
then no tag arrays and operations are needed while obtaining the
PPN with direct indexing.

If the possibility of TLB conflicts can be avoided through a judi-
cious analysis of the VPN set, then a direct indexing for finding the
PPN, free of any tag operations, can be achieved. Figure 1 shows
an example where the compiler/linker has identified that only four
consecutive data virtual pages are accessed throughout execution.
It can easily be seen that among all the VPN bits, the two Least
Significant Bits (LSBs) are enough to differentiate the four VPNs.
And if we use these two LSBs as an index into a translation table,
all the VPNs will be mapped into the table in a conflict-free man-
ner. A more complex example is illustrated in Figure 2, in which
four distinctive virtual pages are accessed. Although they are not
consecutive, their two LSBs are still enough to uniquely distinguish
them. Consequently, only these two bits of the VPN can be used to
form an index into a 4-entry memory block which holds the physi-
cal page addresses of these virtual pages, as shown in the figure. By
avoiding the VPN tag lookup and using only these two bits as an in-
dex there would be no performance implications, while the overall
reduction on the TLB power consumption is to be quite significant.
All the power associated to the VPN tag arrays, the corresponding
sense amplifiers, and the comparator cells is eliminated.

The fundamental idea of the proposed approach is to identify
such a conflict-free indexing scheme in order to avoid the power
consuming VPN tag operations. Given a set of n data VPNs, we
need to find an answer to the question what is the minimal number
m of VPN LSBs that could differentiate these VPNs and thus be
used as an index. Even more importantly, how efficiently will the
introduced translation table be utilized after storing the translation
entries of each VPN in such a 2m sized memory. The above exam-
ples show an ideal situation. However, in some cases the utilization
of the memory could be quite low if no additional measures are
taken. Such an example is depicted in Figure 3. For these eight
VPNs, six LSBs are needed to differentiate them and use them as
an index. Therefore, this set of VPNs occupies a memory array
with 26 entries, while only eight of them will be actually used.
This extreme case shows that a low memory utilization is possible
with a large waste of memory and its associated power, if the set of
VPNs accessed by the application is targeted as a whole. However,
it can be seen that VPNs 0,1,4,5 can be differentiated by two bits,
while the VPNs 2,3,6,7 can be differentiated by two bits as well.
Consequently, if the initial set of eight VPNs is divided into two
partitions, 0, 1, 4, 5 and 2, 3, 6, 7, then the two LSBs can still be
used to form an index into two non-overlapping segments within a
translation table as long as information regarding which partition is
being used is known prior to access the table. Additionally, the two
partitions need to be allocated into two different four-entry sections
of the translation table, so that VPNs across different partitions are
guaranteed not to overlap.

The approach that we propose in this paper involves the iden-

34



00
01
00
01
10
11
10
11

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

PTE0
PTE1
PTE2
PTE3
PTE4
PTE5
PTE6
PTE7

00
01
10
11
00
01
10
11

SRAM with 2 partitions 
each indexed by 2 LSBs 

 VPNs  PTEs  PTEs

111011

011011

010110
010110

000110
000110

011011

111011

Partition 1

Partition 2

VPN<−>PTE

Figure 3: Two VPN partitions, each indexed by 2 LSBs

tification of partitions of VPNs which result in optimal indexing
scheme maximizing the utilization inside each partition while re-
ducing the overall number of partitions. Minimizing the number
of partitions, while maintaining high utilization of the translation
table is important to control the cost of hardware needed to identify
partitions and to compute their translation table index.

As partitions are identified on a per load/store instruction basis,
it is very important to ascertain that each load/store instruction that
we target with this approach accesses VPNs that belong to a sin-
gle partition. This additional restriction guarantees that there is no
ambiguity when accessing the translation table..

After identifying the partitions, each partition is mapped to its
own part of the introduced Customizable Translation Table (CTT),
as illustrated in Figure 4. The CTT is implemented as a small
SRAM array containing the translation entries for all VPNs. As
each partition of VPNs is mapped to a distinct part of the CTT, a
special indexing logic is need to form the final index. As we align
the partitions inside the CTT on address boundaries proportional to
their size, a very simple logic is needed to compute the CTT index;
the CTT segment offset needs to be simply concatenated to the few
VPN LSBs selected as a partition index.

Application programs typically spend most of their execution
times in tight loops or function calls, which are generally referred
to as “hot-spots”. Inside the hot-spot, the program would typically
access only a few arrays or codec stacks which occupy a very few
VPN pages. By targeting the application hot-spots, practically all
the benefits from the proposed technique can be achieved with only
a low-cost hardware support needed to capture the information re-
garding the VPN partitions. Consequently, the proposed scheme
is applied only on the application hot-spots, while for the rest of
the infrequently accessed VPNs, a default D-TLB is still used for
address translation. Upon entering or exiting a hot-spot, the com-
piler inserts a special setup code which stores certain information
into special registers and tables implemented as a part of the spe-
cialized hardware support and, thus, informs the hardware that a
hot-spot has just been entered.

As a first step in the proposed approach, the application is pro-
filed and its hot-spots identified. When compiling the program,
information regarding all virtual pages accessed by the application
within each “hot-spot” is extracted. Furthermore, the frequency of
access can also be computed at that step.

For a given set of VPNs, there is a minimal number m of LSBs
that differentiate all the VPNs. We refer to such a set of VPNs
as an m-bit partition, while m is referred to as a dimension of the
partition. As we saw in the previous section, m depends on the
total number n of VPNs in the set, as well as on their particular
values. Evidently, dlog

2
ne is a lower bound for m, as this is the

minimal number of bits needed to distinguish a set of n elements.
If the partition dimension m is equal to dlog

2
ne, where n is the

number of VPNs, such partition is referred to as m-bit complete

Partitions allocated
into the CTT

 VPN parition1

 VPN parition2

 VPN parition3

 VPN parition1

 VPN parition3

 VPN parition2

CTT

Figure 4: Mapping VPN partitions to CTT segments

or just complete partition. Consequently, a complete partition is a
partition with minimal number of index bits and high utilization of
the index space. Such a partition requires a minimal segment of
translation table to map its VPNs.

4. ALGORITHM OVERVIEW
In order to achieve efficient hardware support, we need to iden-

tify the minimal number of VPN partitions with the highest uti-
lization of translation table resources. The proposed approach par-
titions the set of VPNs into a minimal number of complete parti-
tions, thus achieving very high utilization of the translation table
resources. Consequently, an algorithm is required to find the min-
imal number of complete VPN partitions for a given set of VPNs.
As discussed later in this paper, the case of dynamic data allocation
can be efficiently dealt with, as such events typically happen out-
side the application hot-spots and a special partition can be reserved
for the involved VPNs.

An apparent first step in the proposed algorithm is to separate
the groups of consecutive VPNs. Such groups of VPNs correspond
to application arrays and buffers; it can be easily observed that in
many applications they constitute an overwhelmingly large part of
the application hot-spots. Furthermore, such groups of VPNs have
the very desirable property to constitute complete VPN partitions.
This can be easily observed from the fact that a set of n consecutive
numbers can always be differentiated through the dlog

2
ne LSBs.

Separating the set of VPNs into partitions of consecutive VPNs
is only a first step in achieving the desired final result. Very often,
an m-bit complete partition does not utilize the index range and can,
thus, be merged with some smaller VPN partition without increas-
ing the number of least significant bits m to form an index. Figure 5
illustrates such a case. In this example, the algorithm starts with
three partitions. All of them are complete, as they contain consec-
utive VPNs; the largest partition is a 4-bit partition, the next one is
a 3-bit, while the smallest one is a 1-bit partition. It can be easily
seen that the 4-bit partition can “absorb” the 3-bit partition, without
increasing its initial dimension of 4. The resulting partition consists
of 14 VPNs and is still a complete partition of dimension 4. In a
subsequent step, the 1-bit partition can be merged with the new 4-
bit partition, resulting to a single complete partition of dimension
4, consisting of 16 VPNs.

This step in the algorithm fundamentally tries to “pack” the ini-
tial set of VPN partitions. At this step, the proposed algorithm
needs to find the optimal strategy for merging the initial VPN par-
titions in such a way so that minimal number of complete parti-
tions remain at the end. An important requirement that needs to
be imposed here is that at no step of the merging process should
the dimension of a partition be increased. That is, when merging
two partitions, the resulting partition must have the dimension of

35



00101010
00101011
00101100
00101101

00101001

10010000
10010001

10010011
10010100

10010010

10010101
10010110
10010111
10011000

11111110
11111111

xxxx0000
xxxx0001

  ......
xxxx1110
xxxx1111

P2

P1

P3

VPNs
Consecutive  VPNs

3−bit partition

4−bit partition

1−bit partition

(1) P2 merges P1

xxxx0000
xxxx0001
  ......

xxxx1100
xxxx1101

P1

P2

P3

P2

P1

(2) P1, P2, and P3 merged

Figure 5: VPN partition merging

the larger partition from the initial pair of partitions. In order to
merge two partitions, the LSBs of the smaller partition when ex-
tended to the dimension of the larger one must not conflict with
the LSBs of the larger partition; such conflicts can exist between
some of the partitions which would prevent their merging. There-
fore, the algorithm to identify the optimal scheme of merging is a
multidimensional combinatorial optimization problem, very simi-
lar to the well known Bin-Packing problem. We have developed an
algorithm which in its essence is a heuristic, somewhat similar to
the First-Fit Decreasing [8] heuristic used for Bin-Packing.

Fundamentally, the aforementioned merging step of the algo-
rithm tries to utilize the empty index space that is left in some par-
titions. As can be seen from the example in Figure 5, partition P2
has 9 VPNs. Since it is a 4-bit partition, the index space of the 4
LSBs is 16, which results in utilization of 9/16 of the available in-
dex space and, thus, translation table resources. After the merging
steps, though, it can be seen that the utilization of the final partition
is 100% as it is a 4-bit partition with 16 VPNs. This final VPN par-
tition can be mapped into a translation table with 16 entries indexed
by the 4 LSBs of the VPNs. Consequently, the driving force behind
the proposed algorithm is the goal of using the empty space in the
initial partitions by fitting there smaller partitions. Consequently,
the merging phase of the algorithm starts with the partition having
the largest dimension and then tries to merge as many smaller par-
titions as possible; the step is repeated until no more merging is
possible. If there are more than one partition of the same dimen-
sion, we use their empty index space as a tie-breaker by picking
the one with larger empty space. This step is repeated until all the
partitions not merged yet are tried.

At the end of this algorithm, a small set of VPN partitions is
produced with very high utilization of the index space. The high
utilization implies that very few entries in the CTT segments al-
located for these partitions will remain unused. An important re-
quirement in the above algorithm is that in the process of merging,
the dimension of the large partition is left unchanged. This might
leave a few very small partitions each having several VPNs. How-
ever, SRAM arrays are typically implemented as a set of smaller
banks. Therefore, it will be beneficial to combine the small parti-
tions into a larger partition with a size equal to the memory bank
size. This step is performed by starting from the smallest partitions
(size 1 or 2) and trying to merge them with the next larger one by

VPN

xxxxxx00...000

m bits

Partition
SegmentPartition Offset Partition Index

VPN

m bits

Partition Index

Partition Offset

Index
CTT

CTT

Partition Offset

m bits
CTT Index

xxxxxxxxxxxxx

00...01111...111
Partition Mask

Figure 6: Access PTE in the SRAM

possibly increasing the partition dimension while keeping it under
the memory bank size.

As we mentioned in the previous section, it is very important
that each load/store instruction generates virtual addresses that be-
long to the same VPN partition. It is typical that a load/store in-
struction generates addresses within the same VPN or across adja-
cent VPNs. Because of the nature of our partitioning algorithm, all
such load/store instructions will generate addresses within the same
VPN partition. This property ensures that there is a one-to-one
mapping between a memory reference instruction and a VPN parti-
tion. Consequently, it is at the level of load/store instructions where
we identify the VPN segment which is to be accessed. As shown in
Section 7, the proposed algorithm results in a very few VPN parti-
tions within each application hot-spot (fewer than 8), thus, enabling
various hardware schemes for mapping load/store instructions to
VPN partitions. One such possibility is to use 2 or 3 extra bits from
the instruction encoding (in a way identical to the scheme used in
[7]) to mark which VPN partition should be accessed for the par-
ticular load/store instruction. The memory reference instructions
outside hot-spots or the very few load/store instruction which ac-
cess virtual addresses from different VPN partitions are handled by
a default D-TLB.

5. HARDWARE SUPPORT
The proposed approach requires a specialized hardware support

which purpose is to map load/store instructions to their correspond-
ing VPN partitions, to compute the appropriate CTT index, and
to access the CTT in order to obtain the physical page number.
The VPN partitions are identified by using two or three extra bits
from the instruction encoding of the memory reference instruc-
tions. An alternative approach is to use a small table accessed by
the load/store PC in cases where the total number of such instruc-
tions inside the application hot-spot is very limited. The partition
identifying bits are used to access one of the four or eight regis-
ters, which in turn contain information regarding the VPN partition
(the partition dimension m and the partition offset within the CTT).
A default value is used for the memory references that need to be
translated through the default D-TLB.

Each VPN partition must be mapped to an exclusive segment
within the CTT. As multiple VPN partitions are mapped, an ef-
ficient index computation logic is needed. If VPN segments are
allocated in arbitrary positions within the CTT, accessing such a
segment would require the hardware to compute the CTT index by

36



Partition Mask
 (from PIT)

Partition Offset
 (from PIT)

Virtual Address

VPN tag

Default D−TLB

tag comparator
To cache physical

CTT

PTE PTE

VPN

To cache indexPartition Select Bit

Figure 7: Hardware architecture

adding the segment offset to the LSB index of that partition. While
such an addressing scheme is not difficult to implement, it would
introduce a significant delay on the critical path of address trans-
lation, possibly increasing the L1 cache access time. We propose,
instead, an alternative hardware scheme, which requires only a con-
catenation of the partition LSB index and the CTT segment offset.
This could be achieved by allocating the VPN segment at an ad-
dress boundary multiple to the partition size. Each VPN partition
is defined with a pair of numbers. The first one is the dimension
m of the partition, which indicates how many LSBs are used as
an index inside the CTT segment. The second number is the off-
set within the CTT where this VPN partition is allocated. Since
this offset is aligned on address multiple to the partition dimension,
when forming the final CTT index, the partition offset and the m
LSBs of the VPN are concatenated. This scheme and the required
hardware logic are illustrated in Figure 6. To facilitate the hard-
ware implementation, instead of storing directly the dimension m
for each partition, a partition mask is used, containing m 1s on the
least significant bits, extended with zeroes towards the most sig-
nificant bits. By using such a representation, the logic needed to
compute the final CTT index comprises of one OR and one AND
gate per bit position. The pairs of Partition Offset and Partition
Mask defining each partition are stored in a small set of registers or
a small table, referred to as the Partition Identification Table (PIT).
As demonstrated in Section 7, eight such entries will be typically
enough to target all the VPN partitions for each hot-spot.

Figure 7 shows the entire address translation architecture. It is
noteworthy that the lookup into the PIT is performed early in the
pipeline when the load/store instruction is decoded. Therefore, the
PIT lookup is outside the critical path of cache lookup or data mem-
ory access. Only the circuitry for computing the CTT index, which
consists of two logic gates per bit, is needed when the virtual ad-
dress is generated by the processor.

6. SYSTEM ISSUES
As the proposed approach can be used in multitasking environ-

ments or in a program with multiple hot-spots, special care needs
to be taken to efficiently utilize the CTT space. If all the VPN
partitions of the application can be accommodated within the CTT,
they are loaded during system setup. However, when this is not
possible due to large number of VPN partitions across all the hot-
spots, the PIT and CTT have to be initialized with the appropri-
ate data just prior to entering the hot-spot, thus sharing CTT space

with other hot-spots and processes. This scheme can be easily ap-
plied when the total number of CTT entries is relatively small and
amounts to tens or hundreds of entries. The performance overhead
of such a setup code prior to entering the hot-spot is practically
zero as executing the subsequent application hot-spot would take
millions of cycles. Another alternative could be implemented as
well. If multiple hot-spots are cycled through frequently, eliminat-
ing the overhead of the setup code must be needed. For such cases,
an on-demand CTT loading scheme can be effected. To achieve
this, each CTT entry needs to be associated with a hot-spot iden-
tifier. When CTT entry is accessed, the hot-spot id stored in it is
compared against the id of the current hot-spot. A match would in-
dicate that the CTT entry contains a valid translation information.
Otherwise, the default D-TLB is looked up to perform the default,
general-purpose address translation. Such a default D-TLB trans-
lation could be invoked only once per CTT entry while executing a
hot-spot. The translation entry obtained through the default trans-
lation mechanism is provided to the CTT for later utilization by
the proposed approach. If multiple hot-spots have their VPN seg-
ments only partially overlapped in the CTT, some entries would be
preserved for the next execution of the same hot-spot. The same
methodology can be easily extended to multitasking environments
for sharing the CTT space among multiple processes.

Dynamic memory allocation, a software technique rarely used
in embedded application, presents an issue that needs special con-
sideration. Even if an application requires dynamic memory allo-
cation, such allocation is typically performed outside the hot-spots
and only references to these locations are allowed inside the hot-
spots. Although the virtual address for such memory references are
not available at compile time, the data heaps are normally assigned
by the OS and reside within consecutive virtual pages. Therefore, a
separate VPN partition can be reserved in the CTT, and all the ref-
erences to dynamically allocated memory are directed to this par-
tition. As the physical memory is allocated by the OS at run time,
the OS also fills the appropriate CTT entry. Inside the hot-spot, ref-
erences to dynamically allocated data are therefore treated as any
other memory references and mapped to their own CTT partition.

7. EXPERIMENTAL RESULTS
In evaluating the proposed technique, we have performed a quan-

titative analysis and comparison of baseline D-TLB architecture
and the proposed application-driven address translation organiza-
tion. The baseline D-TLB contains 64 entries, with either 4-way or
8-way set associativity. The virtual page size is fixed to 4K. The
baseline D-TLB access energy for a 0.18µ process technology is
obtained by using the CACTI tool [9].

For the proposed technique, a CTT of 512 entries is used, where
each CTT entry consists of four bytes. A banking memory archi-
tecture is assumed with each bank having 32 CTT entries. Con-
sequently, partitions are merged to maximum dimension of 9 and
minimum of 5. The maximum number of partitions per hot-spot is
set to 8, thus resulting to a total of 8 PIT entries, each consisting
of 9-bit partition offset and 9-bit partition mask. From the results
reported in Figure 9, it can be seen that the number of VPN parti-
tions per hot-spot is always below eight even for the most complex
benchmarks. The width of the AND and OR gates for computing
the CTT index is also set to 9 bits. Additionally, a default D-TLB
with 64 entries is assumed for VPNs outside the hot-spots. The
CTT access energy is obtained by using CACTI; this is achieved
by subtracting the tag-related energy from the total energy of a di-
rect mapped cache. The access energy of the PIT register file is
estimated by using the data presented in [10]. The energy for 0.2µ

and 2V Vdd process technology parameters has been scaled down

37



adp g721 gsm epic jpeg mpeg mp3
h-s 1 1 1 1 2 3 5

freq(%) 100 100 100 100 11,72 81,1,11 25,13,24,16,18
E(4sa) 0.21 14.1 20.7 2.29 23.6 131.2 94.9

Miss(4sa) 8 12 14 2295 2513 1118 46719
E(8sa) 0.36 24.8 36.2 4.02 41.4 230.1 166.4

Miss(8sa) 8 12 14 2323 2510 1126 53730

Figure 8: Baseline D-TLB characteristics
adp g721 gsm epic jpeg mpeg mp3

Init Part 2 2 3 4 4,7 5,3,5 8,11,7,7,12
Part 1 1 1 3 1,1 3,2,4 3,2,2,1,2

Index {2} {2} {2} {3,6,7} {9} {1,6,7} {3,5,4}
{9} {1,7} {5,5}

{7,7,5,1} {5,5}
{5}

{5,5}
E(4sa) 0.08 5.37 7.86 0.87 1.08 55.6 39.0
Red(%) 62.0 62.0 62.0 62.0 54.3 57.9 58.9
E(8sa) 0.08 5.37 7.86 0.87 13.0 62.6 42.6
Red(%) 78.3 78.3 78.3 78.3 74.0 75.8 76.5

Figure 9: Energy reductions of the proposed technique

to 0.18µ, 1.7V Vdd process technology by applying the same esti-
mation methodology as the one utilized in CACTI. The power con-
sumption of the few logic gates needed in the computation of the
final CTT index is accounted for as well, even though their contri-
bution is orders of magnitude less than the power consumption of
the CTT table.

Our experimental study has been performed on a set of widely
used embedded applications from the Mediabench [11] set of bench-
marks. The simulation is performed with the SimpleScalar toolset
[12]. Through benchmark simulation and analysis, the hot-spots
and their virtual memory layout are identified. The final power con-
sumption is computed by summing up the energy for all the VPN
to PPN translations including the energy needed for the hardware.

Figure 8 shows the baseline characteristics. The first row in the
table contains the benchmark name. The first 6 applications are
from the Mediabench set of benchmarks, while the seventh appli-
cation is a widely used open source mp3 encoder. The subsequent
row shows the number of hot-spots identified for each benchmark
with the execution frequency for each hot-spot in percentage pre-
sented in the next row. The last two pairs of rows correspond to
4-way set associative and 8-way associative TLB organizations re-
spectively. The first row of each pair shows the energy dissipation
in mJ, while the second row shows the number of D-TLB misses in
all the hot-spots of each benchmark.

Figure 9 shows the energy dissipation for the proposed method-
ology with a default general-purpose D-TLB of 64 entries. The
first row presents the number of initial partitions for each hot-spot
at the beginning of the merging phase of our algorithm. The next
row shows the number of VPN partitions after applying the merg-
ing algorithm. The improvements in terms of minimizing the total
number of complete VPN partitions per hot-spot is evident from
this data. The next row in the table presents the dimension m
of each VPN partition. This number indicates the CTT volume
needed to handle the VPN partition. The last two pairs of rows
report the energy achieved by the proposed approach and the per-
centage improvement compared to the baseline TLB architecture.
The first pair of rows present the data for the proposed approach
with a 4-way set-associative default D-TLB accessed outside the
hot-spots, while the second pair of rows corresponds to an 8-way
set-associative default D-TLB. The first row for each pair shows
the energy consumption in mJ for the proposed technology, while
the second row shows the energy reduction in percentage against
the baseline case. It can be observed that the energy reductions are
in the range of 54% to 79%. It is evident that the proposed tech-

nique consistently achieves high energy reductions even for com-
plex benchmarks, such as mpeg and mp3, with multiple hot-spots
and large VPN partitions.

8. CONCLUSIONS
In this paper, we have presented a methodology for energy-efficient

and time-deterministic address translation for virtual memory sup-
port in embedded processors. Compiler and hardware support are
used to extract and utilize application knowledge regarding the vir-
tual page accesses of the program in order to achieve conflict-free
and, thus, tag-less translation table lookup. By allocating each VPN
partition into a separate segment within a tag-free translation ta-
ble, not only are significant power reductions achieved, but also
the execution time of the program is made more easy to asses in
advance. The proposed hardware support captures in a set of reg-
isters and a small translation table the information regarding the
VPN partitions and address translations. As this is performed in
a software-controlled way, the proposed hardware architecture is
highly programmable and the proposed approach is applied across
multiple programs or even across important program fragments.
The application-customizable address translation mechanism that
we have proposed in this paper, enables the adoptions of virtual
memory support with its significant benefits in embedded systems,
where energy efficiency, multitasking, and real-time response are
requirements of utmost importance.

9. REFERENCES

[1] B. Jacob and T. Mudge, “Virtual memory: issues of imple-
mentation”, IEEE Computer, vol. 31, n. 6, pp. 33–43, June
1998.

[2] M. Ekman, F. Dahlgren and P. Stenstrom, “TLB and snoop
energy-reduction using virtual caches in low-power chip-
microprocessors”, in ISLPED, pp. 243–246, August 2002.

[3] M. Cekleov and M. Dubois, “Virtual-address caches. Part
1: problems and solutions in uniprocessors”, IEEE Micro,
vol. 17, n. 5, pp. 64–71, September 1997.

[4] X. Qiu and M. Dubois, “Towards virtually-addressed memory
hierarchies”, in HPCA, pp. 51–62, January 2001.

[5] T. Juan, T. Lang and J. J. Navarro, “Reducing TLB power
requirements”, in ISLPED, pp. 196–201, August 1997.

[6] J. H. Lee, J. S. Lee, S. Jeong and S. Kim, “A banked-
promotion TLB for high performance and low power”, in
ICCD, pp. 118–123, September 2001.

[7] M. Kandemir, I. Kadayif and G. Chen, “Compiler-Directed
Code Restructuring for Reducing Data TLB Energy”, in
CODES+ISSS, pp. 98–103, September 2004.

[8] S. Baase and A.V. Gelder, Computer Algorithms, Addison-
Wesley, Boston, MA, 2000.

[9] G. Reinman and N. Jouppi, “An Integrated Cache Timing
and Power Model”, Technical report, Western Research Lab,
1999.

[10] V. Stojanovic and V.G. Oklobdzija, “Comparative analysis of
master-slave latches and flip-flops for high-performance and
low-power systems”, IEEE Journal of Solid-State Circuits,
vol. 34, n. 4, pp. 536 – 548, April 1999.

[11] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Medi-
aBench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems”, in 30th MICRO, pp. 330–
335, December 1997.

[12] T. Austin, E. Larson and D. Ernst, “SimpleScalar: An in-
frastructure for computer system modeling”, IEEE Computer,
vol. 35, n. 2, pp. 59–67, February 2002.

38


	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index




