
Future Wireless Convergence Platforms
John Glossner, Ph.D., EVP & CTO

Mayan Moudgill, Ph.D., Chief Architect
Daniel Iancu, Ph.D., Chief Communications Architect

Gary Nacer, VP of Engineering
Sanjay Jintukar, Ph.D., Director of Software

Stuart Stanley, Director of RF Engineering
Michael Samori, Director of Hardware Design

Tanuj Raja, VP of Business Development
Michael Schulte, Ph.D., Professor, UW Madison
Stamatis Vassiliadis, Ph.D., Professor, TU Delft

Sandbridge Technologies, Inc.
White Plains, NY

 914-287-8500
glossner@sandbridgetech.com

ABSTRACT
As wireless platforms converge to multimedia systems,
architectures must converge to support voice, data, and video
applications. From a processor architecture perspective, support
for signal processing (both audio and video), control code, and
Java execution will be required in a convergent device.
Traditionally, wireless communications systems have been
implemented in hardware. Convergent devices must be able to
roam seamlessly across multiple communications systems. To
avoid excessive hardware costs, a Software Defined Radio (SDR)
approach offers a programmable and dynamically reconfigurable
method of reusing hardware to implement physical layer
processing. In this paper, we discuss trends in wireless platforms
which are inherently convergence platforms. We also present the
Sandbridge state-of-the-art example platform that supports both
communications and multimedia applications processing. The
architecture efficiently executes Java, Digital Signal Processing
(DSP), and control code. Architectural features that reduce power
dissipation and enable real-time processing are described. All of
the communications and multimedia processing is executed
completely in software without specialized hardware support. The
processor is programmed in C with supercomputer-class compiler
support for automatic vectorization, multithreading, and DSP
semantic analysis.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]
C.1.4 [Parallel Architectures]

General Terms: Design, Performance

Keywords
Software Defined Radio, Wireless, Digital Signal Processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

1. INTRODUCTION
From the end-user point of view, a modern communications
device has a color screen, a keyboard, an antenna, audio, and
video. All these features require high computing capability at low
power consumption. The performance requirements for mobile
wireless communication devices have expanded dramatically from
their inception as mobile telephones. Consumers are demanding
convergence devices with full data and voice integration as well
as a variety of computationally intense features and applications
such as web browsing, MP3 audio, and MPEG4 video. Moreover,
consumers want these wireless subscriber services to be accessible
at all times anywhere in the world.

The technologies necessary to realize true broadband
wireless handsets and systems present unique design challenges.
Wireless handset manufacturers are challenged to deliver products
that offer expanded services and operate transparently worldwide.
Product designers are challenged to create extremely power
efficient yet high-performance, broadband wireless devices. The
design tradeoffs and implementation options inherent in meeting
these demands highlight the extremely challenging requirements
of next generation convergence processors.

Power dissipation constraints are requiring new techniques at
every stage of design - architecture, microarchitecture, software,
algorithm design, logic design, circuit design, and process design.
With performance requirements exploding as bandwidth demand
increases, power conscious design becomes more difficult.
System-on-a-chip (SOC) integration and low voltage process
technologies will contribute to lower power SOC integrated
circuits (ICs), but are insufficient as the only solution for
streaming broadband applications.

Convergence applications are fundamentally DSP
applications. A large number of standards exist or have been
proposed for the wireless and wired communication markets.
Such a diversity of standards necessitates a programmable
platform for their timely implementation. Traditional
communications systems have typically been implemented using
custom hardware solutions. Chip rate, symbol rate, and bit rate co-
processors are often coordinated by programmable DSPs but the
DSP processor does not typically participate in computationally
intensive tasks. Even with a single communication system, the
hardware development cycle is onerous, often requiring multiple
chip redesigns late into the certification process. When multiple
communications systems requirements are considered, both

7

silicon area and design validation are major inhibitors to
commercial success. Therefore, a software-based platform
capable of dynamically reconfiguring communications systems
enables elegant reuse of silicon area and dramatically reduces time
to market by allowing multi-protocol support through software
modifications instead of time consuming hardware redesigns.
Such platforms have begun forming the basis for Software
Defined Radio (SDR).

The SDR Forum [1] defines five tiers of solutions:
• Tier-0 is a traditional radio implementation in hardware.
• Tier-1, Software Controlled Radio (SCR), implements

the control features for multiple hardware elements in
software.

• Tier-2, Software Defined Radio (SDR), implements
modulation and baseband processing in software but
allows for multiple frequency fixed function RF
hardware.

• Tier-3, Ideal Software Radio (ISR), extends
programmability through the RF with analog conversion
at the antenna.

• Tier-4, Ultimate Software Radio (USR), provides for
fast (millisecond) transitions between communications
protocols in addition to digital processing capability.

The advantages of a reconfigurable SDR solution versus hardware
solutions are significant. First, reconfigurable solutions are more
flexible allowing multiple communication protocols to
dynamically execute on the same transistors thereby reducing
hardware costs. Specific functions such as filters, modulation
schemes, encoders/decoders etc., can be reconfigured adaptively
at run time. Second, several communication protocols can be
efficiently stored in memory and coexist or execute concurrently.
This significantly reduces the cost of the system for both the end
user and the service provider. Third, remotely reconfigurable
protocols provide simple and inexpensive software version control
and feature upgrades. This allows service providers to
differentiate products after the product is deployed. Fourth, the
development time of new and existing communications protocols
is significantly reduced providing an accelerated time to market.
Development cycles are not limited by long and laborious
hardware design cycles. With SDR, new protocols are quickly
added as soon as the software is available for deployment. Fifth,
SDR provides an attractive method of dealing with new standards
releases while assuring backward compatibility with existing
standards. Sixth, any defects found in the field can be fixed by
changing the software, possibly even transparently to the user,
without requiring a hardware change or a chip respin.

In this paper we discuss trends in wireless platforms, which
are inherently convergence platforms. We also present the
Sandbridge state-of-the-art example platform that supports both
communications and multimedia applications processing. The
architecture efficiently executes Java, Digital Signal Processing
(DSP), and control code. Architectural features that reduce power
dissipation and enable real-time processing are described. All of
the communications and multimedia processing is executed
completely in software without specialized hardware support. The
processor is programmed in C with supercomputer-class compiler
support for automatic vectorization, multithreading, and DSP
semantic analysis.

2. HISTORICAL BACKGROUND
The architecture of a computer system is the minimal set of
properties that determine what programs will run and what results
they will produce [2]. It is the contract between the programmer
and the hardware. Every computer is an interpreter of its machine
language – that representation of programs that resides in memory
and is interpreted (executed) directly by the (host) hardware.

The logical organization of a computer’s dataflow and
controls is called the implementation or microarchitecture. The
physical structure embodying the implementation is called the
realization. The architecture describes what happens while the
implementation describes how it is made to happen. Programs of
the same architecture should run unchanged on different
implementations. An architectural function is transparent if its
implementation does not produce any architecturally visible side
effects. An example of a non-transparent function is the load delay
slot made visible due to pipeline effects. Generally, it is desirable
to have transparent implementations. Most DSP and VLIW
implementations are not transparent and therefore the
implementation affects the architecture [3][4][5][6].
 Execution predictability in DSP systems often precludes the
use of many general-purpose design techniques (e.g. speculation,
branch prediction, data caches, etc.). Instead, classical DSP
architectures have developed a unique set of performance
enhancing techniques that are optimized for their intended market.
These techniques are characterized by hardware that supports
efficient filtering, such as the ability to sustain three memory
accesses per cycle (one instruction, one coefficient, and one data
access). Sophisticated addressing modes such as bit-reversed and
modulo addressing may also be provided. Multiple address units
operate in parallel with the datapath to sustain the execution of the
inner kernel.
 In classical DSP architectures, the execution pipelines were
visible to the programmer and necessarily shallow to allow
assembly language optimization. This programming restriction
encumbered implementations with tight timing constraints for
both arithmetic execution and memory access. The key
characteristic that separates modern DSP architectures from
classical DSP architectures is the focus on compilability. Once the
decision was made to focus the DSP design on programmer
productivity, other constraining decisions could be relaxed. As a
result, significantly longer pipelines with multiple cycles to access
memory and multiple cycles to compute arithmetic operations
could be utilized. This has yielded higher clock frequencies and
higher performance DSPs.
 In an attempt to exploit instruction level parallelism inherent
in DSP applications, modern DSPs tend to use VLIW-like
execution packets. This is partly driven by real-time requirements
which require the worst-case execution time to be minimized.
This is in contrast with general purpose CPUs which tend to
minimize average execution times. With long pipelines and
multiple instruction issue, the difficulties of attempting assembly
language programming become apparent. Controlling instruction
dependencies between upwards of 100 in-flight instructions is a
non-trivial task for a programmer. This is exactly the area where a
compiler excels.
 A challenge of using VLIW processors includes large
program executables (code bloat) that result from independently
specifying every operation with a single instruction. As an
example, a VLIW processor with a 32-bit basic instruction width
requires 4 instructions, 128 bits, to specify 4 operations. A vector

8

encoding may compute many more operations in as little as 21
bits (for example – multiply two 4-element vectors, saturate,
accumulate, and saturate).
 Another challenge of VLIW implementations is that they
may require excessive write ports on register files. Because each
instruction may specify a unique destination address and all the
instructions are independent, a separate port must be provided for
the target of each instruction. This can result in high power
dissipation, which is unacceptable for handset applications.
 A challenge of visible pipeline machines (e.g. most DSPs
and VLIW processors) is interrupt response latency. Visible
memory pipeline effects in highly parallel inner loops (e.g. a load
instruction followed by another load instruction) are not typically
interruptible because the processor state cannot be restored. This
requires programmers to break apart loops so that worst case
timings and maximum system latencies may be acceptable.
Signal processing applications often require a mix of
computational calculations and control processing. Control
processing is often amenable to RISC-style architectures and is
typically compiled directly from C code. Signal processing
computations are characterized by multiply-accumulate intensive
functions executed on fixed point vectors of moderate length.
Therefore, a DSP requires support for such fixed point saturating
computations. This has traditionally been implemented as one or
more multiply accumulate (MAC) units. In addition, as the
saturating arithmetic is non-associative, parallel execution of
multiple data elements may result in different results from serial
execution. This creates a challenge for high-level language
implementations that specify integer modulo arithmetic.
Therefore, most DSPs have been programmed using assembly
language.
 Multimedia adds additional requirements to the convergence
processors. Video, in particular, requires high performance to
allow the display of movies in real-time. An additional trend for
multimedia applications is Java execution. Java provides a user
friendly interface, support for productivity tools and games on the
convergence device.

The problems associated with previous approaches require a
new architecture to facilitate efficient convergence applications
processing. Sandbridge Technologies has developed a new
approach that minimizes both hardware and software design
challenges inherent in real-time streaming convergence
applications.

3. PROGRAMMING ENVIRONMENT
Programmer productivity is also a major concern in streaming
multimedia DSP and SDR convergence applications. Because
most classical DSPs are programmed in assembly language, it
takes a very large software effort to program an application. As an
example, with modern speech coders it may take up to nine
months or more before the application performance is known if
they are coded in assembly language. Then, an intensive period of
design verification ensues. If efficient high-level language
compilers for DSPs are available, significant increases in software
productivity and programming effort can be achieved.
 A DSP compiler should be designed jointly with the
architecture based on the intended application domain. Trade-offs
are made between the architecture and compiler subject to the
application performance, power, and price constraints.

However, there are a number of issues that must be addressed in
designing a DSP compiler. First, there is a fundamental mismatch
between DSP datatypes and C language constructs. A basic
datatype in DSPs is a saturating fractional fixed-point
representation. C language constructs, however, define integer
modulo arithmetic. This forces the programmer to explicitly
program saturation operations. A DSP compiler must deconstruct
and analyze the C code for the semantics of the operations
represented and generate the underlying fixed point operations.
 A second problem for compilers is that previous DSP
architectures were not designed with compilability as a goal. To
maintain minimal code size, multiple operations were issued from
the same compound instruction. To reduce instruction storage, a
common encoding was 16-bits for all instructions. Often, three
operations could be issued from the same 16-bit instruction.
While this is good for code density, orthogonality1 suffered.
Classical DSPs imposed many restrictions on the combinations of
operations and the dense encoding implied many special purpose
registers. This resulted in severe restrictions for the compiler and
poor code generation.
 Early attempts to remove these restrictions used VLIW
instruction set architectures with nearly full orthogonality. To
issue four multiply accumulates requires at least four instructions
(with additional load instructions to sustain throughput). This
generality was required to give the compiler technology an
opportunity to catch up with assembly language programmers.
Because DSP C compilers have difficulty generating efficient
code, extensions have been introduced to high level languages [7].
Typical additions may include special support for 16-bit datatypes
(Q15 formats), saturating types, multiple memory spaces, and
SIMD parallel execution. These additions often imply a special
compiler and the code generated may not be emulated easily on
multiple platforms. As a result, special language constructs have
not been successful.

Libraries
Due to the programming burden of traditional DSPs, large
libraries are typically built up over time. Often more than 1000
functions are provided, including FIR filters, FFTs, convolutions,
DCTs, and other computationally intensive kernels. The software
burden to generate libraries is high but they can be reused for
many applications. With this approach, control code can be
programmed in C and the computationally intensive signal
processing functions are called through these libraries.

Intrinsic Functions
Often, when programming in a high-level language such as C, a
programmer would like to take advantage of a specific instruction
available in an architecture but there is no mechanism for
describing that instruction in C. For this case intrinsics were
developed. In their rudimentary form, an intrinsic is an asm
statement such as found in GCC.
 An intrinsic function has the appearance of a function call in
C source code, but is replaced during pre-processing by a
programmer-specified sequence of lower-level instructions. The
replacement specification is called the intrinsic substitution or
simply the intrinsic. An intrinsic function is defined if an intrinsic

1 Orthogonality is a property of instruction set architectures that allows

any operation to be specified with any combination of other operations.

9

substitution specifies its replacement. The lower-level instructions
resulting from the substitution are called intrinsic instructions [8].
 Intrinsics are used to collapse what may be more than ten
lines of C code into a single DSP instruction. A typical math
operation from the ETSI GSM EFR speech coder, L_add, is given
as:

/* GSM ETSI Saturating Add */
Word32 L_add(Word32 a, Word32 b) {
 Word32 c;
 c = a + b;
 if (((a^b) & MIN_32) == 0) {
 if ((c^a) & MIN_32) {
 c = (a < 0) ? MIN_32 : MAX_32;
 }
 }
 return(c);
}

Many DSPs use intrinsics to implement the L_add operation as a
single instruction. Early intrinsic efforts, like inlined asm
statements, inhibited DSP compilers from optimizing code
sequences [8]. A DSP C compiler could not distinguish the
semantics and side effects of the assembly language constructs
and this resulted in compiler scheduling hazards. Other solutions,
which attempted to convey side-effect free instructions, have been
proposed. These solutions all introduced architectural dependent
modifications to the original C source.
 Intrinsics which eliminated these barriers have been explored
[8]. The main technique is to represent the operation in the
intermediate representation of the compiler. With the semantics of
each intrinsic well known to the intermediate format,
optimizations with the intrinsic functions were easily enabled
yielding speedups of more than 6x.
 The main detractor of intrinsics is that it moves the assembly
language programming burden to the compiler writers. More
importantly, each new application may still need a new intrinsic
library. This further constrains limited software resources.

High-level DSP Compilation
The above discussion focused on source-level semantic
mismatches between C code and DSP operations. The solutions in
the industry are not ideal. However, even after providing compiler
solutions for the semantic gap, there is still the difficult challenge
of implementing supercomputer-class optimizations in the
compiler.
In addition to classic compiler optimizations [10], there are some
advanced optimizations which have proven significant for DSP
applications. Software pipelining [11] in combination with
aggressive inlining has proven effective in extracting the
parallelism inherent in DSP applications. Interestingly, some DSP
applications (speech coding for example) do not exhibit
significant data dependence. A program that is data dependent
will give significantly different execution times and execution
paths through the program depending upon what data input the
program receives. When programs are not heavily influenced by
the dataset choice, profile directed optimizations may be effective
at improving performance [12]. In profile driven optimization, the
program is executed based on a set of data inputs. The results of
the program and the execution path through the program are then
fed back into the compiler. The compiler uses this information to
group highly traversed paths into larger blocks of code which can
then be optimized and parallelized. These techniques, when used

with VLIW scheduling [13], have proven effective in DSP
compilation. However, they still can be more than two times less
efficient than assembly language programming.

Another challenge DSP compiler writers face is parallelism
extraction. Early VLIW machines alleviated the burden from the
compiler by allowing full orthogonality of instruction selection.
Unfortunately this led to code-bloat. General purpose machines
have recognized the importance of DSP operations and have
provided specialized SIMD instruction set extensions (e.g.
MMX/SSE, Altivec, VIS). Unfortunately, compiler technology
has not been effective in exploiting these instruction set
extensions, and library functions are often the only efficient way
to invoke them.

Exploiting data parallelism is an important factor in
optimizing for DSP applications. While both a VLIW and vector
datapath can exploit such parallelism, extracting it from C code
can be a difficult challenge. Most VLIW scheduling techniques
focus on exploiting instruction level parallelism from code
sequences. However, they do not exploit data parallelism. To do
this, vectorizing compilers are needed. For a compiler to be able
to vectorize loops coded in C, it may have to significantly reorder
the loops either splitting or jamming them together, depending on
the nesting depth. These techniques are typically only found in
supercomputer compilers but they greatly assist in uncovering
data parallelism from arbitrary C code.

4. SANDBRIDGE SDR SOLUTION
Sandbridge Technologies has designed an SDR processor capable
of executing DSP, embedded control, and Java code in a single
compound instruction set optimized for handset radio applications
[17][18]. The Sandbridge Sandblaster® design overcomes the
deficiencies of previous approaches by providing substantial
parallelism and throughput for high-performance DSP
applications, while maintaining fast interrupt response, high-level
language programmability, and very low power dissipation.

The microarchitecture of the Sandblaster® processor is
multithreaded and all threads of execution operate simultaneously.
An important point is that multiple copies (e.g. banks and/or
modules) of memory are available for each thread to access. The
Sandblaster® architecture supports multiple concurrent program
execution by the use of hardware thread units (called contexts).
The architecture supports up to eight concurrent hardware
contexts. The architecture also supports multiple operations being
issued from each context. The Sandblaster® processor uses a
unique form of multithreading called Token Triggered Threading
(T3), which consumes much less power than other form of
multithreading.

The Sandbridge tools implement all of the expected standard
optimizations but also extend the optimizations into areas that
were previously only explored by supercomputing designers.
Since applications are growing at more than a compounded 44%
per year in terms of the number of lines of C code required, it is
no longer feasible to consider building new systems from libraries
or assembly coding techniques. The Sandbridge programming
paradigm represents the first true standard high-level language
compilable platform for convergence devices [14].

10

0

10

20

30

40

50

60

70

80

90

100

802.11b GPS AM/FM Bluetooth GPRS WCDMA
1/2/5.5/11Mbps Class 10/12 64/384/2k Kbps

%
 S

B
30

10
 U

til
iz

at
io

n

75m .5sec xyz
5m .1sec xyz

Figure 1. Communications Systems Results as a Percentage of
SB3010 utilization (600MHz processor)

Figure 1 shows the results of a number of additional
communications systems as a percentage of a 600MHz SB3010
platform. Particularly, 802.11b, GPS, GPRS, AM/FM radio, and
Bluetooth, and WCDMA are shown. A notable point is that all
these communications systems are written in generic C code with
no hardware acceleration required. It is also notable that
performance, accuracy, and concurrency can be dynamically
adjusted based on the mix of tasks desired.

We have also run multimedia benchmarks such as H.264,
MPEG4, and MP3 on the SB3010. The total utilization for CIF
images is typically less than 5% of an SB3010 platform.
Convergence devices should dynamically adapt to multiple coding
schemes for both communications and multimedia standards. The
SB3010 platform provides precisely this dynamic adaptation.

Figure 2 shows the SB3010TM baseband chip. It contains
four Sandblaster® cores and an ARM microcontroller that
functions as an applications processor. It also contains a number
of internal digital peripheral interfaces for moving data in and out
of the chip such as AD/DA for Tx and Rx data, TDM ports, and
an AMBA bus. A high-speed Universal Serial Bus (USB)
provides easy connectivity to external systems. Control and test
busses such as JTAG, SPI, and I2C allow the chip to control RF
and front end chips.

Silicon for the chip is available and fully functional. It runs
at up to 800MHz per core providing more than 12 GMACs per
chip. Measured results for a synthesized version of this chip have
achieved 600MHz operation at 0.9V. The typical power
dissipation is 150mW providing the most power efficient
processor design in its class.

In addition to processor chips, Sandbridge also provides
reference designs including digital and RF boards. Figure 3
shows the SB3010 digital board. The development platform
comes enabled with 8MB of external SRAM, 32MB of external
Flash, and 256MB of external SDRAM. Other peripherals include
USB host and client interfaces with “On-the-Go” capabilities,
AC-97 with Microphone and S/PDIF, IrDA, UARTs, LCD, PS2,
Keypad, SD Card, MMC card, and Ethernet.

The entire SB3010 Digital Card is powered from a single
120-240V wall adaptor and attaches to any PC or laptop through a
single USB connection. The software that runs on the card is
unmodified from the software that executes in the simulation
environment. It is identical from a programmer’s perspective. The
Sandbridge runtime takes care of all of the administrative chores
associated with loading and executing programs. The card can

also be used stand-alone. A full Linux suite is available on the
onboard ARM with built-in LCD controller.

General
Purpose I/O

Smart Card
Interface

Sync Serial
Port

Keyboard
Interface

Keypad
Interface

UART/
IrDA

Audio
Codec

Interface

General
Purpose I/O

Timers

RTC

Multimedia
Card

Interface

32.768KHz

Multi Port
Memory

Controller

USB
Interface

LCD
Interface

AHB APB
Bridge

Peripheral
Device Control

DMA
Controller

ARM
Processor

Vector Interrupt
Controller

DSP ARM
Bridge

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EX
T IN

T
DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

T
DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EXT IN
T

DSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

T

DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EX
T IN

TDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EX
T IN

T
DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

TDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

T
DSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EXT IN
TDSP

Ins & Data Mem
(64KB / 64KB)

L2 M
em

(256K
B

)

EXT IN
T

DSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

TDSP

Ins & Data Mem
(32KB / 64KB)

L2 M
em

(256K
B

)

E
XT IN

T

DSP Complex

General
Purpose I/O

Serial
Interfaces
(SPI, I2C)

Parallel
Streaming

Data
Interface

Prog.
Timers/Gens

Clock Generation

10 – 50MHz REF
REF1 REF2Ext. clks

Int. clks......

DSP Local Peripherals TAP
(JTAG Port)

RX Data
TX Data

Timer I/O

RF Control

Memory Interface
(Synchronous and

Asynchronous)

Figure 2. SDR SB3010 Baseband Processor

Figure 3. SB3010 Digital Card

5. Summary
As wireless platforms converge to multimedia systems,
architectures must converge to support voice, data, and video
applications. These convergent devices must be able to roam
seamlessly across multiple communications systems. To avoid
excessive hardware costs, a Software Defined Radio (SDR)
approach offers a programmable and dynamically reconfigurable
method of reusing hardware to implement physical layer
processing. To achieve software implementations of
communications systems a number of fundamental problems must
be addressed. Streaming multimedia systems are inherently DSP
systems. Power efficiency of DSP systems has been a concern
when contrasted with hardware implementations. However, the
extensive choices of communications systems have made the
complexity of hardware designs intractable. This makes SDR
solutions attractive but previous software programming
environments have been highly labor intensive, traditionally
resulting in assembly language coding which may also be
intractable when multiple communications systems are
considered.

11

Sandbridge Technologies has introduced a completely new and
scalable design methodology for implementing multiple
communications systems on a single SDR chip. Using a unique
multithreaded architecture specifically designed to reduce power
consumption, efficient broadband communications operations are
executed on a programmable platform.
 The processor is combined with a highly optimizing
vectorizing compiler with the ability to automatically analyze
programs and generate DSP instructions. The compiler also
automatically parallelizes and multithreads programs. This
obviates the need for assembly language programming and
significantly accelerates time-to-market for streaming multimode
multimedia convergence systems.
 To validate our approach, we implemented a number of
communication physical layers and multimedia systems including
H.264, MPEG4, MP3, WCDMA, 802.11b, GSM/GPRS, and
GPS.

In addition to the software design, we also built RF cards for
each communications system. With a complete system, we
execute RF to IF to baseband and reverse uplink processing in our
lab. Silicon is available for the SB3010 platform and our
measurements confirm that our communications and multimedia
designs execute within field conformance requirements in real
time completely in software.

6. REFERENCES
[1] http://www.sdrforum.org
[2] G. Blaauw and F. Brooks Jr., Computer Architecture:

Concepts and Evolution, Addison-Wesley, Reading, MA,
1997.

[3] B. Case, “Philips Hopes to Displace DSPs with VLIW”,
Microprocessor Report, December, 1997, pp. 12-15.

[4] O. Wolf and J. Bier, “StarCore Launches First Architecture”,
Microprocessor Report, Vol. 12, No. 14, October, 1998, pp.
1-4.

[5] J. Fridman and Z. Greenfield, “The TigerSHARC DSP
Architecture”, IEEE Micro, Vol. 20, January, 2000, pp. 66-
76.

[6] J. Turley and H. Hakkarainen, “TI’s New ‘C6x DSP Screams
at 1,600 MIPS”, Microprocessor Report, Vol. 11, No. 2,
February, 1997, pp. 1-4.

[7] K.W. Leary and W. Waddington, “DSP/C: A Standard High
Level Language for DSP and Numeric Processing”,
Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, IEEE, 1990, pp. 1065-1068.

[8] D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and P.
D’Arcy, “A New Approach to DSP Intrinsic Functions”,
Proceedings of the Hawaii International Conference on
System Sciences, Hawaii, January, 2000, pp. 2892-2901.

[9] D. Chen, W. Zhao, and H. Ru, “Design and Implementation
Issues of Intrinsic Functions for Embedded DSP Processors”,
in Proceedings of the ACM SGIPLAN International
Conference on Signal Processing Applications and
Technology (ICSPAT ‘97), September, 1997, pp. 505-509.

[10] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wesley Publishing
Company, CA, 1986.

[11] M. Lam, “Software Pipelining: An Effective Scheduling
technique for VLIW Machines”, In Proceedings of the
SIGPLAN ‘88 Conference on Programming Language
Design and Implementation, Atlanta, GA, June, 1988.

[12] S. Jinturkar, J. Thilo, J. Glossner, P. D’Arcy, and S.
Vassiliadis, “Profile Directed Compilation in DSP
Applications”, Proceedings of the International Conference
on Signal Processing Applications and Technology
(ICSPAT’98), September, 1998.

[13] W. Hwu, “Super Block: An Effective Technique for VLIW
and Superscalar Compilation”, Journal of Supercomputing,
Vol. 7, pp. 229-248.

[14] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill, E.
Hokenek, M. Schulte, and S. Vassiliadis, “Sandbridge
Software Tools”, Proceedings of the 3rd annual Systems,
Architectures, Modeling, and Simulation (SAMOS)
Conference, July, 2003, pp. 142-148.

[15] V. Kotlyar and M. Moudgill, “Detecting Overflow
Detection”, Proceedings of the 2004 CODES+ISSS
International Conference on Hardware/Software Codesign
and System Synthesis, September 8-10, 2004, Stockholm,
Sweden, pp. 36-41.

[16] T. Boudreau, J. Glick, S. Greene, J. Woehr, and V. Spurlin,
NetBeans: The Definitive Guide, O'Reilly & Associates,
Sebastopol, CA, 1st edition, October, 2002.

[17] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill,
“A Software Defined Communications Baseband Design”,
IEEE Communications Magazine, Vol. 41, No. 1, January,
2003, pp. 120-128.

[18] J. Glossner, T. Raja, E. Hokenek, and M. Moudgill, “A
Multithreaded Processor Architecture for SDR,” The
Proceedings of the Korean Institute of Communication
Sciences, Vol. 19, No. 11, November, 2002, pp. 70-84.

[19] J. Sebot and N. Drach, “SIMD Extensions: Reducing Power
Consumption on a Superscalar Processor for Multimedia
applications,” presented at Cool Chips IV, April 2001.

12

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

