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Abstract—Resonant tunneling diodes (RTDs) have demonstrated promis-
ing circuit characteristics of high speed switching property and versatile
functionality with negative differential resistance (NDR). In this paper,
we propose novel programmable logic elements (PLEs) that can be con-
figured to realize all three- or four-input logic functions. These simple
RTD-based circuit elements are implemented with threshold gates (TGs)
and multi-threshold threshold gates (MTTGs) by employing programmable
monostable-bistable logic element (MOBILE) principles. We also developed
a dynamically reconfigurable scheme based on our PLE structures which
facilitate nanopipelining without incurring delay overheads.

I. INTRODUCTION

Although traditional silicon electronics will continue the dom-
inance for the next 10-15 years [1], innovative nanoscale device
research advances have visualized great opportunities to surpass
the physical barriers of current CMOS technology and continue
the projection byMoore’s Law [2], [3]. Resonant tunneling diode
(RTD) devices have shown promising circuit characteristics in
improving both analog and digital circuits. Various RTD models
have been proposed [4], [5], [6] and RTD devices and circuits
have been reported working at a frequency of several GHz [7],
[8], [9]. RTD-CMOS hybrid circuit prototype and integration
process [10], [11] were developed to yield higher speed and
lower power design and fabrication over pure CMOS circuits.
To harness RTD’s ultrafast switching speed, compact and high
speed logic circuits are designed by using RTDs in conjunction
with heterostructure field effect transistors (HFETs). In [12],
[13], a RTD/HFET threshold logic circuit, called MOnostable-
BIstable transition Logic Element (MOBILE), achieved more
complex functionality with smaller area and lower power con-
sumption. Both synthesis and automatic test pattern genera-
tion methodologies have been established targeting on MOBILE-
based threshold logic networks [14], [15]. Moreover, the intrinsic
latching property of MOBILE devices enables the implementa-
tion of nanopipeline architectures [16], [17].
In this paper, we propose the design of our novel pro-
grammable logic element (PLE) structures implemented with
programmable MOBILE threshold gates (TGs) and multi-
threshold threshold gates (MTTGs). The proposed PLEs are
proved of complete logic functionality and an efficient config-
uration bits generation algorithm for PLE structures is also con-
structed. By adapting a nanopipeling scheme, PLE structures can
support dynamic reconfigurability without incurring delay over-
heads. The contributions of this work are highlighted as follows:
• The simple and novel three- and four-input PLE structures
are developed, which consist of three novel programmable gates
and two primitive functional gates based on MOBILE TGs and
MTTGs. The design simulation testifies functional correctness.
• Compared with [13], our circuit configuration is proved to be
able to realize all the logic functions through properly setting
the control bits which can be obtained by an effective encoding
scheme. Furthermore, only five control bits need to be config-
ured to realize a three-input logic function. This is more com-
pact and efficient than a general look-up table (LUT) solution
which requires eight configuration bits.
• By adapting a nanopipelining scheme, the PLE structure is

designed to support dynamical reconfiguration without delay
overheads. Comparisons between three- and four-input PLE
implementations provide an insightful view of design tradeoff.

The rest of this paper is organized as follows. Section II intro-
duces the preliminary concepts and background materials. sec-
tion III presents the novel PLE topologies. Section IV proves the
logic completeness of the PLE’s functionality. Section V intro-
duces the algorithm to generate configuration bits. Section VI
discusses the dynamic reconfigurability of PLE structures. Sec-
tion VII demonstrates our experimental results. Finally Sec-
tion VIII concludes.

II. BACKGROUND

In this section, we introduce some preliminary concepts,
specifically, the MOBILE circuit, threshold function, and clock-
ing scheme for nanopipelining.

A. Monostable-bistable transition logic element

The basic MOBILE circuit exploits the negative differential
resistance (NDR), an important feature of the RTD’s I-V charac-
teristics (see Fig. 1(a)). It consists of two RTD devices (load and
driver RTD) connected in series as shown in Fig. 1(d). Driven
by a bias voltage VCLK which oscillates between 0V and VDD,
the MOBILE circuit switches between a monostable state (S0 in
Fig. 1(b)) and a bistable state (S1 or S2 in Fig. 1(c)). The re-
sulting state of a bistable MOBILE circuit depends on the RTD’s
peak current Ip: the RTD with a smaller peak current will switch
to a high resistance state when VCLK increases. For example, if
the driver RTD has a lower peak current, the MOBILE becomes
stable at state S2 after the transition and generates a logic high
output Vout = 1. Combined with RTD/HFET branches which
are used to modulate the peak currents, MOBILE circuit can im-
plement TGs and more complex MTTGs.
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Fig. 1. (a) RTD I-V characteristics, (b) MOBILE operating principle in monos-
table, (c) MOBILE operating principle in bistable, (d) basic MOBILE circuit,
and (e) a generic MOBILE TG
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B. Threshold and multi-threshold threshold gates

A TG [18] is defined as a logic gate with n binary input vari-
ables {xi} (i=1,2,. . .,n), a set of n positive or negative weights
{wi} (i=1,2,. . .,n), and a numerical threshold T such that the bi-
nary output is 1 when

∑n

i=1
wixi ≥ T and 0 otherwise. This

threshold gate can also be denoted by a weight-threshold vector
[w1, w2, . . . , wn; T ].
Fig. 1(e) illustrates a generic TG topology based on a
RTD/HFET implementation [19], in which current controlling
branches are connected in parallel with the MOBILE RTDs (load
area A1 and driver area A2). The current controlling branches
consist of a series combination of an RTD and HFET, where A
is the unit RTD area and the weights wpi (i=1,2,. . .,k1) and wnj

(j=1,2,. . .,k2) are determined by the RTD areas. The HFETs be-
have like switches with xpi (i=1,2,. . .,k1) and xnj (j=1,2,. . .,k2)
as the positive and negative binary inputs, respectively. The
MOBILE TG can be simplified to the basic model (Fig. 1(d))
with an equivalent load and driver RTD whose corresponding

peak current can be computed as (
∑k1

i=1
xpiwpiA + A1)Ipd and

(
∑k2

j=1
xnjwnjA + A2)Ipd, respectively. Assuming that the

peak current density Ipd is identical for both load and driver
RTDs, the RTD’s peak current is proportional to its area. There-
fore, the functionality of the MOBILE circuit can be simply
determined by the equivalent RTD sizes. The generic MO-
BILE TG shown in Fig. 1(e) implements the threshold func-
tion [wp1, wp2, . . . , wpk1,−wn1,−wn2, . . . ,−wnk2; T ], where
the threshold T = (A2 − A1)/A.
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Fig. 2. MOBILE MTTG: (a) basic topology and (b) improved topology

The concept of RTD/HFET TG design can be further extended
to implement MTTGs by connecting three or more RTDs in se-
ries [20], as shown in Fig. 2(a). Because of the same circuit op-
erating principles as TGs, different MTTG functions can be de-
signed by adjusting the RTD areas to obtain the required current
relationship among different equivalent RTDs. A programmable
MTTG gate can be achieved by using some of the inputs as con-
trol bits [13] to realize different logic functions. Fig. 2(b) demon-
strates an alternative circuit topology of the same logic function
as the circuit in Fig. 2(a). This alternative implementation can
achieve a smaller circuit area and consume less power [21]. The
RTD-based circuits proposed in this paper use this improved cir-
cuit topology.

C. MOBILE clocking scheme

MOBILE circuits are inherently self-latching as they can pre-
serve the output values when bias voltage VCLK is set to high.
Therefore, this property together with a proper clocking scheme
can enable nanopipelining operations [17]. A four-phase clock-
ing scheme was introduced in [19] to operate cascaded MOBILE
circuit stages (see Fig. 3). In this scheme, each clock period T is
divided to four phases with an equal time interval of T/4. Phase
A is the evaluation phase during which the gate switches from
monostable to bistable and evaluates the output. In phase B, the
gate holds the result. In the reset phase C, the load capacitor is
discharged and the gate returns to its initial monostable state. The
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Fig. 3. Cascaded MOBILE circuits and four-phase clocking scheme

gate is inactive in the wait phase D. So in the clocking scheme
illustrated in Fig. 3, each clock is delayed by T/4 from the previ-
ous one to safeguard that the evaluation of a gate only starts after
the output of its previous gate becomes valid.

III. PROGRAMMABLE LOGIC ELEMENT

Based on the multi-threshold function implemented by
RTD/HFET MTTG topology, we present our three- and four-
input PLE structures in this section.

A. Three-input PLE
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Fig. 4. Three-input PLE

The three-input PLE implementation is shown in Fig. 4, which
can realize all 256 logic functions by setting the control bits
{c1, c2, . . . , c5}. The logic completeness and configuration de-
tails will be addressed in Sections IV and V, respectively.
The three-input PLE is composed of three programmable
gates, AND/XOR, XOR/NOR, and BUF/INV, and two primitive
functional gates, MUX (multiplexer) and BUF (buffer). The pro-
grammable gates and MUX that we have designed use the im-
proved MTTG topology introduced in Section II-B, and BUF is
implemented by a basic RTD/HFET TG [21]. The gate designs
are illustrated in Fig. 5(a)-(e). The area of each RTD is given
in the figures and A denotes the unit RTD area. Each of these
three programmable gates can realize two different boolean func-
tions depending on the value of the control bit. For example, gate
AND/XOR shown in Fig. 5(a) has x1 and x2 as inputs, c as con-
trol bit, and y as output. When c = 0, gate AND/XOR acts as
a logic AND, otherwise an XOR. The selection of the logic func-
tions of the programmable gates by the control bit is presented in
Table I.

TABLE I

LOGIC FUNCTION SELECTION OF PRIMITIVE PROGRAMMABLE GATES

Control Programmable gates

bit AND/XOR XOR/NOR BUF/INV MUX

c = 0 y = x1x2 y = x1⊕x2 y = x1 y = x1

c = 1 y = x1⊕x2 y = x1 + x2 y = x1 y = x2

In the PLE shown in Fig. 4, variable z selects an x-y function
branch based on its positive or negative phase through a MUX.
A BUF is used for z to patch up the signal path to two stages
to synchronize data arrivals at the evaluation phase of the MUX.
Another buffer is inserted at the output of the MUX in order to
complete a whole four-phase clock cycle. Fig. 5(f) presents the
HSPICE simulation results of all the MOBILE gates that we have
designed.
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B. Four-input PLE

In our three-input PLE design, a BUF is added at the MUX
output to serve as the fourth nanopipelining stage to adapt the
four-phase clocking scheme. We also designed a four-input PLE
as an alternative approach to fit in the four clock phases, as shown
in Fig. 6, by duplicating two structures of the first three stages of
the three-input PLE and connecting them to a MUXwhich serves
as a fourth stage. In this manner, a fourth inputw is added (as the
final MUX selection) to implement all four-input logic functions.
The comparisons of three- and four-input PLE implementations
are discussed in Section VII.
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IV. LOGIC COMPLETENESS

The ability of realizing all 256 three-variable logic functions
f(x, y, z) by using our three-input PLE is not as obvious as a
three-input LUT. In order to prove the logic completeness, we
first introduce Shannon Expansion.
Shannon Expansion: given an n-variable boolean function

f(x1, x2, . . . , xn), we have
f(x1, x2, . . . , xn) = x̄i · fx̄i

+ xi · fxi

fx̄i
= f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

fxi
= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

∀xi, i = 1, 2, . . . , n

where fx̄i
and fxi

are, respectively, the negative and positive
Shannon cofactors of f(x1, x2, . . . , xn) with respect to variable
xi. We define the literal set L as

L = {li} = {x̄1, x1, x̄2, x2, . . . , x̄n, xn, }, i = 1, 2, . . . , 2n

Accordingly, the cofactor set F is defined as

F = {fi} = {fx̄1
, fx1

, fx̄2
, fx2

, . . . , fx̄n
, fxn

, }, i = 1, 2, . . . , 2n

Shannon Expansion can be implemented by simply using a
MUX with xi as the select bit and the positive and negative
cofactors connected to the positive and negative MUX inputs,
respectively. Therefore, the three-input PLE shown in Fig. 4
is a three-variable function by Shannon Expansion on variable
z. The positive or negative cofactor is one of the total 16 x-y
functions. Unfortunately, the combination of an AND/XOR and
BUF/INV gate (the negative branch) as well as the combination
of an XOR/NOR and BUF/INV gate (the positive branch) cannot
implement all the 16 x-y functions. We denote the function set of
{xȳ, x̄y, x+ ȳ, x̄+y} that cannot be implemented as unavailable
set Su and the set of the rest 12 functions as available set Sa.

Theorem: given a three-variable logic function f(x, y, z),
there exists at least one variable, with respect to which Shannon
Expansion can avoid the cofactors that belong to the unavailable
set Su.
In order to prove it, let us begin with some preliminary con-
cepts. A Boolean function can be canonically expressed as the
sum of minterms. For a three-variable function f(x, y, z), it
has eight possible minterms: {m1, m2, . . . , m8} representing
{x̄ȳz̄, x̄ȳz, . . . , xyz}, respectively. Hence, we use a 8×1matrix
X to canonically represent f .

X = ( x1 x2 . . . x8 )
T

xi =

{
1 ifmi ∈ f
0 ifmi /∈ f

The expansion cofactor matrixW is constructed to represent
the cofactors of Shannon Expansions with respect to all the vari-
ables, which can guide us to quickly determine whether an ex-
pansion yields Su cofactors or not. The generalW matrix for n
variables is defined as

wij =

{
0 if mintermmj’s cofactor fi is 0
1 if mintermmj’s cofactor fi ∈ Sa

3 if mintermmj’s cofactor fi ∈ Su

∀i = 1, 2, . . . , 2n and j = 1, 2, . . . , 2n

Here the weights {1, 3} are chosen to distinguish the Su func-
tions from Sa. As for three input variables,W is an 6× 8matrix
given as follows.

W6×8 =

⎛
⎜⎜⎜⎜⎝

1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 3 0 0 3 1 0 0
0 0 1 3 0 0 3 1
1 0 3 0 3 0 1 0
0 1 0 3 0 3 0 1

⎞
⎟⎟⎟⎟⎠

fx̄

fx

fȳ

fy

fz̄

fz

m1 m2 m3 m4 m5 m6 m7 m8

where row i represents cofactor fi in the cofactor setF = {fi} =
{fx̄, fx, fȳ, fy, fz̄, fz}, and column j represents minterm mj of
{m1, m2, . . . , m8}.
We then define our cofactor encoding matrix F

∗ as

F
∗ = ( f∗

x f∗

x̄ f∗

y f∗

ȳ f∗

z f∗

z̄ )
T

= W · X

so that f∗

i is equal to 3 or 5 if cofactor fi belongs to Su. In
other words, if function f(x, y, z) cannot be implemented on the
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three-input PLE by using input z as the MUX select bit as shown
in Fig. 4, at least one of the two encoded cofactors f ∗

z̄ and f∗

z is
equal to either 3 or 5.
We now prove the theorem by contradiction.
Proof: If the theorem is not true, for all the three encoded
cofactor pairs (negative and positive), {f ∗

x̄ , f∗

x}, {f
∗

ȳ , f∗

y }, and
{f∗

z̄ , f∗

z }, at least one encoded cofactor of each pair is equal to
3 or 5. In other words, the theorem is true if we can prove that
no matrix X can yield a 3, 5, or both for all the three encoded
cofactor pairs at the same time.
• Case 1: Every encoded cofactor pair has a 3. An encoded
cofactor of value 3 relates to a violating Shannon cofactor that
is a (xȳ)-style function. Consider matrixW6×8: each column
(one minterm) only covers two 3s (two corresponding cofac-
tors). Function f(x, y, z) should contain at least two minterms
to result in three 3s. Without losing generality, suppose f has
minterm m2 which results in f∗

x̄ = 3 (fx̄ ∈ Su) and f∗

ȳ = 3
(fȳ ∈ Su). To satisfy the case that every encoded cofac-
tor pair has a 3, at least one of the encoded cofactors of f ∗

z̄
and f∗

z equals 3. Therefore, at least one of the four minterms
{m3, m4, m5, m6} is contained in function f . However, no
matter which minterm belongs to f , the value of f ∗

x̄ or f
∗

ȳ no
longer stays equal to 3, which contradicts the assumption we
have. Hence, case 1 is impossible.
• Case 2: At least one of the three encoded cofactor pairs has
a 5, and the other two pairs have either a 3 or 5. An encoded
cofactor of value 5 relates to a violating Shannon cofactor that
is a (x + ȳ)-style function. Also without lost generality, sup-
pose mintermsm1,m2, andm4∈f that makes fx̄ ∈ Su and the
cofactor encoding matrix F

∗ = (5 0 4 3 1 4). Since f∗

y = 3,
only the expansion on variable z is now feasible. To meet the
assumption that all the three pairs have either a 3 or 5, f must
contain other minterms. In other words, either f ∗

z̄ or f
∗

z should
equal 5. If fz̄

∗ = 5, m3 andm7 are contained in f , which will
result in f∗

ȳ = 4 and f∗

y = 7. Or m5 and m7 are contained in
f , which will result in f∗

ȳ = 7 and f∗

y = 6. Under these two
scenarios, Shannon Expansion on y flips from infeasible to fea-
sible. If f∗

z = 5,m8 must belong to f , which results in f ∗

ȳ = 4
and f∗

y = 4. Now expansion on y becomes feasible. If either
m6 orm3 is in f , correspondingly, f ∗

ȳ or f
∗

y will be 5. However,

this will change the value of f ∗

x̄ or f
∗

z and contradict with the
assumption fx̄ = 5. Hence, case 2 is impossible.
Combining case 1 and case 2, we conclude that it is impossible
that all the three encoded cofactor pairs have a 3, 5, or both at the
same time. In other words, no such a function f(x, y, z) whose
expansion on every variable can yield a Su cofactor.
Next, we will use an example to demonstrate how to use en-
coded cofactor matrix F

∗ to choose an expansion variable.
Example 1: Consider a logic function f(x, y, z) = xy + yz̄ +

xz̄. It can be expressed as the sum of minterms:
f(x, y, z) = x̄yz̄ + xȳz̄ + xyz̄ + xyz

The corresponding minterm representation for f is

X = (0 0 1 0 1 0 1 1)T

Therefore,

F
∗ =

⎛
⎜⎜⎜⎜⎝

1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 3 0 0 3 1 0 0
0 0 1 3 0 0 3 1
1 0 3 0 3 0 1 0
0 1 0 3 0 3 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

3
5
3
5
7
1

⎞
⎟⎟⎟⎟⎠

Since f∗

x̄ = f∗

ȳ = 3 and f∗

x = f∗

y = 5, Shannon expansions on
variable x and y cannot be implemented on our three-input PLE.
Actually Shannon Expansion on variable x generates

f = x̄(yz̄) + x(y + z̄)

The cofactors fx̄ = yz̄ and fx = y + z̄ both belong to Su. A
similar result can be derived by expansion on variable y. Since
neither f∗

z̄ nor f
∗

z equals 3 or 5, we choose to expand on variable
z, which yields

f = z̄(x + y) + z(xy)

Fig. 7 shows the PLE implementation for this example. The con-
trol bits generating algorithm is presented in Section V.
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After picking up a feasible expansion variable, both the neg-
ative and positive cofactors of function f belong to the avail-
able set Sa and can be respectively mapped to a pair of available
boolean functions {AND, NAND, OR, NOR, XOR, XNOR}. As
both of the expansion variable and its complement can be fed
as the select bit of the MUX, the order of the boolean function
pairs can be exchanged. However, since each input branch of
the MUX can only implement four of the six boolean functions
({AND, NAND, XOR, XNOR} for negative branch and {OR,
NOR, XOR, XNOR} for positive branch), there are still six un-
ordered function pairs that cannot be mapped onto a PLE. They
are (AND, AND), (NAND, NAND), (OR, OR), (NOR, NOR),
(AND, NAND), and (OR, NOR). Fortunately, the mapping be-
tween a cofactor and its boolean function implementation is a
many-to-many mapping. Alternative function pairs always exist
to result in a feasible mapping.
Based on the previous discussion, we see that the PLE struc-
ture is a simple yet powerful logic element. It can realize all 256
three-input functions with a proper configuration of the inputs
and control bits. Compared with current FPGA SRAM-based
LUTs, our PLE requires only five bits to configure any three-
input function rather than eight bits for a 3-LUT.

V. CONTROL BITS GENERATION

In Section IV, an expansion cofactor matrixW is introduced
to quickly determine the feasibility of Shannon Expansions. We
similarly construct a cofactor mapping matrixW

′ to derive the
control bits for three-input PLE implementations. We use a
weighted binary encoding scheme. For simplicity, consider the
case of expansion on variable z. Since the resulting cofactors
have four possible terms {x̄ȳ,x̄y,xȳ and xy}, we assign four dif-
ferent binary weights {1, 2, 4, 8} = {20, 21, 22, 23} to these four
possible cofactors. Therefore, the cofactor mapping matrix can
be expressed as:

W
′ =

⎛
⎜⎜⎜⎜⎝

1 2 4 8 0 0 0 0
0 0 0 0 1 2 4 8
1 2 0 0 4 8 0 0
0 0 1 2 0 0 4 8
1 0 2 0 4 0 8 0
0 1 0 2 0 4 0 8

⎞
⎟⎟⎟⎟⎠

Since the mapping cofactors derived through F
′ = W

′ · X are
integers ∈ [0, 15], a one-to-one mapping to the 16 two-variable
functions, we can easily determine the boolean functions by
checking their binary encoded values.
Fig. 8 describes the pseudo code of the control bits generat-
ing algorithm. It derives the input connection and control bits
configuration C(f) for a given function f . First, the cofactor
mapping matrixW ′ and minterm representationX of function f
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Input: f
Output: C(f)
1: generate matrixX for function f
2: F′ = W

′ · X
3: for every feasible expansion variable v
4: Bv̄ ← f ′

v̄

5: Bv ← f ′

v

6: if map(Bv̄, Bv)=positive then
7: c5 = 0, get c1, c2, c3 and c4

8: return C(f)
9: else if map(Bv̄, Bv)=negative then
10: c5 = 1, get c1, c2, c3 and c4

11: return C(f)

Fig. 8. Control bits generating algorithm

are multiplied to generate the mapping cofactors F′ (Line 1-2).
As we discussed in Section IV that not all the Shannon Expan-
sions can be implemented on PLEs, we need to perform a fea-
sibility check on the resulting mapping cofactors and choose a
feasible one. Because the four cofactor functions in Su are en-
coded as {2, 4, 11, 13} under this binary encoding scheme, we
just search in the variable order and pick up the first expansion
whose both encoded positive and negative cofactors do not be-
long to S′

u = {2, 4, 11, 13}.
Then we map the encoded cofactors f ′

v and f ′

v̄ to the available
boolean set B={AND, NAND, OR, NOR, XOR, XNOR}.
If boolean functionsBv̄ andBv that realize the negative and pos-
itive cofactors can be implemented as the negative and positive
PLE branches respectively (map(Bv̄, Bv)=positive), variable v
is connected to the select bit of the MUX with c5 = 0. The corre-
sponding control bits that configure the programmable gates are
generated (Line 6-8). However, due to the asymmetry of the pos-
itive and negative PLE branches, it may happen that the positive
and negative cofactors can only be mapped to the negative and
positive branches, respectively (map(Bv̄, Bv)=negative). Under
such a circumstance, the control bit c5 is set to 1 which feeds v’s
complement to the MUX’s select bit (Line 9-11).

Example 2: Consider function f(x, y, z) = xy + yz̄ + xz̄ in
Example 1 again. The minterm matrix representation of f is

X=(0 0 1 0 1 0 1 1)T
. Then we calculate the mapping cofactors

F
′ using the cofactor mapping matrix:

F
′ =

⎛
⎜⎜⎜⎜⎝

1 2 4 8 0 0 0 0
0 0 0 0 1 2 4 8
1 2 0 0 4 8 0 0
0 0 1 2 0 0 4 8
1 0 2 0 4 0 8 0
0 1 0 2 0 4 0 8

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

4
13
4
13
14
8

⎞
⎟⎟⎟⎟⎠

Checking the encoded cofactors, we find out that f ′

x̄ = f ′

ȳ =
4 ∈ S′

u and f ′

x = f ′

y = 13 ∈ S′

u. This implies that only z can
be used as the expansion variable. The encoded cofactors with
respect to variable z are mapped to boolean functions: f ′

z̄ = 14 =
(1110)2 ⇒ fz̄ = xy +xȳ+ x̄y = x+y (OR gate) and f ′

z = 8 =
(1000)2 ⇒ fz = xy (AND gate). Because Bv̄ = OR and Bv =
AND can only be implemented on the positive and negative PLE
branches respectively (map(Bv̄, Bv)=negative), the control bit
c5 is set to 1 to invert z. The control bits of the negative branch
c1 = 0 and c2 = 0 are required to configure an AND gate for
fz = xy, while the control bits of the positive branch c3 = 1 and
c4 = 1 are required to configure an OR gate for fz̄ = x + y. The
final configuration to realize function f(x, y, z) = z · (xy) + z̄ ·
(x + y) is shown in Fig. 7.
Because of the fact that the four-input PLE is composed of
two three-input PLEs, the control bits of a four-input PLE can

be derived by a proper modification of the aforementioned al-
gorithm targeting three-input PLEs. For a four-input function
f(x, y, z, w), at first an input variable is selected randomly, for
example w. Thus the function f can be expressed as Shannon
Expansion on variable w: f = w · fw + w̄ · fw̄. Then fw and fw̄

are two three-input functions that can be implemented by the two
three-input PLE branches of the four-input PLE structure (see
Fig. 6). The control bits generating algorithm for three-input PLE
is executed twice to obtain the control bits for both function fw

and fw̄. Altogether ten control bits are generated corresponding
to {c1, c2, . . . , c10} of the four-input PLE shown in Fig. 6.

VI. DYNAMIC RECONFIGURABILITY

Generally speaking, one of the performance challenges of dy-
namic reconfiguration is the relatively long reconfiguration time
caused by the requirement of loading a large amount of configu-
ration data through limited internal bandwidth. Thanks for the in-
herent self-latching property of MOBILE devices, the PLE struc-
ture can easily relieve this design bottleneck without introducing
any overhead.

AND/

XOR

M
U

X

BUF/

INV

XOR/

NOR

BUF/

INV

BUF/

INV

x,y
z

f (x,y,z)

c1 c2

c3 c4

c5

BUF

0

1
BUF

CLK1 CLK2 CLK3 CLK4

CLK1

CLK2

CLK3

CLK4

A B C D

A B C D

A B C D

A B C D

A: Evaluate, B: Hold, C: Reset, D: Wait

T 2T0 T/4 T/2 3T/4 5T/4 3T/2 7T/4

Stage 1 Stage 2 Stage 3 Stage 4

(a) (b)

Fig. 9. Nanopipelining: (a) pipeline stages and (b) clocking scheme

Fig. 9(a) shows the separation of the PLE’s four nanopipelin-
ing stages. As described in Section II-C, four overlapping four-
phase clocks (CLK1, CLK2, CLK3, and CLK4 illustrated
in Fig. 9(b)) are supplied to the corresponding stages to facili-
tate nanopipelining operations. Under this clocking scheme, the
MOBILE-based circuits of each stage require the output values
of their previous stage to be valid only at the evaluation phase
(phase A). Even the inputs change after the evaluation phase, the
self-latching property of MOBILE circuits keeps the output val-
ues stable during the hold phase (phase B). Therefore, the hold,
reset, and wait phases can be used to reconfigure the input con-
nections and control bits.
Suppose the PLE functionality is dynamically reconfigured ev-
ery clock cycle T (reconfiguration cycle). In the PLE pipeline,
the inputs to the stage-1 gates are required to be valid only during
the clock phase [0, T/4], [T, 5T/4], . . ., [nT, nT +T/4] (evalua-
tion phase). Thus the time interval from the end of an evaluation
phase to the beginning of next valid evaluation phase, can be used
to reconfigure the PLE stage-1 gates including input connection
and control bits c1 and c3. An example of such a clock phase
for stage-1 is [T/4, T ]with a reconfiguration slack of 3T/4. The
stage-2 gates, similarly, can take advantage of the hold, reset, and
wait phases of CLK2 (e.g., [T/2, 5T/4]) to reconfigure the con-
trol bits c2, c4, and c5. The overlapping reconfiguration slacks
of different configuration objects form the pipelining reconfigu-
ration scheme. The advantage of this pipelining reconfiguration
scheme is that the inactive clock phases of the MOBILE circuits
are fully utilized to avoid performance degrading.

VII. EXPERIMENTAL RESULTS

We evaluated our three- and four-input PLE structures in terms
of area and performance. MCNC benchmarks were implemented
on an array of PLEs. Berkeley’s synthesis and verification soft-
ware ABC [22] was used to extract three- and four-variable logic
functions from the benchmark applications.
The area and performance comparisons of the three- and four-
input PLE implementations are summarized in Table II. The level
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TABLE II

AREA AND PERFORMANCE COMPARISONS OF THREE- AND FOUR-INPUT PLE IMPLEMENTATIONS

three-input PLE four-input PLE Comparisons

Circuit Level PLEs PLEs PLEs Level PLEs PLEs PLEs Latency Area L×A L×A
(w/o) (1DR) (Red.%) (w/o) (1DR) (Red.%) (w/o) (w/o) (w/o) (1DR)

9symml 7 111 43 61 6 78 31 60 1.17 0.71 0.83 0.81

alu4 16 381 61 84 12 287 70 76 1.33 0.66 0.88 0.58

apex6 8 369 102 72 6 238 95 60 1.33 0.78 1.04 0.71

apex7 8 107 27 75 5 82 32 61 1.60 0.65 1.04 0.68

cc 3 39 18 54 2 31 21 32 1.50 0.63 0.95 0.64

count 10 56 19 66 6 37 7 81 1.67 0.76 1.27 2.27

dalu 16 585 114 81 11 398 79 80 1.45 0.73 1.06 1.04

des 9 1925 522 73 6 1534 556 64 1.50 0.63 0.95 0.70

rot 12 300 97 68 8 240 91 62 1.50 0.63 0.95 0.80

z4ml 3 16 8 50 3 11 6 45 1.00 0.73 0.73 0.67

of the circuit, total number of PLEs without dynamic reconfigu-
ration (w/o), total number of PLEs with dynamic reconfiguration
cycle of 1T (1DR), and reduction of PLE numbers by using dy-
namic reconfiguration (Red.%) are presented for both implemen-
tations in major columns three-input PLE and four-input PLE.
The comparisons between two implementations are computed in
ratios of three- to four-input on four metrics: Latency, Area, L×A
(w/o), and L×A (1DR). Since the latency is proportional to the
circuit level, the ratio of latency is the ratio of circuit level under
the assumption that the implementations are working at the same
clock frequency. The area is proportional to the total number of
PLE employed and PLE area.
Since the four-input PLE structure is larger in terms of gran-
ularity, it requires less number of total PLEs to implement the
function thus reducing the circuit level and overall latency. How-
ever this more powerful PLE structure takes approximately twice
of area compared to a three-input PLE. Although the total num-
ber of the PLEs reduced, the total area required is still larger than
the implementation based on three-input PLEs. If we consider
the latency-area product without reconfiguration, the three-input
PLE-based implementations are slightly better and the selection
between these two structures is a tradeoff between performance
and area cost. When reconfiguration is implemented, the three-
input PLE solutions are more favorable especially from the area
cost perspective.
The comparison of PLE numbers required for implementation
with and without dynamic reconfiguration demonstrates an av-
erage total area reduction of 65% if reconfiguration is applied.
Combined with the discussion in Section VI, the reconfiguration
process enables area reduction without incurring performance
overheads by utilizing the inactive clock phase of MOBILE cir-
cuit.

VIII. CONCLUSION

In this paper, we proposed our novel three- and four-input cir-
cuit elements, based on MOBILE TG and MTTG implementa-
tions. The functional correctness of the circuit is verified by
HSPICE simulation. An efficient control bit generating algo-
rithm is developed to configure the structures to realize all three-
and four-variable logic functions. Due to the self-latching prop-
erty of MOBILE circuits, the reconfigurability achieves an aver-
age 65% area reduction without delay overheads.
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