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Abstract— Recently coarse-grained reconfigurable architectures
(CGRAs) have drawn increasing attention due to their efficiency
and flexibility. While many CGRAs have demonstrated impressive
performance improvements, the effectiveness of CGRA platforms
ultimately hinges on the compiler. Existing CGRA compilers do not
model the details of the CGRA architecture, due to which they are,
i) unable to map applications, even though a mapping exists, and ii)
use too many PEs to map an application. In this paper, we model
several CGRA details in our compiler and develop a graph mapping
based approach (SPKM) for mapping applications onto CGRAs. On
randomly generated graphs our technique can map on average 4.5X
more applications than the previous approaches, while using fewer
CGRA rows 62% times, without any penalty in mapping time. We
observe similar results on a suite of benchmarks collected from
Livermore Loops, Multimedia and DSPStone benchmarks.

I. INTRODUCTION

Coarse Grain Reconfigurable Arrays (CGRAs) have emerged as
a promising reconfigurable platform, by providing operation level
programmability, word level datapaths, and powerful and very area-
efficient datapath routing switches. CGRAs are essentially a set of
processing elements (PEs), such as ALUs or multipliers. The PEs are
connected so that they can use the result of its neighboring PEs. It
is the PE function selection and data routing that provides CGRAs
with the reconfigurability. CGRAs can fully exploit the parallelism
in an application, and therefore they are extremely well suited for
applications that need high throughput including multimedia, signal
processing, networking, and other scientific applications. Several
CGRA implementations like MorphoSys, RSPA, KressArray, etc.
have been proposed. Comprehensive summary of CGRAs can be
found in [5].

However, the success of CGRAs critically hinges on the efficient
mapping of applications onto it so as to exploit the parallelism in
the application and utilize minimum computation resources of the
CGRA. Minimizing the number of computation resources in CGRAs
is an extremely important goal, as it directly translates into either
reduced power consumption, or increased throughput. The problem
of mapping an application onto a CGRA to minimize the number
of resources used has been shown to be NP-complete, and therefore
several heuristics have been proposed. However existing heuristics
do not consider the details of the CGRA architecture such as the
followings.

PE Interconnection Most existing CGRA compilers assume that
the PEs in the CGRA are connected only in a simple 2-D mesh
fashion, i.e., a PE is connected to it’s neighbors only. However, in
most existing CGRAs each PE is connected to more PEs than just
the neighbors. In Morphosys, a PE is connected to every other PEs
through shared buses, and each PE is connected to the immediate
neighbors and the next neighbors also in RSPA.

Shared Resources Most CGRA compilers assume that all
PEs are similar in the sense that an operation can be mapped

to any PE. However, modern CGRAs, in order to reduce the
cost, power and complexity, do not include the multiplier in
each PE. Few multipliers are made available as shared resources
in each row. For example, RSPA has 2 shared multipliers in each row.

Routing PE Most CGRA compilers cannot use a PE just for
routing. This implies that in a 4x4 CGRA, it is not possible to
map application DAGs in which any node has more than 4 degrees.
However, most CGRAs allow a PE to be used for routing only,
which makes it possible to map any degree DAGs onto the CGRA.

Owing to the simplistic model of CGRA architecture in the com-
piler, existing CGRA compilers are i) unable to map an application
on the CGRA, even though it is possible to map them. ii) uses too
many PEs in their solution.

The contributions of this paper are:
• We formulate the application mapping problem onto CGRA

considering the routing PEs, the shared resource constraints and
complex PE interconnection.

• We develop an integer linear programming (ILP) solution to
obtain the optimal application mapping and to compare with
our heuristic approach.

• We propose a graph drawing based approach to map applications
onto CGRAs which can map 4.5X more randomly generated
application DAGs than previous approach, while using less rows
62% of time, without any mapping time penalty.

The rest of the paper is organized as follows: Section II and Sec-
tion III formally define the problem of mapping applications onto
CGRAs. Section IV describes CGRAs and the previously proposed
heuristics for mapping applications onto CGRAs. In Section V, we
formulate the application mapping problem with ILP to find the
optimal solution, and Section VI proposes our graph drawing based
solution. We explain our experimental setup in Section VII and
conclude this paper in Section VIII.

II. NOTATION AND DEFINITIONS

Since applications spend most of their time and power in loops, in
this paper, we focus on mapping loops to CGRAs. Significant power
and performance trade-offs can be made by unrolling the loop. The
focus in this paper is solving the problem of mapping the kernel of
a given loop to a CGRA while minimizing the number of resources
required. In this section, we define all the notations that are used in
this paper for the better understanding of our problem formulation.

Loop kernel The loop kernel can be represented as a Directed
Acyclic Graph (DAG), K = (V, E), where the set of vertices V
are the operations in the loop, and for any two vertices, u, v ∈ V ,
e = (u, v) ∈ E iff the operation corresponding to v is data dependent
on the operation u. We also support the edges which have loop-carried
dependencies. For any two vertices u, v ∈ V , elc = (u, v) ∈ E iff the
operation v is dependent on the operation u across the loop iterations.

CGRA An M×N CGRA can be represented as another directed
graph C = (P, L), where the elements of P , pij , where 1 ≤ i ≤ M ,
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and 1 ≤ j ≤ N are the PEs of the CGRA. For any two elements
p, q ∈ P , l = (p, q) ∈ L iff PE q can use the result that PE p
computed in the previous cycle.

Application Mapping An application mapping is a function
φ : K → C, which in turn implies two functions, φV : V → P , and
φE : E → 2L.

φV is an injective function that maps the operations to the PEs.
This implies that each vertex v ∈ V maps to a distinct PE p ∈ P ,
and that some PEs may be unused.

φE is a multi-valued function that maps data dependency edges
e ∈ E of the application kernel to a subset of interconnection links
ll ∈ 2L. Thus a dependence edge can be mapped onto a set of
interconnection links on the CGRA, starting from φV (u), and ending
at φV (v).

Path Existence Constraint If φE(e = (u, v)) = ll ∈ 2L, then
∃l1 = (p1, q1) ∈ ll such that p1 = φV (u), and ∃l2 = (p2, q2) ∈ ll
such that q2 = φV (v), and ∀l = (p, q) ∈ ll such that q �= φV (v)
then ∃l = (p′, q′) ∈ ll, such that p′ = q.

Simple Path Constraint If φE(e = (u, v)) = ll ∈ 2L, then
∀li, lj ∈ ll, if li = (p, q), and lj = (r, s), then q �= s. This implies
that there are no loops in the path from φV (u) to φV (v), described
by ll.

Routing Order Under the path existence and the simple path
constraint, a total order can be defined on the elements of ll.
This total order, which we call routing order, and identified by ≺,
identifies a unique path from φV (u) to φV (v). The total order is
defined as:
(1)∀li, lj ∈ ll, if li = (p, q)∧φV (u) = p, then li ≺ lj (2)∀li, lj ∈ ll,
if lj = (p, q) ∧ φV (v) = q, then li ≺ lj
(3)∀li, lj ∈ ll, if li = (p, q) ∧ lj = (q, r), then li ≺ lj

The routing order implies that the first element φV (u) is the
smallest element, and φV (v) is the largest element. When two active
interconnection links share a PE, the one that uses the PE as the
source is larger than the one that uses it as a destination. If we
arrange the PE vertices in increasing order, as defined by ≺, they
describe the path from φV (u) to φV (v). The simple path constraint
makes sure that if ll �= φ, then there exists a path from φV (u) to
φV (v).

Routing PE RPE for a data dependence edge e ∈ E is the set
of PEs, which are used to transfer data between two interconnection
links. Thus, for any e = (u, v) ∈ E, if ll = φE(e), then RPEe =
{q|∀l = (p, q) ∈ ll, q �= φV (v) ∧ p �= φV (u)}. We also define
RPE =

⋃
e∈E RPEe.

Uniqueness of Routing PE A routing PE can be used to route
only one value.

No Computation on Routing PE No computations can be
performed on a routing PE.

Shared Resource Constraint Most CGRAs have row-wise
constraints, that arise from the fact that the rows share expensive
resources, e.g., multipliers, memory buses etc. For example, there
can be only two multiply operations in each row. To specify such
constraints, we define an attribute “type” to each vertex of the kernel
graph K and the number of shared resources, type t, within a row in
C as St. Thus, if we define that V t

i = {v|∃j, φV (v) = pij∧v.type =
t}, then ∀i, |V t

i | ≤ St.

Utilized CGRA Rows We define UR as the set of CGRA rows
that are utilized in mapping the application K onto the CGRA C.
Thus UR = {Pi|∃j, pij ∈ Range(φV ) ∨ pij ∈ RPE}.

III. PROBLEM FORMULATION

Although the previously considered objective for the problem has
been to minimize the number of PEs used, however in practice,
owing to the severe restrictions of the shared resource constraints,
utilizing less number of rows is the most useful objective function.
Utilizing lesser number of rows is directly translated into increased
opportunities for novel power and performance optimization
techniques. For example, to reduce the power consumption, a whole
row of unused PEs may be power gated. In addition it might be
possible to cleanly execute another application on the remaining
rows to improve throughput. Another goal in the mapping process
is minimizing the total connection length or the length of longest
connection. In order to achieve this goal, our two approaches try to
minimize the number of routing PE. Therefore, we formulate our
problem as follows:

Given a kernel DAG K = (V, E), and a CGRA C = (P, L), find
a mapping φ(K), with the objective of min|UR| or min|RPE|,
under i) path existence, ii) simple path, iii) uniqueness of routing
PE, iv) no computation on routing PE, and v) shared resource
constraints.

IV. RELATED WORK

The performance of CGRA critically hinges on the mapping
algorithm. For MorphoSys, a compiler framework [11] to analyze
SA-C programs, perform optimizations, and map the application was
proposed. XPP has mapping algorithm described in [4]. However,
their approach was evaluated only for simple loops. Another approach
is DRESC [8] for ADRES architecture template. They exploit loop
level parallelism by adopting modulo scheduling. This approach takes
very long time for mapping and mapping results shows low utilization
of PEs. In order to improve utilization, similar approach [9] using
affinity graph was proposed.

However, all the previous application mapping approaches assume
a very simple model of the CGRA, and do not model the complexities
in the CGRA designs like row constraints, shared resources, and
memory interfaces, and irregular interconnections.

[7] proposes a spatial mapping approach, which considers memory
interface sharing of rows The work closest to ours is [1], in which
authors consider both shared multipliers and memory interface, and
propose a spatial mapping technique . However, their approach often
fails to find the mappings due to their simplistic model for the routing
PEs. For example, their concept of channel PE is similar to the routing
PE but it is added only for connecting two column-wisely unreachable
PEs. Thus channel PE is not helpful for removing the diagonal edges
or mapping node with more degree than the degree of PE. In addition,
they can handle very restricted form of the applications. They only
consider planar graphs and kernels which do not have loop-carried
dependencies as their input applications. Since the input is limited to
only simple binary trees and they do not use a PE only for a routing,
their technique is not able to map non-planar DAGs onto CGRA. We
compare our approach against [1] which is described above, and refer
to their algorithm as AHN in this paper.

V. ILP FORMULATION

Application mapping onto a CGRA has been proven to be NP-
complete [3], even in the special case when the application is a
complete binary tree and the CGRA is a two dimensional grid with
just the neighboring connections. Therefore, we formulate an Integer
Linear Programming (ILP) model to obtain the optimal application
mapping. Although this approach is applicable only to the moderate-
sized CGRA due to high time complexity, it can be used as an upper
bound to verify the performance of our heuristic approach.
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|V|=4, |E|=4, M=2, N=3, |Re|=M*N - |V|=2,      
v113=1, v223=1, v322=1, v421=1, …
r1113=1, r1222=1, r2113=1, r2213=1, …
q1113=0, q1212=1, q2113=0, q2213=0, q3123=0,…

(d) Variables in ILP
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3 2

4 1
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88
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1 81
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4 1
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4

(a) Kernel DAG K (b) K’ (c) Mapping Result

1

Fig. 1. Example of ILP formulation

When an edge e is mapped to a subset of interconnection links
ll, such that |ll| > 1, it uses routing PEs. To accommodate the
routing PEs, we add extra routing vertices on each edge of K.
Since the exact number of routing PEs required for an edge e ∈ E
cannot be known until after the mapping is complete, we insert the
maximum possible number of routing vertices. The upper bound
on the number of routing PEs is |P − V |. Therefore we transform
K → K′ = (V ′, E′) by inserting |P − V | vertices on each edge
e ∈ E. Figure 1 shows the transformation of adding the candidates
of routing vertex (dark vertices in Figure 1 (b)) on every edge in
K. Let Re be the set of the inserted black vertices onto e ∈ E, and
R as R =

⋃
∀e∈E Re. The problem now translates into mapping

K′ to C. Unlike normal vertices v ∈ V , the candidates of routing
vertices, r ∈ R, can be mapped to the same PE p ∈ P of the CGRA,
including the PE to which a normal vertex v ∈ V is mapped. Now
we define our ILP, on the transformed DAG K’.

Boolean Decision Variables
• vikl is 1 if ith vertex vi ∈ V is mapped onto pkl ∈ P .
• rijkl is 1 if jth candidate of routing vertex rj ∈ Rei for ei ∈ E

is mapped onto pkl ∈ P .
• qijkl is 1 if jth routing vertex rj ∈ Rei is mapped onto pkl ∈

P −Range(φV ), which means q corresponds to using an actual
routing PE.

In Figure 1 (d), r1113 is 1 because the first r for edge e1 is placed
on p13, and q1212 becomes a routing PE because the second r for
edge e1 is placed on p12 where there are no operation v.

Objective Function The objective function is to minimize |UR|
and minimize the number of routing PE under min|UR| when we
map K onto C. In order to satisfy both of them, we use weight
functions, wUR(k), wR. M and N are the numbers of rows and
columns respectively.

Minimize

(

|V |∑

i

M∑

k

N∑

l

wUR(k) ·vikl +

|E|∑

i

|Re|∑

j

M∑

k

N∑

l

(wUR(k)+wR) ·qijkl)

(1)
where if |UR|lbound is lower bound of |UR| in the CGRA, ∀k ≤

|UR|lbound, wUR(k) = 0, wR = 1, and ∀k′ > |UR|lbound, (|P | −
|V |) · wR < wUR(|UR|lbound), and N · wUR(k′) < wUR(k′ + 1).
How to get |UR|lbound will be explained in the next section.

Constraints
For 1 ≤ i ≤ |V |, 1 ≤ l ≤ |P | − |V |, 1 ≤ k ≤ M , 1 ≤ l ≤ N ,

∀i,
M∑

k

N∑

l

vikl ≤ 1 (2)

∀i, j,
M∑

k

N∑

l

rijkl = 1 (3)

∀k, l,

|V |∑

i

vikl +

|E|∑

i

|Re|∑

j

qijkl ≤ 1 (4)

∀k,

|V |∑

i

N∑

l

vt
ikl ≤ St (5)

∀e = (p, r1) ∈ E′

M∑

k1

N∑

l1

M∑

k2

N∑

l2

Zk1l1k2l2 · vpk1l1 · ri1k2l2 = 1 (6)

∀e(rj , r(j+1)) ∈ E′, 1 ≤ j ≤ |Re| − 1

M∑

k1

N∑

l1

M∑

k2

N∑

l2

Zk1l1k2l2 · rijk1l1 · ri(j+1)k2l2 = 1 (7)

∀e(r|Re|, q) ∈ E′

M∑

k1

N∑

l1

M∑

k2

N∑

l2

Zk1l1k2l2 · ri|Re|k1l1 · vqk2l2 = 1 (8)

• Constraint 2 represents that each v ∈ V is mapped onto exactly
one PE p ∈ P .

• Constraint 3 represents that each r ∈ R is mapped onto exactly
one PE p ∈ P .

• Constraint 4 represents that each pkl ∈ P can have only one
operation, v or q.

• In constraint 5, vt
ikl is an element of set V t

k . Constraint 5
represents that Each kth row of C can have at most St number
of type t operations

• Constraint 6-8 construct the interconnection links between pkl ∈
P . We use an adjacent matrix table Z which contains all the
information about the connections between pkl. Zk1l1k2l2 is
1 if pk1l1 is directly connected to pk2l2 or if k1 = k2 and
l1 = l2. Using Z, we represent all the possible connections
when all v, r ∈ V ′ are mapped onto pkl ∈ P using these three
constraints.

Note that Equation 6- 8 are not linear. They contain products of
boolean decision variables. Let a and b be boolean variables. The
term a · b can be linearized by using an additional boolean variable
t, and the following constraint :

t ≥ a + b − 1, t ≤ (a + b)/2

VI. OUR APPROACH : SPLIT-PUSH KERNEL MAPPING (SPKM)

ILP approach can obtain the optimal solution of the application
mapping problem. However, it is not applicable to map a kernel onto
the large scale CGRA due to the exponential time complexity. Thus,
we suggest a heuristic approach, Split-Push Kernel Mapping (SPKM),
to solve this problem in feasible time. SPKM is based on the split
& push algorithm [2] that is used in graph drawing area. Figure 2
shows an example of mapping 4-operation kernel K graph onto a
mesh CGRA C.

(a) (b) (c)

1 2

1

2

1 2 1 2

1

2

1

2

Fig. 2. Split & Push Approach

9B-1

778



4

(a) (b) (c) (d)

1 2 1 2 1 2 3 1 2 3

1

2

Fig. 3. Formation of fork

The algorithm starts with a degenerate drawing where all the
nodes in a graph are located at the same coordinate (1,1), as shown
in Figure 2 (a). In the first step, we locate each v ∈ K using cuts. A
cut is a plane orthogonal to one of the axis. It is shown by a dotted
line in Figure 2. The cut splits all v ∈ K into two groups. All v in
one of the groups are pushed to new coordinate. Figure 2 (b) shows
the result of split & push along the dotted line. This split & push is
repeated until every v has distinct coordinate like the drawing shown
in Figure 2 (c).

The crucial step in the split & push approach is finding a suitable
cut. Consider the application of split & push applied to the same K
in Figure 3. The final graph requires much more PEs than the solution
in Figure 2. This is because v3 is separated from other nodes in the
first stage of split & push algorithm. This separation produces a fork.
A fork is adjacent edges cut by a split. Once there is a fork and the
fork consists of n adjacent edges, n− 1 bends (or dummy nodes, or
routing vertices(PEs)) are required as n−1 edges in the fork become
slant, which is not allowed in mesh graph drawing.

Forks can be avoided by finding a matching-cut. A matching-cut
is defined as a set of edges which have no common node and whose
removal makes the graph disconnected. The problem of finding a
matching-cut in a graph is again an NP-complete problem [10].

In order to minimize the number of utilized rows in the mapping,
we propose a three stage heuristic based on the split & push approach.
Following three subsections explain SPKM by mapping the kernel
graph K = (V, E), shown in Figure 4 (a), onto a 4×4 mesh CGRA
C = (P, L), shown in Figure 4 (b).

We assume that in C, all p ∈ P are connected to their second,
as well as their first horizontal or vertical neighbors. Thus a PE is
connected to at most 6 other PEs. We also assume that in a row, at
most 2 load operations and one store operation can be scheduled. In
K of Figure 4 (a), we have 10 operations including 3 loads (gray
nodes) and 1 store (dark grey node).

A. Column-wise Scattering

This step distributes vertices v in V to minimum number of UR in
the same column considering minimum number of forks and shared
operations like multiplication, load and store. First we compute
the lower bound on |UR| in the CGRA, as in |UR|lbound =
max(�|V |/|N |, �V load/Sload, �V store/Sstore, �V mul/Smul).
In our example, |UR|lbound = max(�10/4, �3/2, �1/1) = 3.
We try to map K onto three rows of C. We distribute all v in K to
pk1, 1 ≤ k ≤ |UR|lbound. All v located at pk1 are separated into
two sets and the nodes in one of the sets are pushed into p(k+1)1.
For example, all the nodes in p11 of Figure 4 (a) are separated into
two sets of nodes {v4, v8, v10} and {v1, v2, v3, v5, v6, v7, v9}. The
nodes in the set {v1, v2, v3, v5, v6, v7, v9} are pushed into p21 like
in the Figure 4 (c). Now the nodes {v1, v2, v3, v5, v6, v7, v9} are
separated into two sets {v1, v3, v9} and {v2, v5, v6, v7} again, and
the nodes {v2, v5, v6, v7} are pushed into p31. The split & push is
repeated until there are no empty pk1 in the |UR|lbound. In each
repetition, we try to find matching cut to minimize the number of
routing PEs.

(a) (b) (c)

(d)

(e) (f) (g)

Fig. 4. Mapping process example

ILP Solution of Matching Cut
Since matching cut problem is NP-complete, we solve it by formu-
lating as an ILP. In the kth repetition, the graph Kk consisting of all
the nodes in pk1 are split into two disconnected graphs, and one of
them, Kk+1 is pushed into p(k+1)1. K1 is the same as K. We find
a matching cut in Kk satisfying following ILP.

Objective Function

Minimize|
∑

v∈V k

vik1 − ξ| (9)

where vik1 is 1 if the nodes are not pushed into p(k+1)1, or 0
otherwise, and ξ is a constant restricting the number of nodes left
in pk1. As evenly distributing all nodes in Kk to all pk1 within
|UR|lbound gives better chance for getting an optimal mapping
by providing space in each row to add routing vertex, we set
ξ = �(N + |UR|lbound − 1)/|UR|lbound�.

Constraints

• The first constraint restricts the number of nodes left in pk1 due
to shared resources like memory buses or heavy computation
resources. For example, the node v1 in Figure 4 (a) has one
load primitive operation inside. So s111 is 1. In this CGRA, pkl

within one row shares two read buses, Sload is 2.
• To minimize the forks, we have another constraint for all vm

i

with multiple edges in Kk.

∑

vi∈V k

vt
ik1 ≤ St (10)

∑

vj∈adj(vm
i )

(vjk1 + vm
ik1) ≤ ζ1 or

∑

vj∈adj(vm
i )

(vjk1 + vm
ik1) ≥ 2 · deg(vm

ik1) − ζ2 (11)

where adj(vm
i ) is the set of nodes adjacent to vm

i and deg(vm
i )

is the degree of vm
i . ζ1 and ζ2 are used for determining how

many forks are allowed.
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Equation 11 is not linear due to “or”. In order to linearize this,
we change this equation to Equation 12 and 13 using new constant
η which is big enough.

∑

vj∈adj(vm
i )

(vjk1 + vm
ik1) ≤ ζ1, +η · vm

ik1 (12)

∑

vj∈adj(vm
i

)

(vjk1 + vm
ik1) ≥ 2 ·deg(vik1m)− ζ2−η · (1− vm

ik1) (13)

When a muti-degree-node vm
ik1, black node in Figure 5 and its

adjacent nodes in Kk are determined to be pushed into p(k+1)1,
there are four ways to avoid generating forks. Figure 5 (a) and
Figure 5 (b) show two possible cases where vm

ik1 is not pushed into
p(k+1)1 and deg(vm

ik1) or deg(vm
ik1)-1 adjacent nodes are not pushed

either. Figure 5 (c) and Figure 5 (d) show the other cases where vm
ik1

is pushed into p(k+1)1 and only 0 or 1 adjacent node is not pushed.
Thus, if we want to allow no forks, we set ζ1 = ζ2 = 1. If there is
no matching cut in the kth repetition of split & push, we increase ζ1

and ζ2, allowing more forks until finding feasible solution in ILP.
The leftmost kernel DAG K in Figure 4 (d) shows the result of

column-wise scattering. Because |UR|lbound is three, it attempts a
mapping within three rows. Fortunately, it has a valid mapping in
three rows within C in the end, instead it allows two forks.

(a) (b) (c) (d)

Fig. 5. Fork minimization algorithm

B. Routing PE Insertion

At avery step of column-wise scattering above, routing vertices
should be inserted on each edge of each fork generated in the first
stage of SPKM to route data via indirectly connected PE. In this step,
we generate needed routing vertices and connect them with existing
vertices. As (v7, v8) is an edge of the first fork in Figure 4 (d), we
need a routing PEs (black nodes) on it. A routing PE is also inserted
into the edge (v3, v5) of the second fork. Sometimes there are no
available PEs after routing PEs are inserted into K. For instance, the
right K with routing PEs in Figure 4 (d) has five nodes at p31 due
to the insertion of a routing PE. Because we have four PEs in a row,
this is an invalid mapping. In this case, we go back to column-wise
scattering with increasing |UR|lbound by one. Figure 4 (f) shows the
result of column-wise scattering with |UR|lbound of four. We also
need two routing PEs. One is on the edge (v7, v8) and the other is on
(v6, v7). After the insertion of routing PEs, it is still a valid result.

C. Row-wise Scattering

In this last stage, we distribute all the nodes at pk1 to the nodes
pkl where l ∈ [1, n]. To avoid diagonal edge and edge crossing,
all the nodes that have connections between different rows should
be placed in the same column. For example, the nodes {v3, v5, v6}
in Figure 4 (d) are located in different rows but they have connections
to each other. If the node v6 is located in the fourth column while
other two nodes v3 and v5 are located in the third column, we need
a routing PE between v3 and v6.

ILP Solution of row-wise scattering
We solve row-wise scattering by formulating as an ILP. Before

explaining the ILP, we define expended loop kernel DAG,
Ke = (V e, Ee) in which it includes added routing vertices and
relevant edges. Figure 4 (e) and the middle of Figure 4 (d) show the
example of Ke.

Objective Function

Minimze

|V e|∑

i

C∑

c

c ∗ vic (14)

where vic is 1 if ith vertex vi ∈ V e is mapped on pc at the row fixed
in the column-wise scattering. This objective can make unexecuted
column and we can apply the power gating technique to the column.

Constraints

∀i ∈ V e,
C∑

c=1

vic = 1 (15)

∑

∀vi∈V e
k

vic ≤ 1 (16)

where V e
k is a subset of V e existing on the kth row.

∀l ⊂ 2Ee

,
∑

e∈l

C∑

c=1

|c ∗ viec − c ∗ vjec| = 0 (17)

where l is the longest path connected with only inter-row links.

C∑

ci=1

C∑

cj=1

Zcicj ∗ (xici ∗ xjci) ≤ 1 (18)

where Z represents predefined adjacent matrix table that has 1 if ith
column and jth column is connected, otherwise 0.

• Each v ∈ V e is mapped onto exactly one PE p ∈ P , Equa-
tion 15.

• Each pkl ∈ P can have only one operation, Equation 16.
• all v ∈ l are mapped onto same column, Equation 17.
• we represent all the possible connections when all v, r ∈ V e

are mapped onto pkl ∈ P using Equation 18.

As a result of row-wise scattering, Figure 4 (g) shows the final
mapping of the application shown in Figure 4 (a). SPKM is able
to take complex PE interconnections, shared resources, and routing
resources into account due to the following reasons. First, SPKM
can take care of complex PE interconnections because we model
the interconnection topology of CGRA with graph edges and use
graph-drawing algorithm to map applications. Second, thanks to the
insertion of routing PEs described in Section VI-B and our solution
for matching cut problem, SPKM is able to consider and minimize
routing PEs during mapping process. Finally, the constraints in the
column-wise scattering step enable SPKM to take care of the shared
resources.

VII. EXPERIMENTS

A. Experimental Setup

We test SPKM on a CGRA called RSPA [6]. RSPA is a 16 PEs in
which each PE is connected to 4 neighboring PEs, and also the 4 next
neighboring PEs (PE interconnection). In addition, it has 2 shared
multipliers in each row (shared resource), each row can perform
two loads and one store (also shared resource), and it allows PEs
to be used for routing (routing PE). However, when a PE is used for
routing, it cannot perform any operation. It should be noted here that
we modify RSPA to have 6x4 structure for the fair comparison with
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Fig. 6. Number of applications mapped on CGRA validly

the previous approach AHN, which is briefly described in Section 4.
More details of the technique can be found in [1].

For quantitative estimation of the effectiveness of SPKM, we
have devised a random kernel DAG generator. Our DAG generator
randomly generated 100 DAGs are for each value of node cardinality
from 5 to 16 nodes (1200 in total). AHN can take DAGs as inputs
since the features of baseline architecture RSPA allow AHN to map
DAGs also. Each DAG is generated according to following steps. First
the number of nodes is set. For each node, the operations possible in
each PE of RSPA are randomly assigned. At least one load operation
should be assigned to leaf vertices and one store operation to root
vertices respectably. Finally edges are inserted, satisfying that each
node should not have more than two incoming edges. In addition, we
also compare SPKM and AHN on a collection of benchmarks from
Livermore loops, MultiMedia and DSPStone. All experiments are
done on Pentium4 3GHz machines with 1GB RAM. We use glpk4.8
for solving our ILP formulations.

B. SPKM can map more applications

Figure 6 plots how many applications out of 100 applications can
be mapped by the three techniques for each value of node cardinality.
The X-axis represents the number of nodes that each input application
contains, and the Y-axis shows the number of valid mappings among
100 applications. ILP takes a lot of time for large input graphs. We
stop the ILP solver after 24 hours. ILP cannot find a solution for
graphs with 13 or more nodes, therefore, there are no ILP bars from
13 nodes in Figure 6. The main observation from this graph is that
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Fig. 7. Percentage of better mapping for SPKM and AHN
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Fig. 8. Percentage of better mapping for SPKM and ILP

SPKM can on average map 4.5X more applications than AHN. It is
interesting to note that the graph shows that the map-ability of SPKM
over AHN increases with the increase in the number of nodes. This
implies the effectiveness of our technique for the large applications.

C. SPKM can generate better mappings

In addition to being able to map more application than AHN,
SPKM is also able to generate better mappings for the applications,
in terms of the number of rows. Figure 7 plots how many applications
out of 100, better, similar, or worse mapping is generated by SPKM
and AHN. The white bars represent the number of applications in
which SPKM and AHN maps with the same number of rows. For
example, for the 100 applications which have 12 nodes, in 82 cases,
SPKM can generate mappings which have fewer rows than AHN;
AHN generated a mapping with fewer rows in 1 case, and in the rest
17 cases, SPKM and AHN generate mappings with similar number
of rows. On average, SPKM can generate better mappings than AHN
for 62% of the applications, and the similar or better mappings for
99% of the applications.

Figure 8 plots in how many applications out of 100 ILP generates
better mapping than SPKM. Note that this graph has data only till
12 nodes since ILP cannot map large applications in reasonable time.
Also note that there are only two kinds of bars. This is because SPKM
can never generate better mapping than ILP. On an average, SPKM
is able to generate optimal mapping in 72% of the applications.
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D. SPKM has no significant mapping-time overhead

SPKM generates effective mapping described above with minimal
mapping time overhead. Figure 9 shows the average mapping time
for all the three algorithms. Note that the Y-axis is a logarithmic
scale. On average, SPKM has only 5% overhead in mapping time as
compared to AHN, and both are much less than the time taken by
ILP.

E. Real Benchmarks

To demonstrate the effectiveness and usefulness of SPKM, we
compare the number of rows and the mapping time of SPKM and
AHN for a set of benchmarks collected from Livermore loops,
multimedia, and DSPStone. Since these applications are large, we
try to map them onto a 6x4 RSPA.

Figure 10 shows the number of rows required for the mapping
generated by SPKM and AHN. ILP is unable to find a mapping for
any of these benchmarks in reasonable time. The first observation
from this graph is that AHN is unable to map five of the applications,
demonstrating that SPKM can map more applications than AHN.
Two of them, compress and GSR, are loops with loop carried data
dependency. Thus, SPKN generate mapping results of them while
AHN cannot manage these loops. The second observation is that
the mappings generated by SPKM uses less number of rows than
AHN. SPKM uses fewer rows in 4 benchmarks out of 7, that can be
mapped by AHN, demonstrating the goodness of mapping. For the
benchmarks that AHN could map, SPKM uses just 2% more time
than AHN.

VIII. SUMMARY

While coarse-grained reconfigurable architectures (CGRAs) is
emerging as attractive design platforms due to their efficiency as well
as flexibility, efficient mapping of applications onto them still remains
a challenge. Existing CGRA compilers assume a very simplistic ar-
chitecture of the CGRA, due to which they are unable and ineffective.
In this paper, we propose a graph drawing based based approach,
SPKM, which takes in to account several architectural details of
CGRA and is therefore able to effectively and efficiently map
applications onto CGRAs. Our experiment demonstrate that SPKM
can map 4.5X more synthetic applications than previous approach,
and generates better results in 62% of cases, with minimal (5%)

mapping-time penalty. Results on benchmarks from Livermore loops,
MultiMedia and DSPStone also convey the same. Our future work is
to extend the SPKM approach to include dynamic reconfigurability.
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