
A Core Flight Software System

Jonathan Wilmot
Flight Software Branch

Goddard Space Flight Center
Greenbelt, Maryland 20771 USA

Jonathan.J.Wilmot@nasa.gov

ABSTRACT
No two flight missions are alike, hence, development and on-orbit
software costs are high. Software portability and adaptability
across hardware platforms and operating systems has been
minimal at best. Standard interfaces across applications and/or
common applications are almost non-existent. To reduce flight
software costs, these issues must be addressed. This presentation
describes how the Flight Software Branch at Goddard Space
Flight Center has architected a solution to these problems.

Categories and Subject Descriptors
D.2 [Software Engineering]: General – software architectures.

General Terms
Design, Performance, Standardization.

Keywords
Software, Operating System, Interfaces.

1. INTRODUCTION
The Flight Software Branch, at the Goddard Space Flight Center
(GSFC), has been working on a solution to one of the major cost
drivers for Real-Time Embedded Flight software, adaptability, as
it applies to both development and on orbit software costs.
Because each mission may have different hardware platforms,
software must be customized during development. As processors
and interfaces change from project to project, software developers
are required to adapt and retest many of the applications at great
expense in both time and resources. Even the choice of operating
systems can cause significant modification and adaptation as
operating system vendors can't agree on common functions such
as what a simple open file system call should look like.
On orbit, the software must also be adaptable. Unlike terrestrial
systems, flight systems must work around hardware faults and
support system degradation due to the harsh space environment
without the benefits of having the repairman available. In this
environment, the software modification process must be easy and
robust to reduce impacts to science or mission operations.

To help reduce both the development and the on-orbit
maintenance costs, GSFC has been working on an evolvable
software architecture that supports a run-time plug and play
paradigm along with a layered abstraction. One probably takes
this for granted on desktop computers, where you can start and
stop applications at will, but in the flight software world this has
been a long time in coming as the flight hardware platforms are
now powerful enough to support this.

2. The Architecture
This architecture, as shown in Figure 1, is built on the concepts of
standard interface layers and messaging middleware. Each layer
hides the details of the lower layer, promoting portability across
the inevitable hardware and interface changes that come with each
new flight mission. The messaging layer guarantees that
applications can communicate regardless of the underlying
platform and even across multiple processors on multiple
spacecrafts in larger missions. In this architecture, messaging
uses a publish and subscribe model. Applications simply
subscribe at run time to the data they need and the messaging
middleware delivers it to them. For example, the attitude control
software says, send me all sensor data, and the data starts flowing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

Figure 1. Core Flight Software System Architecture

13

The plug and play flight system, known as the Core Flight System
(CFS), consists of three major parts, the core Flight Executive
(cFE) which includes an OS Abstraction, a software component
library, and an Integrated Development Environment (IDE) based
on the open source Eclipse IDE. The cFE contains the run time
services, messaging, and operating system. On top of that sits the
standard flight components and mission applications. To help put
it all together, the IDE enables users to configure and build the
system using a graphical desktop interface.

3. ADVANTAGES of the CFS
This architecture will speed the development process. Using the
IDE, engineers will configure the cFE, select some standard
applications and load this to the spacecraft processor, allowing a
base system to be up and running in a few days. Engineers can
then start developing the new software unique to their mission
much earlier in the schedule.
This architecture also offers a potential for much greater on orbit
flexibility. New science algorithms can be created and uploaded to
the flight file system using one of several protocols,

started/stopped, tried out, all without impacting other operations.
When this is coupled with the protected mode process model of
newer operating systems and processors, individual applications
can even crash and be restarted automatically without affecting
other flight critical systems like communications or attitude
control, much unlike previous implementations that needed to
restart the entire flight system most likely causing the spacecraft
to enter a safe mode and upsetting some of the scientists and
mission operators.

4. SUMMARY
We have every expectation that the CFS will help reduce
development schedules by reusing existing components, reduce
risk by reusing tested components, and add flexibility during
development and on orbit. This technology was first prototyped
and successfully demonstrated in the lab for the Global
Precipitation Measurement (GPM) mission in 2004. However,
the Lunar Reconnaissance Orbiter (LRO) will be the first mission
to capitalize on the advantages of the CFS, enjoying the ease of
software integration and in-orbit flexibility..

14

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

