
Collaborative Hardware/Software Partition of Coarse-Grained Reconfigurable
System Using Evolutionary Ant Colony Optimization

Abstract - The flexibility, performance and cost effectiveness of
reconfigurable architectures have lead to its widespread use for
embedded applications. Coarse-grained reconfigurable system
design is very complex for multi-fields experts to collaborate on
application algorithm design, hardware/software co-design and
system decision. However, existing reconfigurable system design
methods and environments can only support hardware/software
co-design, ignoring the collaboration between multi-field experts.
This paper presents a collaborative partition approach of
coarse-grained reconfigurable system design using evolutionary
ant colony optimization. We create a distributed collaborative
design environment for system decision engineers, software
designers, hardware designers and application algorithm
developers. The method not only utilizes the advantages of ant
colony optimization for searching global optimal solutions, but
also provides a framework for multi-field experts to work
collaboratively. Experimental results show that the method
improves the quality and speed of hardware/software partition
for coarse-grained reconfigurable system design.

I Introduction

Existing EDA (Electric Design Automation) systems
support single designer to design with human-computer
interaction only. With the emergence and rapid growth of
CSCW (Computer Supported Collaborative Work) [1] [2] [3],
EDA is not only the tool for functional computing, design
decision and performance analysis, but also for multi-field
experts to communicate and collaborate with human-human
interaction.

Reconfigurable SoC design is very complex for multi-field
experts to collaborate on application algorithm design,
hardware/software co-design and system decision, while
hardware/software partition is the key problem of
reconfigurable system design. Since Gupta have advanced
hardware/software partition algorithm for automating design
space exploration [4], most research efforts use heuristic
algorithm for hardware/software partition, such as ant colony
optimization proposed by G.Wang et al. [5]. They show that
intelligent ants can cooperatively search for global best
optimal solutions using both heuristic information and
pheromone information. However, these methods are well for
hardware/software co-design, while not for distributed
collaborative design with multi-field experts.

In this paper, we present a Distributed Collaborative
Partition (DisCoPar) approach of coarse-grained

reconfigurable system using evolutionary ant colony
optimization. Based on the previous work on distributed
cooperative design of embedded systems, we developed
DisCoPar Environment, in which we build a distributed
collaborative framework for multi-field experts [6]. In the
framework we use evolutionary ant colony optimization to
search for global best optimal solutions. Experimental results
show improvement on design efficiency and quality.

II. Related Work

CSCW design is a novel product design method, which
supports product designers and related experts at different
locations to design the product by use of network and various
computer aided tools. During this process, each user is aware
of the existence of other users, and interacts with them.

Cutkosky [2] [3] advanced the concept of distributed
cooperative design. Since then, researchers apply many
techniques to implement distributed cooperative design, such
as network and communication, distributed computing,
computer supported cooperative design, agent and Web
service. Currently, the combination of intelligent agent and
Web service techniques has gained better application effect,
and it supports distributed cooperative design of complex
products efficiently.

For collaborative partition of coarse-grained reconfigurable
system, we in general assume that the styles of collaboration
between multi-field experts are synchronous and remote.
Experts include algorithm and reconfigurable system designer.
They work on algorithm design, hardware/software design and
system decision making respectively.

III. Problem Formulation for Coarse-Grained Reconfigurable
System Partition

A. Problem Definition

Usually, we use TG (Task Graph) to describe the behaviors
of SoC system, rAG (reconfigurable Architecture Graph) to
describe the architectures of reconfigurable SoC system, and
the mapping from TG to rAG to describe hardware/software
partitioning of reconfigurable system [7].

Definition 1 (TG) A task graph TG = (T, E, C, P) consists

Sikun Li

College of Comuter Science
University of Defense Technology

Changsha, P.R.China 410073
Tel : +86-731-4575981
Fax : +86-731-4575981

e-mail : lisikun@263.net.cn

Dawei Wang

College of Comuter Science
University of Defense Technology

Changsha, P.R.China 410073
Tel : +86-731-4575981
Fax : +86-731-4575981

e-mail : daweiwang@nudt.edu.cn

Yong Dou

College of Comuter Science
University of Defense Technology

Changsha, P.R.China 410073
Tel : +86-731-4573647
Fax : +86-731-4573647

e-mail : yongdou@163.net

8B-2

679978-1-4244-1922-7/08/$25.00 ©2008 IEEE

of a set of nodes T, a set of directed edges E ⊆ (T×T),
configuration of nodes C, and a set of node ports P.

The nodes T present the tasks of SoC system, and the edges
E present control/data flow of tasks’ communication.

Definition 2 (rAG) A reconfigurable architecture graph
rAG = (CP, CPE, CM, RN) consists of microprocessor
computation resources CP, reconfigurable computation
resources CPE, memories CM, and route networks RN.

Definition 3 (k way partition) Given a set of modules M =
{m1, m2… mn}, a k way partition problem is to find a set of
clusters P = {p1,p2,…,pk}, which meets:

≠≤≤Φ=

=

≤≤⊆

=

jikjipp

Mp

kiMp

ji

k

i
i

i

,,1,

1,

1

In the problem of reconfigurable SoC hardware/software
partitioning, M presents TG, and P presents rAG. Generally,
the performance objects of hardware/software partitioning are
various due to the complexity of application field. In this
paper, we assume the performance object is to minimize the
weighted cost sum of running time and area of all the tasks. A
typical partitioning for coarse-grained reconfigurable SoC is
shown in figure 1.

B. Target Architecture for Coarse-Grained Reconfigurable
System Partition

We deal with reconfigurable SoC hardware/software
partition by two main steps: mapping tasks to microprocessor
or reconfigurable array, and partial partitioning for the tasks
mapping on reconfigurable arrays. To meet the needs of
various applications, many reconfigurable architectures have
been proposed, which have different details of design
implementation, such as the topology of reconfigurable array,
communication protocol, and the strategy of reconfiguration.
To facilitate the research of reconfigurable partition problem,
we abstract reconfigurable architecture and take it as the target
architecture for partitioning. We design a RAAM
(Reconfigurable Architecture Abstract Model) for the
hardware/software partitioning of coarse-grained
reconfigurable Systems [8]. RAAM has many configurable
parameters, so it supports most kinds of reconfigurable
architectures.

Figure 2(a) shows the task graph that describes the function
and behavior of reconfigurable systems. There are three types

of task nodes: computing task, storage segment and
communication task. The task nodes are connected by
dependencies or channels. Figure 2(b) shows the
reconfigurable architecture that consists of microprocessor
and reconfigurable array. The microprocessor uses 32-bit
RISC instruction set and some enhanced instructions for
special propose processing. Reconfigurable array consists of
PEs (Process Elements), route network, LM (Local Memory),
configurable logic and control logic, etc. PEs array based
reconfigurable architectures are popular because of their
advantage of high performance, low power and good
flexibility for embedded system applications. Multi-field
experts use distributed collaborative environment to configure
RAAM and map task graph to reconfigurable architecture.

IV. Distributed Collaborative Partition

A. Collaborative Partition Framework

We use a Client/Server structure for distributed
collaborative partition, called DisCoParFrame. It supports data
share, communication among group and the control of parallel
operation. The client consists of some semi-intelligent agents
for hardware/software designer, application algorithm
designer to collaboratively partition, as shown in Figure 3. It
supports state watching, action reacting and RAAM
configuring. The server supports system decision maker to
control the course of partition. It sees after global information
storage, communication transfer, harmony and decision.

In DisCoParFrame, system decision maker on server
informs the experts on clients to configure the parameters of
RAAM. Then every expert submits the configuration results
of RAAM to server by co-access agent. After receiving all the
configuration results, the server starts ant colony optimization
algorithm and simulation to do partition. The experts adjust
the configuration according to the feedback of runtime
simulation information from server until the objective is met.
The experts can stop simulation if they find some constraints
are not met in the process of simulation.

In CSCW system, experts want to know about not only the
results of collaborative operation, but also the whole course of
collaborative operation. They should know about the activity
of expert, the change of state and the log of operation. Experts
can adjust their behavior according to current actions and

Fig. 1. Problem formulation for reconfigurable SoC partition.

Fig. 2. Reconfigurable architecture abstract model for
hardware/software partitioning, (a) task graph describes the
function and behavior of reconfigurable system; (b)
reconfigurable architecture consists mainly of microprocessor
and coarse-grained reconfigurable PEs array.

8B-2

680

states of collaborative environment. So it is convenient for
experts to collaborate with each other.

In DisCoParFrame, we define the communication protocol
of multi-field experts, which includes:

Task protocols, such as query of current task,
requisition for operation of task, user register, user login and
logout.

Data transfer protocol, including transfer mechanism of
the configuration of RAAM parameters, the operations of
experts and the state of simulation.

Parallel and cooperation control protocol, which
maintain the consistency of global share data.

Notification protocol, including aware mechanism of
the state of tasks and the chatting among experts.

Conflicts are inevitable for DisCoParFrame supports
multi-experts access global share data. To avoid the conflicts,
we designed a logic clock based concentrative parallel control
method. The basic idea is that: according to the global logic
clock in server and the global exclusive integer allocated to
each client, we define the order of operation events that send
to the server. So it can ensure the consistency of the order of
operation events running in client.

B. eACOGA Algorithm

ACO was proposed firstly by M.Dorigo in 1991. Then he
expounded the basic principle and maths models of ACO in
1996 [14]. He made some simulation experiments to compare
ACO with other algorithms, such as genetic algorithm, tabu
search and simulated annealing. Because established sound
basis for follow-up research of ACO, M.Dorigo gained the
prize of Madame Curie Outstanding Achievements.

Researches show that the ants with poor vision could find
the shortest route from ant colony to food by some volatility
secretions namely pheromone. The subsequent ants select this
route according to the strength of pheromone. When more ants
pass through the route, much stronger the pheromone of the
route becomes. Thus more ants are attracted to this route,
forming a kind of positive feedback. Existing researches on
ACO show well effects on many optimization problems, such
as traveling salesman problem, network route, and job shop
scheduling.ACO algorithm can find better solutions of

partitioning more effectively [9]. But the strategy of random
selection in constructing solutions leads to slow convergence
speed. Furthermore, the principle of positive feedback can not
only strengthen the solutions with better performance, but also
bring on the stagnancy of search. The causation is that the
main configurable parameters of the algorithm, such as , , ,
Q, are set to fixed value when initializing, and it has no
adaptability to various applications.

We present an eACOGA approach of hardware/software
partition for reconfigurable SoC. GA can evolve the
configuration parameters of ACO algorithm by cross operation
and variation operation. So eACOGA can evolve and optimize
itself to search global optimal solutions.

We define the rules of eACOGA as follows:
Objective Function and Fitness Function: We define

objective function as Sbest = arg min Cp, fitness function as
Fitness (p) = 1/Cp. Where, Cp figures the cost function of
partition p.

Configure RAAM: According to the need of specific
applications, design experts configure the task graph and
reconfigurable architecture. In this step, the parameters of the
tasks and architectures should be decided.

Strategy of Render to DAG: For any nodes except tn, ants
try to render the color of tj, the subsequence of ti. Ants achieve
the work according to the global heuristic information (ij(k))
of edge eij and the local heuristic information (j(k)) of node tj.
The ants on node ti will render the color of node tj as ck at the
probability of:

=

=
2,1

)()(
)()(

)(
l jij

jij
ij ll

kk
kp β

β

ητ
ητ

α

α

Where, ij(k) is the pheromone on edge eij, and is the
factor of them and j(k) is defined as follows:

)))(*())(*/((1)(kareawktimewk jattj +=η
Use Genetic Algorithm to Evolve Parameters: We use

genetic algorithm to evolve the parameters of ant colony
optimization, such as , , , Q. First, Configure the
probability factor of cross and variation operation according to
the size of population and the generation of evolution. The
evolution rules of GA use proportional selection, single cross
and even variation. Then by taking , , , Q as the variable of
fitness function, the best optimal partition cost as fitness
function and the course of ACO as the individual, we optimize

, , , Q repeatedly until finding the best optimal solutions.
Pheromone Setting and Refreshing: We adopt MMAS

(Max-Min Ant System) introduced by Thomas Stuzle ([10]),
the refreshing equation of pheromone is:

<
>

Δ+∗−
=

)()(if,)(
)()(if,)(

)()()1(
)(

minmin

maxmax

kkk
kkk

kk
k

ijijij

ijijij

bestijij

ij

τττ
τττ

ττρ
τ

Where, is the evaporation ratio of pheromone, ij(k)max
(ij(k)min) is maximum (minimum) strength of ck pheromone
on edge eij, and ij(k)best is increment of ck pheromone on
edge eij done by the "best ant" in current ant system algorithm
iteration. According to Ant-Cycle Model, ij(k)best is defined
as:

=Δ
otherwise0

pin,C/)(p kijbest
bestij

cbyrenderediseQk bestτ

Fig. 3. Distributed collaborative partition framework for
coarse-grained reconfigurable system design.

8B-2

681

The pseudo-code for eACOGA algorithm is shown in
Algorithm 1. First, the configurations of RAAM and DAGs
are input, and after the execution of eACOGA algorithm the
best optimal solutions for partition are output. In eACOGA,
ACO is built as a class, which has two main functions:
GetAnt() and StartSearch(), as shown in Line 23-25. GA
randomly encodes the variables of , , , Q, as shown in Line
18-22. GA evolves the variables continuously by the operation
of select, crossover and mutate, as shown in Line 6-14. In
ACO, we put the ants randomly into DAGs and begin the
search for best optimal solutions, as shown in the function on
Line 28-36 and Line 37-47. After evaluating the fitness
function values we output the best optimal solutions, as shown
on Line 12 and Line 15.

Algorithm 1. Pseudo-code for eACOGA algorithm

//Input: the configuration of RAAM and DAGs
//Outputs: the optimal solutions for partition
//Q, , , is the main parameters of ACO
1 Main(){
2 Generation = 0;
3 Initialize();
4 Evaluate();
5 Keep_the_Best();
6 foreach generation
7 {
8 select();
9 crossover();
10 mutate();
11 report();
12 Evaluate();
13 elitist();
14 }
15 Output the best fitness values;
16 }

17 Evaluate(){
18 For (mem = 0; mem < POPSIZE; mem++)
19 {
20 For (i = 0; i < NVARS; i++)
21 x[i+1] = population[mem].gene[i];
22 Q = x[1], = x[2], = x[4], = x[4];
23 ACO partition = new ACO;
24 partition.GetAnt();
25 partition.StartSearch();
26 population[mem].fit = CostFunction_to_Fit;
27 }

28 ACO::GetAnt(){
30 Randomly put ant into DAGs;
31 for (i = 0; i < nAntCount; i++)
32 {
33 task = rnd(nTaskCount);
34 ants[i].AddTaskIntoTabu(task);
35 }
36 }

37 ACO::StartSearch(){
38 Foreach ant
39 {
40 Select_NextNode_Accordto_heuristic_Inf();
41 Moveto_NextNode();
42 Update_Tabu_Table();
43 find out the best solution of the step and put
it into temp;
44 }
45 Update_Trail();
46 Find_theBest_Solutions_Of_Partition();
47 }

C. Automatic Partitioning Flow

We have designed an automatic partitioning flow for
mapping applications on reconfigurable SoC, as shown in
Figure 4.

First, design experts configure the tasks and reconfigurable
architecture of RAAM. Then, application specific
reconfigurable SoC prototype is generated according to
existing reconfigurable architecture templates [11]. Finally, we
run reconfigurable SoC transaction level co-simulation to
adjust and output the best optimal partitioning solutions.

The automatic partitioning flow has two main advantages:
(1).For each individual of genetic population in eACOGA,

the flow of partition and reconfigurable SoC co-simulation
can run automatically. When some constraints cannot be met,
experts can request to stop the simulation.

(2).Transaction level simulation in SystemC can describe
various behaviors of reconfigurable SoC with faster speed and
nicer accuracy. Architecture template enhances reuse of
existing SoC design and achieves exploration speedup well.

IV. Experimental Results

A. Target Architecture and Benchmarks

We use eACOGA algorithm for the partitioning of a
coarse-grained reconfigurable SoC system, which consists
mainly of 32-bit RISC microprocessor called Estar and
reconfigurable arrays called LEAP [12]. Both Estar and LEAP
are developed by our research group. We use Estar for
common computing. It has 8KB instruction cache and 8KB
data cache, 266M Hz and 220mW of CPU core. Besides, we
use LEAP for reconfigurable computing. It can accelerate
applications through loop self-pipelining technique. LEAP
steps loop iteration automatically and it has the ability to
exploit parallelism at loop level, instruction level, and task
level.

The SoC system integrates some typical algorithms in the

Fig. 4. Automatic partitioning flow of reconfigurable SoC. It
integrates eACOGA for partitioning configuration.

8B-2

682

field of Software Defined Radio, Synthetic Aperture Radar
imaging and high precision digital image encode/decode. We
have designed some typical algorithms running on
reconfigurable systems, such as FFT (Fast Fourier
Transformation), Sobel Edge Detection, Median Filter, Matrix
Multiply, FDCT (Forward Discrete Cosine Transform), IDCT
(Inverse Discrete Cosine Transform), etc. We have tested the
performance of these typical algorithms on Estar and LEAP
and translate execution time into time cost and resources used
into area cost.

B. Result Analysis

We generate some test DAGs based on SUIF [13], the
nodes of which consist of typical algorithms and basic blocks.
We set the parameters region of , , , Q respectively as [5,
1], [5, 1], [0.8, 0.2], [100, 40]. In eACOGA algorithm, we set
wt = 1, wa = 10, ACO iteration counts = 100, GA population
size = 5, GA max generation = 50, GA cross probability factor
= 0.8, and GA variation probability factor = 0.15.

We achieve the object of hardware/software partitioning
using eACOGA, as shown in Figure 5. The total number of
tasks is 10, and ant counts = 6. The global best optimal
solutions are 1862843, in which Q = 70.540, = 4.836, =
3.580, = 0.738. The average value of 1st generation is
1918421, by evolution the average value of 4th generation is
1891026, and that of 5th generation is 1890922.

To compare the quality of eACOGA with that of other
researches, we select ACO algorithm in literature [8]. We set

ACO parameters as: Q = 1000, = 1, = 1 and = 0.8.
Figure 6 show that eACOGA has better ability than ACO in
searching for the global best optimal solutions. The algorithm
of ACO gets into local best optimal solutions (1905396).
However, eACOGA can find the global best optimal solutions
(1862843) effectively for the advantage of self-adaptive
optimization. Besides, another algorithm we have researched,
called initACO (ACO with init pheromone), has the
performance between them [14].

The possible explanation for the proposed eACOGA
approach to outperform the basic ACO method with better
optimal solutions is that the main control parameters of ACO
affect its performance greatly. The pheromone (ij(k)) is the
carriers of the past information, while the heuristic function
(j(k)) is the carriers of the future information. Many
experiments on basic ACO shows that the factor which
controls ij(k) has important impact on ACO performance and
the factor which controls j(k) has a substantial effect on
global convergence. The factor which reflects the change of
pheromone affects the ability of global search and the speed of
convergence. The factor Q which reflects the amount that the
searching ants release, concerns the positive feedback ability
of the searching ants and the rapid convergence of ACO.

The basic ACO algorithm initializes these factor parameters
with fixed values, as shown in literature [5], which set the
factor parameters in all the experiments with the same values:
Q=1.000, = = 1, = 0.8. While different DAGs needs a
different combination of the factor parameters. So the
information motivates us to a hybrid approach of ACO and
GA together. That is we use GA evolve and select the suitable
factor parameters of ACO for different DAGs. Our
experiments show that eACOGA has statistically robust in
finding close to optimal solutions.

The algorithm of eACOGA has some configurable
parameters. We can optimize the performance of eACOGA by
configuring the parameters and running simulation. Table I
shows that when cross factor = 0.8, eACOGA has better
ability for random search and can reduce iteration counts. In
the same way we make experiments on three group probability
factor of variation (0.15, 0.20 and 0.25). The results show that
0.15 is the best value for our problem.

IV. Conclusions
Existing EDA systems support human-computer interaction

only, not touch on human-human interaction. This paper
proposes a collaborative hardware/software partition approach

Fig. 5. The evolution curve of eACOGA for partition. The
convergence speed of 5th generation ACO is much faster than
that of 1st and 4th one.

0

1000

2000

3000

4000

5000

6000

ACO iteration counts (100)

Co
st

Fu
nc

tio
n(

K
) 1st

4th
5th

Fig. 6. Comparing eACOGA with ACO and initACO. It shows
eACOGA can find optimal solutions with fewer iteration
counts.

0

1000

2000

3000

4000

5000

6000

ACO iterat ion counts (100)

Co
st

Fu
nc

tio
n(

K
) ACO

initACO
eACOGA

TABLE I
Average iteration counts with different cross factor

Single Cross Factor Scale of

Tasks 0.6 0.7 0.8

8 9 11 8

16 15 11 13

32 28 26 25

64 53 51 46

128 89 83 85

8B-2

683

of coarse-grained reconfigurable system, which supports both
human-computer and human-human interaction well. We
design distributed collaborative partition framework and
integrate automatic collaborative partition flow for
hardware/software partition of reconfigurable SoC. By
configuring parameters and running simulation we can get the
global best optimal partition solutions. It can not only reduce
the time of waiting for simulation, but also provide convenient
collaborative framework for multi-field experts to work.

ACO has been well proved to be suitable for fine-grained
reconfigurable SoC partitioning, but not mentioned for
coarse-grained reconfigurable SoC. This paper uses eACOGA
for hardware/software partition of coarse-grained
reconfigurable system, which achieves better results than
ACO. The remarkable advantage of eACOGA is that it
combines both global and local heuristics in the search of
exploration space. And it can evolve the main control
parameters of ACO by GA to tune for different applications
requirement.

The algorithm of eACOGA can evolve the main control
parameters (, , , Q) of ACO, so that it can find global best
optimal solutions efficiently and rapidly. The suitable
combination of the control parameters can also achieve rapid
speed of convergence. It overcomes the disadvantage of ACO
that be inclined to get into local best optimized solutions.
Furthermore, the method combining ACO and GA that yields
even better results than using each of the algorithms
individually.

Acknowledgements

This work is sponsored by the National Science Foundation
of China under the grant NO.90707003 and NO.60633050.

References

[1] Reinhard W., Schweitzer and Volksen G, “CSCW tools: concepts
and architectures”, IEEE Computer, Vol.27, pp. 28-36, 1994.

[2] Regli, W., “Internet-enabled Computer-Aided Design”, IEEE
Internet Computing, pp. 39-51, 1997.

[3] Pahng, F., Sein, N., Wallace, D.R., “Distributed Modeling and
Evaluation of Product Design Problems”, Computer-Aided
Design, pp. 411-423, 1998.

[4] R. Gupta, G. D. Micheli, “System-Level Synthesis Using
Re-programmable Components”, In Proceedings of the European
Conference on Design Automation, pp. 2-7, 1992.

[5] Gang Wang, Wenrui Gong and Ryan Kastner, “System Level
Partition for Programmable Platforms Using the Ant Colony
Optimization”, In 13th International Workshop on Logic and
Synthesis, 2004.

[6] Sikun Li, Dawei Wang, Tun Li and Yong Dou, “Distributed
Collaborative Partition Method of Reconfigurable SoC Using Ant
Colony Optimization”, In 11th International Conference on
CSCW in Design, Melbourne, pp. 133-138, 2007.

[7] Michael H. Eisenring, “Communication channel synthesis for
heterogeneous embedded systems”, Ph.D. thesis, SWISS Federal
institute of Technology ZURICH, No.14640, 2002.

[8] M. Kaul, V. Srinivasan, et al, “Partitioning and Synthesis for
Run-Time Reconfigurable Computers Using the SPARCS
System”, In Proceedings of the 1998 Military and Aerospace
Applications of Programmable Devices and Technologies
Conference, NASA Goddard Space Flight Center, 1998.

[9] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System:
Optimization by a Colony of Cooperating Agents”, IEEE Trans
on Systems, Man and Cybernetics, Part-B, Vol. 26, pp. 29-41,
1996.

[10] T. Stutzle, H. H. Hoos, et al, “MAX-MIN Ant System”, Future
Generation Computer System, Vol. 16, pp. 889-891, 2000.

[11] Sikun Li, Dawei Wang and Peng Zhao, “An Architecture
Template based SoC Transaction Level Modeling and Simulation
Method”, The Seventh International Conference on
Computer-aided Industrial Design&Conceptual Design,
Hangzhou, pp. 362-367, 2006.

[12] Yong Dou, Xicheng Lu, “LEAP: A Data Driven Loop Engine on
Array Processor”, The 4th Int'l Conf on Parallel and Distributed
Computing, Applications and Technologies, 2003.

[13] M. D. Smith and G. Holloway, “An Introduction to Machine
SUIF and Its Portable Libraries for Analysis and Optimization”,
Division of Engineering and Applied Sciences, Harvard
University, July 2002.

[14] Xiong Zhihui, Li Sikun and Chen Jihua, “Hardware/Software
Partitioning Based on Ant Optimization with Initial Pheromone”,
Journal of Computer Research and Development, Vol. 42, pp.
2176-2183, 2005.

8B-2

684

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

