
High Performance Current-Mode Differential Logic

Ling Zhang1, Jianhua Liu2, Haikun Zhu3, Chung-Kuan Cheng1, Masanori Hashimoto4

1Dept. Computer Science & Engineering, Univ. of California, San Diego, La Jolla, CA 92093
2Altera Corp., San Jose, CA 95134, 3Qualcomm Inc., San Diego, CA 92121

4Dept. Information Systems Engineering, Osaka University, Osaka, 565-0871 Japan
1,2,3{lizhang,hazhu,jhliu,ckcheng}@cs.ucsd.edu, 4hasimoto@ist.osaka-u.ac.jp

Abstract— This paper presents a new logic style, named Current-Mode
Differential logic (CMDL), that achieves both high operating speed and
low power consumption. Inspired by the low-voltage swing (LVS) logic,
CMDL uses a shunt resistor at the differential output to obtain constant low
swing signal without the need to reset low. Furthermore, conditional shunt
transistors are used for the internal nodes to prevent high-voltage swing,
thus entirely eliminate the power-hungry clocked reset network in LVS
circuits. We show that the CMDL is suitable for high-end microprocessor
integer core by providing three datapath modules implemented in CMDL.
Our simulation results indicate that, operating at comparable speed with
LVS logic, CMDL circuits can achieve up to 50% reduction of delay-power
product compared to CMOS logic and LVS logic. In addition, CMDL
reduces the power consumption of LVS by up to 40%.

I. INTRODUCTION

With the continuous scaling of semiconductor technology, high
performance circuit design has become increasingly difficult. As clock
frequency increases, clock skew, pipeline overhead, large wire delay
are eating a significant portion of the cycle time, leaving very stringent
room for logic operations. This scenario is especially true for designing
high-end microprocessor integer cores, which are required to operate at
twice of the system clock rate [1], [2]. Moreover, high clock frequency
imposes great challenges on power budgeting, as power increases
linearly with the clock rate.

Various differential logic styles were proposed in the last 20 years
aiming at achieving low latency, most of which fell into the category
of voltage-mode logic style. One well-known approach is the Cascode
Voltage Switch Logic (CVSL) developed by [7]. It is composed of
a NMOS logic tree, which has complemental inputs on transistor
gates, and a load circuit to provide fast pull-up and output restoration.
Robustness and power improvement were made by [9]–[11].

Another approach is the Complemntary Pass-Transistor Logic (CPL)
described in [12], which has both complementary gate inputs and
complementary drain inputs at the same time. Optional PMOS latch
could be added to reduce power consumption.

A more recent example is the Low-Voltage Swing (LVS) logic used
in Intel Pentium 4 processor. Instead of taking full swings along the
logic path, LVS logic takes advantage of differential small signals
as propagate through a large Diffusion Connected Network (DCN).
The low-swing output voltage is then restored to full-voltage swing
by a sense-amplifier. Similarly to CVSL, LVS logic requires a reset
operation to clean the charges of all the internal nodes of the DCN
before each cycle of evaluation. Without a reset network, the DCN
output may reach full-voltage swing if the input values keep unchanged
for a few clock cycles. This full-swing output will in turn destroy the
evaluation in the following cycle, necessitating the reset logic. Fig. 2
shows a LVS circuit block with reset logic. The four NMOS transistors
in the middle are functional DCN. The rest nine NMOS transistors
controlled by the clock form the reset logic. The overhead associated
with the reset logic is significant: 1) The number of transistors doubles;
2) The load on clock increases; 3) One extra stage of logic (Thru-gate)
is added to DCN; 4) A reset phase is inserted to each clock cycle. All
the above overhead greatly raises the power consumption of LVS logic
style.

Clock

Rs CDL

SA

S0

Xs

S1

S1’

Fig. 1. CMDL circuit block diagram.

Fig. 2. LVS circuit block diagram [2].

Allam and Elmasry [13] proposed a current-mode logic (DyCML)
using a dynamic logic style. They used current source for two differ-
ential paths, and the output logic is based on the current difference
between the two branches. The dynamic logic has pre-charge and
evaluation stages. The cross-coupled PMOSes pull-up the outputs to be
full-swing signal. To reduce the power consumption, they introduced a
virtual ground to eliminate the static current.

In this paper we propose a new logic style, Current-Mode Differential
Logic (CMDL). As illustrated in Fig. 1, CMDL uses a shunt resistor
to connect the two rails of each differential output. Therefore, there
is always current flowing through the shunt resistor, in one way or
another, giving rise to the name current mode. CMDL uses low-voltage
swing at the differential output, which enhances the operation speed
and saves power as well. In addition, unlike LVS, CMDL eliminates the
need of clocked reset networks and has no reset stage. Our simulation
results indicate that the CMDL can achieve better delay-power product
compared to LVS and CMOS standard cell. Furthermore, CMDL has
high noise immunity because the noise is reduced according to the ratio
of shunt resistor value and equivalent loop resistance value.

The rest of the paper is organized as follows. We first discuss the
basic concepts of CMDL in Section II. The generalized Elmore delay is
presented in Section III. Section IV shows three example core designs
using CMDL, namely, a 32-bit alignment MUX, a 16-bit carry-skip
adder, and a 8-bit shifter/rotator. Experimental results are listed and
discussed in Section V. Section VI concludes the paper.

II. BASIC CONCEPTS OF CMDL

In this section, we present the motivation behind CMDL first, and
explain the structure and advantages. We show some CMDL examples
at the end.

8C-4

720978-1-4244-1922-7/08/$25.00 ©2008 IEEE

r1 r2r1

c1 c1

(a) (b)

11 11

Fig. 3. Single branch RC trees: (a) without shunt resistor; (b) with shunt
resistor.

Fig. 4. Noise immunity of CMDL

A. Motivation

The CMDL distinguishes itself from other previous work by using a
shunt resistor at the end of output. There are several reasons for using
the shunt: 1) To maintain the output low swing, 2) To improve the
circuit response time, 3) To reduce the noise effect.

For voltage-mode logic to maintain a low-swing output, the reset or
pre-charge network is most commonly adopted. It not only increases
the activity of the DCN, but also adds significant load to the clock tree,
which is a full-swing net switching in every cycle. In contrast, current
mode logic inherently enables low swing operation without extra
overhead. To demonstrate the concept, Fig. 3 shows two single branch
RC trees. Without shunt resistor (Fig. 3(a)), node 1 will eventually reach
supply voltage in an enough long period. However, if a shunt resistor
is added (Fig. 3(b)), the output voltage at node 1 will be capped at low
voltage determined by the ration of r2 and r1, and a constant current
is flowing through r1 and r2.

In addition to enabling low-voltage swing, adding shunt resistors
also improves the response time of the circuit. In this example, the
time constant of the circuit in Fig. 3(a) is simply r1c1, while the time
constant of the circuit in Fig. 3(b) is r2

r1+r2
r1c1.

Fig. 4 illustrates the concept of how current-mode logic reduces
the noise effect. When the DCN transistors of a path are switched to
ON, the input-output propagation in steady state can be modeled as
a resistor loop. Assume the total resistance of the loop is rtotal, and
the shunt resistance is rs, the nominal value of differential output is
Vout = rs

rtotal
Vin. If an internal node has a noise, which makes the

voltage change from V1 to (V1+ΔV), the change of the current on this
loop will be ΔI = ΔV

rtotal
. As a result, the change of output voltage

will be ΔVout = rs · ΔI = rs
rtotal

· ΔV , which means the noise is
reduced.

B. Structure and advantages of CMDL

Fig. 5 gives a list of one to one mapping between basic CMDL
and LVS logic components. The first stage of LVS logic is the thru-
gate controlled by clock, which serves as an interface between static
input data and clock-gated signals, while the first stage of CMDL
implements functionality. Middle stage of LVS logic contains two
clock controlled reset transistors, while the CMDL only uses one shunt
transistor controlled by the complement of control signal. The last stage
of LVS logic consists three transistors, while CMD logic only uses a
resistor to convert the current-mode signal back to the voltage-mode
signal, which can be restored by the sense-amplifier.

Similar to LVS logic, the CMDL has some design constraints on the
DCN: 1) The DCN can have multiple inputs and multiple outputs; 2)
Any path from the input to output has at most six stages of logic; 3)

S0

Clock’

a0

a0’

b0

b0’

a0

a0’

b0

b0’

Si

bi

bi’

ai

ai’

Clock

Si

bi

bi’

ai

ai’

Si’

o

o’
Clock

o

o’

Rs

CMDF CMDG CMDL

LVSF LVSG LVSL

First stage Last stageMiddle stages

LVS:

CMD:

Fig. 5. Basic LVS and CMDL gates.

The differential signal generated at each output must be greater than
0.1V at the end of each evaluation stage (VCC=1.0V).

Since the CMDL does not have reset logic, low voltage swing on
each internal node has to be maintained by shunt resistor/transistor.
Hence two more design rules are required: 1) For any input stimulus,
the differential inputs must be connected through a shunt resistor or a
closed transistor; 2) For each pair of differential output, there shall be
no other shunt resistors or closed transistors on the active path. The
first rule guarantees that there will not be full-voltage swing on any
internal node, while the second rule enables the 0.1V differential signal
at the outputs.

The first advantage of CMDL is less number of transistors. In the
worst case, one third of the total transistors are shunt transistors,
while in LVS logic the reset network could account for half the total
transistors. The second advantage, compared to LVS logic, is more
headroom of the logic depth. The first stage (i.e. Thru-gate stage) in
LVS logic serves to control the switching between evaluation phase
and reset phase, and this stage is removed in CMDL. Thus CMDL
can achieve one more logic depth than LVS logic. Thirdly and very
importantly, CMDL achieves low power consumption because the
clocked reset network is no longer needed. Note the reset network in
LVS logic has to toggle as a whole in every clock cycle, regardless of
the input switching patterns, which is clearly power inefficient. On the
contrary, the switching activity in CMDL only depends on the toggle
rate of the inputs. The power consumption of CMDL is self-adjusted
according to the input toggle rate. Finally, as mentioned in Section II-
A, CMDL has the ability of reducing noise effect and hence enhances
the circuit reliability.

C. CMDL examples

Fig. 6 presents the block diagrams and circuit schematic of 2-to-1
multiplexer, NAND, NOR and XOR gates implemented in CMDL. In
each instance, the two differential path are controlled by complement
signals, which guarantees that one and only one path is active at one
time.

Fig. 7 gives the schematic and block diagram of a 4-to-1 MUX
in CMDL logic, which consists of two CMDL stages. Two types of
CMDL gates are used in the design. The CMDF gates are used in
the first stage, while the CMDG gates are used in the second stage.
The conditional shunt transistors in the CMDG gates are necessary
to maintain low-voltage swing at the internal nodes. For example,
when S1 is 0, the differential node pair b0/b′0 is disconnected from
the differential output out/out′. The shunt transistor controlled by S′

1

turns on to keep the source region of the series transistors in low-swing
state. Finally, at the output of the 4:1 MUX, a shunt resistor is added
to maintain the low-voltage swing on the active path.

Fig. 8 shows a 2-bit ripple carry adder using CMDL. The 2-bit adder
contains two full adders in series, whose primary inputs are carry-in,
carry-propagation signal Pi, carry-generation signal Gi and carry kill
signal Ki. Since Pi, Gi, Ki can not be zero simultaneously, there is

8C-4

721

a0

a0’

a1

a1’

S

S’

b

b’

a0

a0’

a1

a1’

S

S’

b

b’
CMDF

a0

a0’

b

b’

S

CMDL

CMDF
a1

a1’

S’

CMDF
a0

a0’

b

b’

S

CMDL

CMDF
a1

a1’

S’

(a)

out

out’

a

a’

1

0’

b

b’

a

a’

1

0’

b

b’

CMDF
a

a’

out

out’

b

CMDL

CMDF
1

0

b’

CMDF
a

a’

out

out’

b

CMDL

CMDF
1

0

b’

(b)

a’

a

0

1’

b

b’

out

out’

a’

a

0

1’

b

b’

out

out’

CMDF
a’

a

out

out’

b’

CMDL

CMDF
0

1

b

CMDF
a’

a

out

out’

b’

CMDL

CMDF
0

1

b

(c)
b

b’

out

out’

a’

a

a

a’

b

b’

out

out’

a’

a

a

a’

CMDF
a’

a

out

out’

b

CMDL

CMDF
a

a’

b’

CMDF
a’

a

out

out’

b

CMDL

CMDF
a

a’

b’

(d)

Fig. 6. small examples of CMDL: (a) 2 to 1 MUX (b) 2-input NAND gate
(c) 2-input NOR gate (d) 2-input XOR gate

a0

a0’

a1

a1’

b0

S0 S1

S0’

a2

a2’

a3

a3’

S0

S0’

S1’

S1

S1’

b0’

b1

b1’

out

out’

a0

a0’

a1

a1’

b0

S0 S1

S0’

a2

a2’

a3

a3’

S0

S0’

S1’

S1

S1’

b0’

b1

b1’

out

out’
S0’

CMDF
out

out’
CMDL

CMDF

CMDG
a0

a0’

a1

a1’

S0 S1

S0’

CMDF

CMDF

a2

a2’

a3

a3’

S0

CMDG

S1’

S0’

CMDF
out

out’
CMDL

CMDF

CMDG
a0

a0’

a1

a1’

S0 S1

S0’

CMDF

CMDF

a2

a2’

a3

a3’

S0

CMDG

S1’

Fig. 7. A 4 to 1 MUX in CMDL

always a current through the shunt resistor at Cout and C′
out. However,

the path for generating sum output is different from carry-out, since all
the sum output are driven by the carry-in signal. If every sum output
pair has a static resistor (i.e. the CMDL component), there will be
multiple shunt resistors along the path from carry-in to carry-out, which
violates our design rule. To address this issue, we use a controlled
shunt resistor (i.e. the CMDCL component) at each sum output. The
transistor in series with the resistor is controlled by the complement of
carry-propagation signal P ′

i , which enables the shunt only when the Pi

signal is zero, and that means the path starting from carry-in terminates
at Si and S′

i.

III. GENERALIZED ELMORE DELAY

In voltage mode logic, the time constant is calculated by the
conventional Elmore delay, which assumes that there is no DC path to
the ground. For the RC ladder circuit shown in Fig. 9, the time constant
for node i as predicted by the well-known Elmore delay formula [3]

G0

CMDF CMDL

CMDF

P0 P1

K0

CMDF

CMDF

K1

CMDF

CMDF

P0

CMDF

P0’

CMDF CMDCL

P1

CMDF

P1’

CMDF CMDCL

Cin

Cin’

Cin

Cin’

1
0

0
1

1
0

0
1

G1

S0

S0’

S1

S1’

Cout

Cout’

FA
Cin

Cin’

P P’ G K

Cout

Cout’

S S’

(a)

Cin

Cin’

Cout

P0 P1

Cin

Cin’

Cout

Cout’

1

0

G0

1

0

G0

1

0

G1

1

0

G1

0

1

K0

0

1

K0

0

1

K1

0

1

K1

P1

S1’

P1’

P1’

S1

P0

S0’

P0’

P0’

S0

P0

S0’

P0’

P0’

S0

S0’

P0’

P0’

S0

(b)

Fig. 8. A 2-bit ripple carry adder in CMDL

r1

c1

r2

c2

rk

ck

11 22 kk

Fig. 9. RC ladder without shunt resistors to ground.

r1

c1

r2

c2

rk

ck

11 22 kk
rk+1

Fig. 10. RC ladder with shunt resistors to ground.

is given by:

τi =
iX

j=1

rj

kX
l=j

cl (1)

which, however, is not applicable to the case with shunt resistors.
To calculate the time constant for current mode logic, we employ

the generalized first-order time constant as defined in the following
equation [4]:

τi =
1

Vi(∞) − Vi(0+)

Z ∞

0+
(Vi(∞) − Vi(t))dt (2)

Fig. 10 presents a RC ladder in current mode logic. For any pair of
nodes i and j, assuming i ≤ j, we define their common path resistance
and common shunt resistance as follows:

Rpath
i,j =

iX
t=1

rt (3)

Rshunt
i,j =

kX
t=j

rt+1 (4)

8C-4

722

Fig. 11. An 8-bit barrel shifter/rotator.

where k is the last node before shunt. For any node i, the time constant
as defined in equation (2) can be derived as

τi =

Pk
j=1(cjR

path
i,j Rshunt

i,j ΔVj)

ΔVi

Pk+1
j=1 rj

(5)

where ΔVi = Vi(∞) − Vi(0
+) is the initial voltage on node i.

IV. DESIGN EXAMPLES USING CMDL

In this section, we present three CMDL circuit designs that can be
used in the microprocessor integer cores. Following the LVS circuits
proposed in [2], the arithmetic/logic blocks implemented by CMDL
include a 32:1 alignment multiplexer, a 8-bit rotator/shifter and a 16-
bit carry-skip adder.

A. Alignment MUX

Alignment MUX is used to fetch data from L0-cache to integer core.
According the integer core of Intel Pentium 4 processor, we implement
32:1 alignment MUX by CMDL.

To build the 32:1 alignment MUX, we use the 4:1 MUX shown in
Section II-C as the building block (Fig. 7). We then build a 16:1 MUX
using five 4:1 MUXes, and the 32:1 MUX is in turn constructed by two
16:1 MUXes and one 2:1 MUX. Therefore, there are five levels of 2:1
MUX in total. The first level contains CMDF gates only, while CMDG
gates are used for level 2 to level 5. One shunt resistor is placed at the
primary output.

To analyze the functionality of the 32:1 MUX, we consider all the
paths from a differential input to the differential output, each path
consisting of five logic stages. For any combination of the select signals,
one of the 32 differential inputs is passed to the output, and all the other
differential inputs are killed by a shunt transistor. Therefore, this design
satisfies the CMDL design rules.

B. Rotator/Shifter

The 8-bit rotator/shifter adopts the barrel shifter structure proposed
in [5], as shown in Fig. 11. This structure can left rotate or shift the
operand by 0 to 7 bits. There are two kinds of basic cells in this shifter
network: SHF and RO/PA. The SHF cell can be considered as a 2:1
MUX, since the two control signals to SHF are always complementary.
The RO/PA cell has three operation modes, which are listed in Table I.

When the unit performs rotate or no-shift operation, each differential
input will drive one output. Thus, no shunt transistor is needed for
SHF cells. On the other hand, when the unit performs logic shift,
some outputs may be padded with constant zeros, and this shall always
happen in the RO/PA cells. Therefore, shunt transistors are necessary
in RO/PA cells. Fig. 12 shows the SHF and RO/PA cells implemented

CMDF
in1

in1’

out

out’

C1

CMDF
in2

in2’

C2

SHF
in1

in2

out

C1 C2

CMDF
in1

in1’

out

out’

C1

CMDG
in2

in2’

C2

CMDF
0

1

C1’

CMDG

C1’

RO/PA out

C1 C2

(a) (b)

in1

in2

CMDF
in1

in1’

out

out’

C1

CMDF
in2

in2’

C2

SHF
in1

in2

out

C1 C2

CMDF
in1

in1’

out

out’

C1

CMDG
in2

in2’

C2

CMDF
0

1

C1’

CMDG

C1’

RO/PA out

C1 C2

(a) (b)

in1

in2

Fig. 12. (a) SHF cell; and (b) RO/PA cell.

TABLE I
FUNCTION TABLE OF THE RO/PA CELL

Operation c1 c2 out
No shift 1 0 in1
Rotate 0 1 in2

Padding 0 0 0 0

Fig. 13. A 16-bit carry-skip adder [2].

CMDF
cin

cin’

cout

cout’

P(i:j)

CS
cin

P(i:j)

cout

Fig. 14. Carry-skip (CS) cell

in CMD logic. It can be observed that the SHF cell contains only one
logic stage, while the RO/PA cell either passes a differential input to
output in one logic stage, or produces a zero at the output through two
logic stages.

The longest path of the rotator/shifter goes through four levels of
SHF or RO/PA cells. There is no path longer than five logic stages.
Each differential input is either shifted to an output, or removed by the
CMDG gate within a RO/PA cell at some point. Thus the rotator/shifter
design satisfies the CMD design rules.

C. Carry-Skip Adder

Fig. 13 shows the topology of the 16-bit carry-skip adder. This
topology guarantees that any path from input to output consists of less
than six cells. There are two kinds of cells: full adder (FA) cell and
carry-skip (CS) cell. Similar to the 2-bit ripple carry adder mentioned
in Section II, the carry propagation signal Pi, carry generation signal
Gi, carry kill signal Ki, and carry-skip control signals P (i : j) are all
produced from outside. The CMDL FA and CS cells use these signals
directly as primary inputs. The function of the CS cell is to simply
pass the carry-in to the carry-out when the carry-skip control P (i : j)
is 1. The function of the FA cell is to generate the carry-out and sum
signals at each bit position. Due to the XOR operation, the sum bit
is always driven by the carry-in signal, while the carry-out is either
driven by the carry-in, or produced by the local voltage sources.

Fig. 14 illustrates the CS cells designed in CMDL, and the FA cell is
shown in Fig. 8. As explained in Section II, the shunt transistors are not
used in this design, and a CMDCL gate is placed at each sum output,
and transistor in CMDCL gate at Si is controlled by complement of
the signal Pi. It can be proved that if Pi is 0, P (i : j) is 0 for any
j. This guarantees that when a controlled shunt resistor is enabled, no
other shunt resistors will present on this path. For Carry15, because it

8C-4

723

TABLE II
PERFORMANCE COMPARISON OF CMOS, CMDL AND LVS CIRCUITS

32-bit MUX 8-bit Shifter 16-bit Adder
CMOS LVS CMDL CMOS LVS CMDL CMOS LVS CMDL

Cycle time(ps) 200 215 180 200 210 180 800 350 380
Delay(ps) 195.6 153.8 118.7 165.3 148.4 120.7 709.6 251.5 286.6

Norm. Delay 1.00 0.79 0.61 1.00 0.90 0.73 1.00 0.35 0.40
Avg/Peak power(mW) 0.38/5.69 0.45/3.63 0.38/3.10 0.36/2.81 0.48/3.23 0.41/2.34 0.26/2.37 0.53/6.29 0.32/2.70

Norm. Avg Power 1.00 1.18 1.00 1.00 1.33 1.14 1.00 2.04 1.23
Delay × Power(fJ) 74.33 69.21 45.11 59.51 71.23 49.49 184.50 133.30 91.71

Norm. Delay × Power 1.00 0.93 0.61 1.00 1.20 0.83 1.00 0.72 0.50
Delay2× Power(pJ×ps) 14.54 10.64 5.35 9.84 10.57 5.97 130.9 33.5 26.28
Norm. Delay2× Power 1.00 0.73 0.37 1.00 1.07 0.61 1.00 0.26 0.20

Input Power(mW) 0.15 0.17 0.16 0.08 0.09 0.09 0.03 0.04 0.04
Load Power(mw) 0.004 0.001 0.004 0.01 0.04 0.04 0 0.04 0.04

Sense Amp Power(mW) - 0.002 0.002 - 0.12 0.09 - 0.17 0.13
Logic Power(mW) 0.23 0.28 0.21 0.27 0.23 0.20 0.23 0.28 0.11

Total Transistor Count 312 322 162 392 316 226 393 450 315
Transistor Overhead 0 145.8% 23.7% 0 49.1% 6.6% 0 50.5% 5.4%

En

En En

In In’

Out’ Out

Fig. 15. sense amplifier

is the last CMD stage, a static shunt resistor is placed here.

D. Sense Amplifier

The sense amplifier is needed for both LVS logic and CMDL to
restore the small differential output signals, and Fig. 15 shows the
schematic of sense amplifier adopted in our experiment. When En
signal is high, the sense amp outputs are pre-charged to low. The
differential input should be ready before the falling edge of En signal,
which triggers the sense amp. The cross-coupled PMOS pair and
NMOS pair provide positive feed-back loop so that the full-swing
differential outputs reach the steady state with one high and one low
very quickly.

V. SIMULATION RESULTS

To quantify the performance and power consumption of the proposed
technique, we construct the net-list of the 32-bit alignment MUX,
8-bit rotator/shifter and the 16-bit carry-skip adder in TSMC 90nm
technology using CMDL and LVS logic. We also use standard cell
library of TSMC90nm as basic building blocks to construct the net-list
of the CMOS version of these three designs. For the 32-bit MUX and
8-bit rotator/shifter, we use only minimum size NMOS transistors in
CMDL circuits, but use 6x NMOS transistors in the first stage of the
LVS circuits. In the 16-bit carry-skip adder, gate sizing is performed,
and is the same for both CMDL and LVS circuits. In any case, the reset
logic in LVS circuits is composed of minimum size NMOS transistors
only. We use the CMOS inverters with size 4 to drive all the data
inputs and control inputs, and the logic outputs or sense amp outputs
are loaded with CMOS inverter with minimum size. For CMOS logic,
the loads directly connect to logic outputs, and for LVS and CMDL,
the loads connect to sense amp outputs. The schematic of sense amp
for LVS and CMDL is shown in Fig. 15. Since differential inputs and
outputs are used in CMDL and LVS logic, the number of input inverters

and load inverters used in these two logics are twice as that in CMOS
logic.

The cycle time for each logic is determined by the circuit worst
case delay from the inputs to the outputs. For LVS and CMDL, the
high voltage of sense amp is greater than 0.8v under the chosen cycle
time for better signal quality. To measure the power dissipations, we
use Hspice simulation as evaluation tool, and 100 randomly generated
input patterns are fed into each circuit.

Table II compares the Hspice simulation results of CMOS, LVS and
CMDL circuits in terms of delay, average/peak power, delay-power
product and delay2-power product. The absolute values are listed in
Row 4, 6, 8 and 10, and the normalized values are given in Row 5, 7,
9 and 11. We list in percentage the input power (the power consumed by
input inverters), the load power (the power consumed by load inverters),
the sense amp power, and the logic power (the power consumed by
logic circuits) in Row 12 to Row 15. For LVS logic, the power of reset
network is included in the logic power. The transistor count is also
compared (Row 16 and 17). The transistor overhead is calculated as
the ratio of extra transistor count to the summation of DCN transistor
count and sense-amplifier transistor count. Extra transistors are defined
as the reset network and the first stage of the DCN network (thru gates)
of LVS, and the conditional shunt transistors for CMDL. Transistor
count due to input and load inverters are not included. For instance,
the CMOS 32-bit Multiplexer can operate at 200ps cycle time, and has
a delay of 195.6ps. The average total power is 0.38mW, and the peak
total power is 5.69mW. The delay-power product is 74.33fJ, and the
delay2-power product is 14.54pJ×ps. The input power, load power and
logic power are 0.15mW, 0.004mW and 0.23mW The total transistor
count is 312, and the overhead is zero since there are no transistors for
reset network, thru-gates or shunt transistors.

In terms of the metrics of delay-power product and delay2-power
product, CMDL is better than CMOS and LVS. Compared to the other
two logics, CMDL reduces the delay-power product by up to 50% (in
the case of adder). CMDL also reduces the delay2-power product of
CMOS by up to 80%, and reduces the delay2-power product of LVS
by up to 49%.

The second advantage of CMDL is the high operating speed. The
speed of CMDL is faster than CMOS because it adopts the DCN
network and uses differential small signals. The speed of CMDL is
comparable to LVS in the multiplexer and shifter cases, and is slower
in adder case by 9% because with the elimination of reset stage, the
differential output needs to be charged from the opposite voltage level
instead of zero.

The third advantage of CMDL is the significant power efficiency
compared to LVS logic: the total power savings for multiplexer, shifter
and adder are 15%, 14% and 40% respectively. Since CMDL requires

8C-4

724

Fig. 16. Simulation waveforms of the CMDL 16-bit carry-skip adder.

Fig. 17. Simulation waveforms of the LVS 16-bit carry-skip adder.

the same number of input inverters, load inverters and sense amp as
LVS logic, the power reduction is mainly comes from the logic power
saving, as can be observed from Row 12 to Row 15. The primary
reason for the improvement is that CMDL does not use reset networks
and therefore reduce the switching of internal nodes and extra transistor
counts, which can be seen from the last row.

We can also see from Table II that CMDL dissipates more power
than CMOS logic: the power consumption of shifter and adder increase
by 14% and 23%. This is understandable since there is a static current
flow in CMDL which introduces static power consumption. Another
reason for higher power consumption of CMDL is more overhead
introduced by complement inputs, loads and sense amp. For instance,
the 32-bit MUX in CMOS logic needs 37 input inverters, 1 load
inverters and no sense amp, while the 32-bit MUX in CMDL needs
74 input inverters, 2 load inverters and 1 sense amp. Therefore, we
can see from Table II that the input power of CMDL is larger than
CMOS, the load power and sense amp power are very small and can
be ignored, and actually the logic power of CMDL is smaller than that
of CMOS. The 8-bit shifter/16-bit adder in CMOS logic needs 15/59
input inverters, 8/17 load inverters, while the CMDL version shifter
needs 30/72 input inverters, 16/34 load inverters and 8/17 sense amps,
which consume more than half of the total power. The logic power of
CMDL shifter/adder is 0.20mW/0.11mW, and the CMOS shifter/adder
has a logic power of 0.27mW/0.23mW.

Fig. 16-18 shows the Hspice simulation waveform of 16-bit carry-
skip adder implemented in CMDL, LVS and CMOS logic. For each
logic style, the carry-in, carry-out and clock/enable signals are shown,
and the input and output arrival times are labelled as well.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a current-mode differential logic (CMDL) style. By
adding shunt resistors and transistors, CMDL removes the large reset
network in LVS logic. Low-voltage swing in CMDL is maintained by
the static current through the output shunt resistor. We demonstrated
the effectiveness of CMDL by three arithmetic/logic block designs

Fig. 18. Simulation waveforms of the CMOS 16-bit carry-skip adder.

including a 32-bit alignment MUX, a 8-bit barrel shifter and a 16-
bit carry skip adder. Compared with CMOS and LVS implementations,
CMDL achieves much better delay-power product and delay2-power
product. Future work includes the detailed experiments of the energy
overhead of CMDL on small circuits, noise immunity and technology
scaling. Fabrication is also expected.

VII. ACKNOWLEDGEMENT

The authors would like to acknowledge the support of NSF CCF-
0618163 and California MICRO Program.

REFERENCES

[1] D. J. Deleganes, M. Barany, G. Geannopoulo, et al., “Low-Voltage swing
logic circuits for a pentium 4 processor integer core,” IEEE Journal of
Solid-State Circuits (JSSC), Vol. 40, No. 1, pp. 36-43, Jan. 2005.

[2] D. J. Deleganes, M. Barany, G. Geannopoulo, K. Kreitzer, A. Singh, S.
Wijeratne, “Low-Voltage-Swing logic circuits for a 7Ghz x86 integer core,”
in Digest of Technical Papers, IEEE Int. Solid-State Circuits Conference
(ISSCC), pp. 154-163, Feb. 2004.

[3] J. Rubinstein, P. Penfield, M. Horowitz, “Signal delay in RC tree net-
works,” IEEE Transaction on CAD, Vol. 2, No. 3, pp. 202-211, Jul. 1983.

[4] T. M Lin, C. A. Mead, “Signal delay in general RC networks,” IEEE
Transactions on CAD, Vol. 3, No. 4, pp. 331-349, Oct. 1984.

[5] R. Pereira, J. Mitchell, J. Solana, “Fully pipelined TSPC barrel shifter for
high speed applications,” IEEE Journal of Solid-State Circuits, Vol. 30,
No. 6, pp. 686-690, Jun. 1995.

[6] R. Zimmermann, W. Fichtner “Low-power logic styles: CMOS versus
pass-transistor logic,” IEEE J. Solid-State Circuits, Vol. 32, No. 7, pp.
1079-1090, Jul, 1997.

[7] L.G. Heller, W.R.Griffin, “Cascode voltage switch logic: A differential
CMOS logic family,” IEEE Int’l Solid-State Circuits Conf. Dig. of Tech.
Paper pp. 16-17. 1984.

[8] K.M. Chu, D.L. Pulfrey, “A comparison of CMOS circuit techniques:
Differential cascode voltage switch logic versus conventinal logic,” IEEE
J. Solid-State Circuits, Vol. SC-20, No. 4, pp.528-532, Aug. 1987.

[9] A.J. Acosta, M. Valencia, A. Barriga, M.J. Bellido, J.L. Huertas, “SODS:
A new CMOS differential-type structure,” IEEE J. Solid-State Circuits,
Vol. 30, No. 7, pp. 835-838, Jul, 1995.

[10] D. Somasekhar, K. Roy, “Differential current switch logic: A low power
DCVS logic family,” IEEE J. Solid-State Circuits, Vol. 31, No. 7, pp.981-
991, Jul, 1996.

[11] J. Park, J. Lee W. Kim, “Current sensing differential logic: A CMOS logic
for high reliability and flexibility,” IEEE J. Solid-State Circuits, Vol. 34,
No. 6, pp.904-908, Jun, 1999.

[12] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, A. Shimizu,
“A 3.8-ns CMOS 16x16-b multiplier using compementary pass-transistor
logic,”,IEEE J. Solid-State Circuits,Vol. 25, No. 2, pp. 388-395, Apr. 1990.

[13] M. W. Allam, M. I. Elmasry, “Dynamic current mode logic (DyCML): A
new low-power high-perforamnce logic style,” IEEE J. Solid-State Circuits,
Vol. 36, No. 3, pp. 550-558, Mar. 2001

8C-4

725

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

